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Regulation of Drosophila Lifespan 
by bellwether Promoter Alleles
Júlia Frankenberg Garcia1,2, Mary Anna Carbone1, Trudy F. C. Mackay1 & Robert R. H. Anholt1

Longevity varies among individuals, but how natural genetic variation contributes to variation in 
lifespan is poorly understood. Drosophila melanogaster presents an advantageous model system to 
explore the genetic underpinnings of longevity, since its generation time is brief and both the genetic 
background and rearing environment can be precisely controlled. The bellwether (blw) gene encodes the 
α subunit of mitochondrial ATP synthase. Since metabolic rate may influence lifespan, we investigated 
whether alternative haplotypes in the blw promoter affect lifespan when expressed in a co-isogenic 
background. We amplified 521 bp upstream promoter sequences containing alternative haplotypes and 
assessed promoter activity both in vitro and in vivo using a luciferase reporter system. The AG haplotype 
showed significantly greater expression of luciferase than the GT haplotype. We then overexpressed a 
blw cDNA construct driven by either the AG or GT haplotype promoter in transgenic flies and showed 
that the AG haplotype also results in greater blw cDNA expression and a significant decrease in lifespan 
relative to the GT promoter haplotype, in male flies only. Thus, our results show that naturally occurring 
regulatory variants of blw affect lifespan in a sex-specific manner.

Lifespan is highly variable among individuals and is determined by the complex interplay between genetic and 
environmental factors1, 2. Evolutionary theories regarding genetic limitations on lifespan have proposed the per-
sistence of deleterious alleles in the genome that are activated at later age after reproduction3–6, or antagonistic 
pleiotropy of alleles that are beneficial early in life and deleterious later on7, 8. Oxidative stress9–11, genomic insta-
bility12–15, telomere length16–18 and DNA repair mechanisms19–22 have been implicated as mechanisms that affect 
aging and longevity. However, little is known about the mechanisms by which naturally occurring allelic variants 
within a population affect variation in lifespan.

Oxidative stress occurs through the production of reactive oxygen species (ROS) as a byproduct of mitochon-
drial oxidative phosphorylation23, 24. Previously, single nucleotide polymorphisms (SNPs) in the promoter region 
of the Drosophila bellwether (blw) gene have been associated with differences in lifespan between control flies 
and long-lived lines of flies originally selected for delayed reproduction25, 26. This study showed that all four of the 
long-lived lines selected for postponed reproduction that were genotyped for the blw promoter were fixed for the 
GT haplotype, but this haplotype was lost or at very low frequency in the five controls that were genotyped for the 
blw promoter25. The blw gene encodes the α subunit of mitochondrial ATP synthase, suggesting that sequence 
variants in this gene could give rise to subtle differences in metabolic rate which could affect the production of 
ROS during the organism’s lifespan27. Here, we show that alternative haplotypes in the promoter region of blw 
result in different levels of gene expression and that introduction of a transgenic blw construct driven by these 
alternative promoters in a co-isogenic background causes a profound sex-specific effect on lifespan. These results 
provide a mechanistic link between lifespan and allelic variation in a central metabolic gene.

Results
RNAi-mediated inhibition of blw expression results in lethality.  The Drosophila blw gene is located 
on chromosome 2 (Chr2R:22,799,099…22,802,180 [+]) and generates a single transcript composed of a 5′-UTR 
(105 bp), 4 exons (66 bp, 581 bp, 802 bp and 210 bp) and a 3′-UTR (488 bp) (Fig. 1)28. Prior to examining regula-
tion of blw expression under alternative promoters, we assessed the effect of RNAi-mediated knockdown of blw 
expression by crossing flies homozygous for a UAS-blw-RNAi transgene to flies that drive GAL4 expression under 
ubiquitin or actin promoters. No embryos developed when blw was knocked down with the actin promoter. 
When blw was knocked-down using the ubiquitin promoter, flies reached the pupal stage but did not eclose 
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from the pupal cases. These results demonstrate that blw is an essential gene for development and viability of D. 
melanogaster.

Functional analysis of the blw promoter region.  To examine whether alternative haplotypes in the blw 
promoter affect gene expression, we generated promoter constructs of different lengths containing the AG haplo-
type and tested their activity in an in vitro firefly luciferase reporter system. All blw promoter constructs encom-
pass the 56 bp region containing the GAGA and Adf-1 elements essential for promoter activity29. All constructs 
were effective in driving luciferase expression (Fig. 2a) and therefore we selected the shortest, 521 bp promoter 
region for further studies.

We cloned the four haplotypes of the 521 bp blw promoter region, −188A/−150G, −188A/−150T, 
−188G/−150G and −188G/−150T (designated AG, AT, GG and GT respectively), into the pGL3-basic-Luciferase 

Figure 1.  Diagram of the structure of the D. melanogaster blw gene. The blw gene is located on 
Chr2R:22,799,099…22,802,180 [+] and generates a single transcript composed of a 5′-UTR (gray box), four 
exons (blue boxes) and a 3′-UTR (gray arrow) (Flybase.org). The two SNPs are located 150 bp [G/T] and 188 bp 
[A/G] upstream of the blw transcriptional start site (gray box). The location of PCR primers used to generate the 
blw-promoter or blw-cDNA are indicated by red arrows.

Figure 2.  Relative strength of the putative promoter region of the blw gene. (a) Four different lengths of the 
blw-promoter region harboring the AG haplotype were cloned in the pGL3-basic vector and expressed in 
Drosophila S2 cells. Primer locations are indicated with respect to the transcriptional start site of the blw gene 
(see Fig. 1). Black lines represent the promoter length and the yellow arrow represents the luciferase reporter 
gene. (b) The 521 bp blw-promoter region harboring the AG, GG, AT and GT haplotypes were cloned in the 
pGL3-basic vector and expressed in Drosophila S2 cells. (c) The same promoters were expressed in flies using 
the Gal4-UAS binary expression system. For each experiment, protein lysates were extracted and luciferase 
expression was measured and normalized (relative light units; RLU). Gray bars represent the Drosophila S2 
cells (Panels a and b). Female flies are represented by red bars and males by black bars (Panel c). Error bars are 
standard errors of the mean.
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vector and transfected Drosophila S2 cells. The AG and GG haplotypes showed substantially greater luciferase 
expression than the AT and GT haplotypes (P < 0.0001) (Fig. 2b).

Next, we asked whether the same difference would be replicated in vivo. We cloned the same promoters in a 
pattB-Gal4-hsp70 vector and drove luciferase expression in transgenic flies by crossing flies homozygous for the 
Gal4-blw-promoter with flies carrying a UAS-luciferase construct. We measured luciferase activity in protein 
lysates from the F1, sexes separately, to compare the strength of each promoter (Fig. 2c). Here, the AG haplotype 
showed approximately 3-fold greater luciferase expression than the other haplotypes in both sexes (P < 0.0001).

We compared our in vitro and in vivo observations. Analyses of variance revealed a significant difference 
among the haplotypes and in promoter strength between the −150G and −150T SNPs both in cell culture and in 
flies (P = 0.0008 (in vitro); P < 0.001 (in vivo) Fig. 2). In both cases, the −150G allele results in stronger promoter 
expression. In contrast, the −188[A/G] appears to have no effect when expressed in cell culture (P = 0.823). 
When expressed in flies, however, the −188A allele is significantly stronger than the −188G allele (P < 0.0001). 
These results reveal the effect of each individual SNP on the strength of the blw promoter. Based on our in vivo 
results, we focused further experiments on the effects of the AG and GT haplotypes on lifespan.

Overexpression of blw from the AG promoter shortens lifespan.  We used the Gal4-UAS binary 
expression system30, 31 to investigate the effects of overexpression of a blw cDNA construct driven by promot-
ers with either the AG or GT haplotype in a co-isogenic background. Quantitative real-time PCR showed that 
the promoter with the AG haplotype drives stronger blw cDNA expression than the GT haplotype (P = 0.01), 
in line with observations from our in vivo and in vitro luciferase reporter gene experiments (Fig. 3a). Flies in 
which blw cDNA expression is driven by the AG promoter, however, have a reduced median lifespan compared 
to flies in which blw cDNA expression is driven by the GT promoter (Fig. 3b). We fitted a mixed effects Cox 
model including the sex by haplotype term to the lifespan data. This analysis revealed a strong sex by haplotype 
effect (P < 6 × 10−5, Fig. 3b). Therefore we performed survival analyses for sexes separately. For each sex, we 
fitted another mixed effects Cox model, testing for significance of the differences of hazard between the two 
haplotypes and with controls. In males there was no difference between haplotype GT and control (HR = 0.99, 
P = 0.96), but the hazard for the GT haplotype was markedly higher than the AG haplotype (Fig. 3c, HR = 12.83, 
P = 2.47 × 10−32). By contrast, in females there was a significant effect between the AG and GT haplotypes with 
the controls (hazard ratio (HR) = 1.70 and P = 0.003 for AG versus control and HR = 1.69 and P = 0.004 for GT 
versus control) but no difference between the AG and GT haplotypes (HR = 0.99, P = 0.96; Fig. 3d).

Figure 3.  Effect of blw-cDNA overexpression on lifespan. (a) Normalized expression levels measured by 
quantitative RT-PCR of blw-cDNA when driven by the blw-AG and blw-GT promoters (red, females; black, 
males). (b) Median lifespan of flies that overexpress blw-cDNA from the blw-AG and blw-GT promoters (red, 
females; black, males). (c) Survival curves of male flies overexpressing blw-cDNA when driven by either the 
blw-AG (red) or blw-GT promoter (black). (d) Survival curves of female flies overexpressing blw-cDNA when 
driven by either the blw-AG (red) or blw-GT promoter (black). The control flies expressing the endogenous blw 
gene are shown by gray dotted lines.
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Discussion
Sex differences in lifespan have been observed in model organisms including C. elegans, D. melanogaster, and 
Mus musculus32, 33. Sexual dimorphism in genetic architecture34 is a common feature of quantitative traits and 
has been documented for morphological35–37, behavioral38, 39, physiological40, 41, and life history traits42, 43, includ-
ing lifespan44, 45, in Drosophila. The genetic architecture of Drosophila lifespan in particular, is sexually dimor-
phic25, 45–50. Here, we investigated the effects of allelic variants in the promoter region of blw on lifespan and 
showed that overexpression of the AG haplotype shortens male lifespan compared to its GT counterpart. Our 
luciferase-reporter assays revealed a significant difference in promoter expression between the AG and GT hap-
lotypes both in cell culture and in flies.

The blw gene encodes the ATP synthase α subunit, essential for oxidative phosphorylation27, and it is therefore 
not surprising that inhibition of blw expression by RNAi results in lethality. This observation is in line with previ-
ous studies on blw mutant alleles, which showed larval growth defects affecting all tissues, DNA endoreplication 
defects, and larval lethality with no homozygous animals reaching the pupal stage51. A previous study showed that 
a blw mutant, generated by insertion of a transposable element in the 5′ UTR (blwKG05893), reduced adipose tissue 
growth and triglyceride storage and increased ROS in third instar larval fat bodies52.

All four long-lived D. melanogaster lines (O-lines) selected for postponed reproduction that were genotyped 
for the blw promoter contain the GT haplotype, whereas this haplotype was lost or present at low frequency in 
all of the corresponding control base lines (B-lines)25. Assessment of feeding behavior, measured by a capillary 
feeding (CAFÉ) assay, showed that the B-lines consume more sucrose compared to the O-lines and that food con-
sumption declines with age. The increased feeding behavior of the B-lines may correlate with increased metabolic 
rate and, therefore, shorter lifespan compared to the O-lines25. This corresponds with our results, since we observe 
a stronger promoter activity of the blw-AG haplotype (representative of the B-lines) resulting in higher expression 
levels of blw-cDNA, and a decreased male lifespan of the UAS-blw-cDNA x Gal4-blw-AG promoter lines.

Mechanisms of aging may involve metabolic regulation through the insulin signaling pathway, as evident from 
the effects of mutations in components of this pathway, including foxo, InR and chico53–56. In addition, the major 
nutrient-signaling pathways, that depend on mTOR57–59, Sir260, 61, and insulin-like62, 63 genes, have been associated 
with extension of lifespan in flies subjected to dietary restriction. However, the benefits of dietary restriction on 
lifespan extension are eliminated by exposure to oligomycin, a specific inhibitor of mitochondrial ATP synthase64, 
implicating the electron transport chain.

Invadolysin, a lipid-droplet associated protein, interacts physically with three mitochondrial ATP synthase 
subunits: α (bellwether), β and δ52. Multiple proteomic screens have demonstrated that the ATP synthase subunits 
also interact with lipid droplets in Drosophila embryos, third instar larvae, and in human adipocytes65. Both 
invadolysin and blw mutants have defects in mitochondrial electron transport chain activity and thus produce 
high levels of ROS52. Furthermore, invadolysin mutants exhibit increased autophagy and decreased glycogen 
storage66. Together, these data suggest that blw plays a role in lifespan determination via its physical interaction 
with invadolysin.

Previous studies on aging in Drosophila have led to the discovery of additional genes that extend lifespan, 
including mth67–69, Indy70, 71, InR55, 72, 73, chico56, 74, 75, and SOD76–79. Also, bride of sevenless (boss) null mutants have 
shortened lifespans, diminished locomotor performance and elevated ROS production80. In addition, boss mutant 
flies express higher levels of blw compared to control flies, further implicating a connection between decreased 
lifespan and increased metabolic rate, correlated with expression of blw.

It should be noted that our transgenic flies that overexpress blw from a cDNA construct still contain endog-
enous blw. The presence of the endogenous gene might amplify the deleterious effect of overexpression of blw 
under the AG promoter in males as it may allow overexpression of the transgene to surpass a critical threshold, 
which might not be reached in the absence of the endogenous gene.

It is tempting to speculate that greater expression of the blw ATP synthase α-subunit under the AG promoter 
may result in enhanced metabolic rate, generating more ROS, which results in shorter lifespan. In this scenario, 
the female sex environment would appear to be protective against the effects of the AG haplotype and metaboli-
cally generated oxidative stress. Although further experiments are necessary to consolidate or refute this hypoth-
esis, our study demonstrates a link between allelic variation in the promoter of the blw gene and Drosophila 
lifespan.

Methods
In-vitro promoter luciferase assays.  We used PCR to amplify four different lengths (521 bp, 1002 bp, 
1417 bp and 2051 bp) of the promoter region, containing the AG haplotype, upstream of the blw coding region 
from genomic DNA using directional primers based on the Drosophila reference strain (line 2057) and cloned the 
amplicons into the Kpn1/Xho1 multiple cloning site of the pGL3-basic vector (Promega). We screened colonies by 
Kpn1/Xho1 double-digestion and Sanger sequencing to identify positive clones, and used site-directed mutagen-
esis to generate the other haplotypes using Pfu phusion HotStart Flex DNA polymerase (New England Biolabs). 
Following PCR-amplification the parental template was digested with Dpn1, and the DNA was transformed into 
JM109 competent cells (Promega). Clones were purified using the Qiagen MiniPrep kit (Qiagen) and validated 
by Sanger sequencing81.

Drosophila S2 cells were cultured at room temperature in Schneider’s Drosophila medium (Invitrogen) sup-
plemented with 10% heat-inactivated fetal bovine serum (Invitrogen) and 100 μg/ml of gentamicin (Gibco). Cells 
were counted 24 h prior to transfection using a Countess Automated Cell Counter (Invitrogen) and 1 million cells 
were transferred to the wells of a 6-well plate. Each blw promoter construct was co-transfected with a Renilla lucif-
erase vector as an internal transfection control (pGL4.74[hRluc/TK] vector; Promega, E6921) using Cellfectin II 
reagent (Invitrogen). Transfections were performed in triplicate. After incubation for 72 h at 28 °C protein lysates 
were extracted and subjected to a Dual-Glo luciferase assay (Promega). Firefly and Renilla luciferase activity were 



www.nature.com/scientificreports/

5Scientific Reports | 7: 4109  | DOI:10.1038/s41598-017-04530-x

measured with a GloMax luminometer. The firefly luciferase activity was normalized against the Renilla luciferase 
activity for each sample and data were analyzed using SAS software version 9.382. We performed an analysis of 
variance (ANOVA) for luciferase activity: Y = μ + H + ε, where Y is the observed value, μ is the mean, H is the 
promoter haplotype, and ε is the residual (error) variance. The normalized relative light units emitted by the assay 
revealed the strength of each promoter.

In-vivo promoter luciferase assays.  We excised the 521 bp blw-promoter inserts from the 
pGL3-basic vector with Kpn1 and BglII and ligated them into the pattB-Gal4-synaptobrevin-hsp70 vec-
tor (Addgene; Plasmid #46107) after excision of the synaptobrevin promoter with BamH1 and EcoR1. 
Since the inserts and plasmids contained incompatible ends, cloning was achieved using the In-Fusion® 
HD Cloning Plus CE kit (Clontech) with the following primers to amplify the blw-promoter inserts: 
blw-InFusion-F, 5′-TTATGCTAGCGGATCTGGCGGCGTCCACATATA and blw-InFusion-R, 5′- 
CTTCATGTTGGAATTACTGTTCGCCGCAGAAGT. The PCR products were treated with Cloning Enhancer 
(Clontech) and subjected to InFusion cloning reactions with the linearized pattB-Gal4-hsp70 vector. We trans-
formed the DNA constructs into Stellar competent cells (Clontech) and validated clones by Sanger sequenc-
ing81. Purified constructs were subjected to PhiC31 transformation83–86 in the Drosophila strain of genotype 
y w P[int, y+]; P[attP2, y+] where the attP2 landing site is located at 68A4 on the 3rd chromosome, by Model 
System Injections (Durham, NC). We identified positive transformants and, using balancer chromosomes and 
visible eye markers, created homozygous Gal4-attP2-blw-promoter flies. These were crossed to a homozygous 
UAS-luciferase reporter line. Protein lysates were extracted from sexes separately with 1X Luciferase Cell Culture 
Lysis Reagent (Promega) and quantified using the Bio-Rad DC Protein Assay kit II (Bio-Rad). The promoter 
activities were assessed with the Steady-Glo Luciferase Assay System (Promega) on a GloMax luminometer and 
data were analyzed using SAS software version 9.382. We performed an ANOVA for luciferase activity, separately 
for males and females with form: Y = μ + H + S + H × S + ε, where H and S are haplotype and sex, respectively, 
and ε is the residual (error) variance. The normalized relative light units emitted by the assay revealed the strength 
of each promoter.

Knockdown of blw using RNAi.  A UAS-blw-RNAi line (ID = 34664) was obtained from the Vienna 
Drosophila Resource Center (VDRC)87. These flies were crossed to flies containing either an ubiquitin driver 
(Gal4-Ubi156) or an actin driver (Gal4-Actin) to disrupt blw expression. The progenitor VIE-260B genotype was 
also crossed to both drivers as a control.

Overexpression of blw cDNA.  To overexpress blw in flies, we amplified blw cDNA from the Drosophila 
reference strain 2057 and cloned it into the pUAST-attb vector at the Not1/Xba1 restriction sites. The 
pUAST-attB-blw-cDNA purified construct was subjected to PhiC31 transformation83–86 to the Drosophila strain 
having the following genotype: y w P[int, y+]; P[attP2, y+] where the attP2 landing site is located at 68A4 on the 
3rd chromosome (Model System Injections; Durham, NC). The injected G0 flies were crossed to a 2nd and 3rd 
chromosome balancer line (w1118 iso CSB; CyO/Sp; TM3, Sb/H) and the G1 progeny were selected for the orange/
red-eyed and Cy phenotype (positive transformants). w1118 iso CSB is an isogenic X chromosome from the Canton 
S B (CSB) strain. Positive male transformants (G1) from G0 males were crossed to virgin females from a 3rd chro-
mosome balancer line (w1118 iso CSB; 2 iso CSB; TM3, Sb/H) and the resulting F1 flies (w1118 iso CSB; 2 iso CSB/
Cy; P[attP2, y+ blw-cDNA w+]/Sb) were screened for red-eyed flies with the Cy and Sb phenotypes. 2 iso CSB is an 
isogenic 2nd chromosoems from the CSB strain Siblings were crossed to create homozygous flies of genotype w1118 
iso CSB; 2 iso CSB; P[attP2, y+ blw-cDNA w+]). The homozygous flies were crossed to homozygous Gal4 driver 
lines (w1118 iso CSB; 2 iso CSB; P[attP2, y+ Gal4-blw-GT(or AG) w+]) and the lifespans of the resulting progeny 
were measured. As control for lifespan, we used F1 progeny from the cross between w1118 iso CSB; 2 iso CSB; 
P[attP2, y+] and the Ubiquitin driver line, w1118 iso CSB; 2 iso CSB;Ubi-Gal4[156].

Lifespan measurements.  Flies were generated for each blw promoter haplotype under controlled adult 
density conditions, by allowing 6 males and 6 females to mate and lay eggs for one day in vials containing 10 ml 
cornmeal-molasses-agar medium (cornmeal, 65 g/L; molasses, 45 ml/L; yeast, 13 g/L) under a 12 h light-dark 
cycle. Offspring from these vials were collected at 1–3 days post-eclosion for lifespan assays. Lifespan was assessed 
for each haplotype using 48 replicate vials, each containing 3 males and 3 females on 5 ml culture medium. We 
transferred flies without anesthesia every 2–3 days to new vials containing 5 ml of fresh food. We removed dead 
flies upon observation and recorded deaths every 1–3 days until all individuals were deceased.

To assess statistical significance for differences in lifespan, we fitted a Cox mixed effects model, where the 
hazard function is determined by fixed effects for sex, haplotype and the interaction between sex and haplotype, 
and random effects replicate within haplotype and sex by replicate effects. The model was fitted using the ‘coxme’ 
library in R88. We further performed a stratified analysis in each sex separately. Assumption of the hazard pro-
portionality was checked using the ‘cox.zph’ function in the ‘survival’ package in R and was found to be met for 
the models fitted.

Quantitative real time PCR.  Total RNA was extracted from the progeny of the Gal4-blw-promoter x 
UAS-blw cDNA lines and the Gal4-ubiquitin x y,w, P[int, y+]; P[attP2, y+] control line. We synthesized cDNA 
from 120 ng of total RNA using the iScript cDNA synthesis kit (Bio-Rad) and performed quantitative RT-PCR 
using the Maxima SYBR Green/ROX qPCR master mix (Thermo Scientific) with the following primer pair 
specific to blw cDNA, 5′-ATGCAGACCGGTATCAAGG and 5′-GACGGTGGAACGCTTCTG. GAPDH 
was used as the internal control. The expression levels for blw-cDNA when driven by the blw-promoters were 
normalized against the control line to account for endogenous blw expression. The data were analyzed using 
the comparative CT (threshold cycle) method58. We performed an ANOVA for blw expression levels of form: 
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Y = μ + H + S + H × S + ε, where H and S are line and sex, respectively, and ε is the residual (error) variance. 
ANOVAs were performed using SAS software version 9.382.

Data availability statement.  All relevant data are contained within the manuscript. Additional raw data 
will be available upon request.
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