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Abstract

Background: CD4*CD25"e" regulatory T (Tge,) cells modulate antigen-specific T cell responses, and can
suppress anti-viral immunity. In HTLV-| infection, a selective decrease in the function of Tg,, cell mediated
HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess
the frequency and phenotype of Tg,, cells in HTLV-1 asymptomatic carriers and in HTLV-I-associated
neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation.

Results: We were able to confirm that HTLV-I drives activation, spontaneous IFNy production, and
proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4* Tg,, cells
(CD4*CD25Mgh T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67
expression was negatively correlated to the frequency of CTLA-4* Tg,, cells in HAM/TSP only, although
Ki-67 expression was inversely correlated with the percentage of CD127'o% Tg,, cells in healthy control
subjects. Finally, the proportion of CD127°% T, cells correlated inversely with HTLV-1 proviral load.

Conclusion: Taken together, the results suggest that Tg,, cells may be subverted in HAM/TSP patients,
which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of
CD4* T cells, in particular those expressing the CD25MghCD[27'o% phenotype. Tg,, cells represent a
potential target for therapeutic intervention for patients with HTLV-|-related neurological diseases.
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Background

Between 10 and 20 million people are infected with
HTLV-1 worldwide [1]. Although most subjects are clini-
cally asymptomatic during their lifetime, a proportion (5
to 10%) develop adult T cell leukemia/lymphoma (ATLL)
or HTLV-1 associated myelopathy/tropical spastic para-
paresis (HAM/TSP) [2]. Epidemiological surveys have
identified regions in the world where prevalence rates are
considerably higher, including Japan, the Caribbean,
South America, Africa, Melanesia and the Middle East
[1,3]. It has been estimated that the prevalence of HTLV-1
infection in South America ranges from 2 to 5% [4], with
an estimated 1-2 million infected people in Brazil [5].
The prevalence in blood donors ranges from 0.17 to 1.8%
in different areas of the country [6,7], with a 0.3% sero-
prevalence in the city of Sao Paulo blood donors [8].

HTVL-1 is a retrovirus encoding the group specific antigen
(gag), protease (pro), polymerase (pol), and envelope (env)
genes. Six proteins are encoded by the pX region of the
genome, including the Tax protein, which is critical to
viral replication and induction of cellular activation and
transformation, increasing the expression and production
of cytokines and receptors involved in T cell growth and
transformation, such as IL-15 [9,10] and IL-2 [11-13]. Tax
also has the ability of interfering in the expression of sev-
eral transcription factors and proto-oncogenes, as well as
in the nucleic acid repair and apoptosis [14-17]. These
effects combined seem to play a key role in the potential
of HTLV-1 to induce cellular transformation and, conse-
quently, trigger the development of ATLL.

It has been previously demonstrated that HTLV-1 proviral
load is one of the key factors in the pathogenesis of HAM/
TSP [18,19], although host genetic factors are also inde-
pendently associated with the development of the dis-
eases, e.g. certain HLA [20,21] and non-HLA [22,23]
genes. These invoke the hypothesis that both viral and
genetic host factors are implicated in the pathogenesis of
HAM/TSP.

The CD8* T cell response to HTLV-1 can be readily
detected [24-31], commonly directed against the HTLV-1-
tax protein. The contribution of the CD8+ T cell response
might be particularly important for viral control in HTLV-
1 infection, since infected lymphocytes produce virtually
no cell-free infectious HTLV-1 particles. However, it is
noteworthy that the magnitude of the HTLV-1-specific T
cell response is associated with higher proviral loads,
highlighting the fact that T cells frequencies are deter-
mined by proviral load, as well as being a determinant of
proviral load. CD4+T cells are the main target for HTLV-1
infection, which induces CD4+ T cell activation, including
proliferation and IFNy production. The HTLV-1-specific
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CD4+T cell response is directed mainly against Env, the
HTLV-1 envelope surface [32].

Treg cells are crucial for the control of autoimmune disease
and maintenance of peripheral T cell tolerance (reviewed
in Sakagushi et al. [33]). In addition, they can suppress
pathogen-specific T cell responses, including response to
viruses [34-37]. The mechanisms whereby T, cells sup-
press T cell responses are not yet fully understood, but are
likely to include both soluble factors, e.g. IL-10 and TGF-
B, as well as cell-cell contact dependent mechanisms, e.g.
through CTLA-4. CTLA-4 (CD152) is expressed by a large
fraction of CD4+*CD25+ T cells, and by a majority of
CD4+CD25Phigh T cells. CTLA-4 has also been shown to be
one of mediators of Ty, function [38,39], and is consid-
ered a marker for T, cells. In addition, it was recently
demonstrated that Ty, cells are characterized by low levels
of the IL-7Ra (CD127'w) [40-42], which together with
CD25 help to distinguish Ty, cells from activated normal
CD4+T cells in healthy individuals. FOXP3 is a key regu-
lator of Ty, cell function, but is not exclusive to Tge, cells;
it has been identified in human nonregulatory activated
CD4+FoxP3+ T cells. Humans with mutations in FOXP3
present with a syndrome characterized by severe autoim-
mune and inflammatory disorders often early in life,
denominated IPEX [33]. Interestingly, it was recently
shown that HTLV-1 tax can downregulate Foxp3 expres-
sion [43,44].

We hypothesized that HTLV-1 compromises Tg,, cell func-
tion, resulting in higher T cell activation, which contrib-
utes to HAM/TSP development. We found a significantly
higher frequency of CD4+Ki-67+T cells and a lower pro-
portion of CTLA-4+* Ty, cells in subjects with HAM/TSP,
compared to healthy controls. Moreover, we found an
inverse correlation between HTLV-1 proviral load and fre-
quency of CD127!1o%/CTLA-4*Ty, cells. Our data suggest a
role for Ty, cells in the pathogenesis of HAM/TSP, and
reveal a potential new therapeutic target for patients with
HAM/TSP.

Results

Study subjects

Blood samples were collected at the Federal University of
Sao Paulo outpatient clinics, after informed consent.
PBMC were isolated by Ficoll-Paque PLUS density gradi-
ent centrifugation and cryopreserved. The demographics
of the study subjects are shown in Table 1, including gen-
der, age, proviral load, CD3, CD4 and CD8 absolute T cell
counts. No statistically significant differences were
observed in gender and age distribution among groups.
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Table I: Characteristics of study subjects.
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Sample Group Gender Age (years) Proviral Load CD4+ T cells/ul CD8+ T cells/ul CD3+ T cells/ul
(copies/ 1,000 cells)
101 Control Male 34 NA 690 389 1220
102 Control Male - NA I1é 525 1649
103 Control Male - NA - - -
104 Control Male - NA - - -
105 Control Female 31 NA - - -
106 Control Female 28 NA - - -
107 Control Male 49 NA 917 233 1235
201 HTLV+ Female 23 60 1321 619 1970
202 HTLV+ Female 49 183 710 700 1402
203 HTLV+ Male 40 - 548 351 989
204 HTLV+ Female 33 314 749 494 1248
205 HTLV+ Female 66 120 705 227 934
206 HTLV+ Female 31 105 738 482 1341
209 HTLV+ Female 33 I 1274 622 1909
212 HTLV+ Male 31 160 904 527 1500
213 HTLV+ Female 37 7 1320 496 1831
214 HTLV+ Male 62 19 535 251 782
301 HAM/TSP  Female 47 723 735 354 1092
302 HAM/TSP  Female 54 - 1012 242 242
303 HAM/TSP Male 30 - - - -
304 HAM/TSP  Female 56 Undetectable 727 356 1076
305 HAM/TSP  Female 50 75 563 327 972
306 HAM/TSP  Female 26 151 88| 334 1272
307 HAM/TSP  Female 43 Undetectable 899 500 1472
308 HAM/TSP  Female 55 433 1154 478 1694
309 HAM/TSP  Female NA 175 614 165 520
310 HAM/TSP  Female 34 565 734 286 1039

CD4+ T cell activation and IFNy production in healthy
donors, HTLV-1 seropositive asymptomatics, and HAM/
TSP patients

We initially investigated the expression of Ki-67, HLA-DR
and CD38 on CD4+T cells in PBMC from healthy donors
(Control), HTLV-1 infected patients who were clinically
asymptomatic (HTLV), or had associated neurological
disease (HAM/TSP). HAM/TSP had significantly higher
frequencies of CD4+Ki-67+ T cells compared to HTLV or
Control subjects (Fig. 1A, 1C). In addition, HAM/TSP
patients had an increase in the frequency of CD4+ HLA-
DR* T cells compared to Controls (Fig. 1E), whereas no
statistically ~significant difference in frequency of
CD4+CD38+T cells was noted (data not shown). Further-
more, CD4+T cells from both HTLV and HAM/TSP groups
had an increase in the spontaneous expression of IFNy
(Fig. 1B, 1D).

Decreased frequency of Tg,, cells in HAMITSP patients

In order to assess the frequency of Ty, cells in HTLV-1
infected subjects, we measured the expression of CD25,
CTLA-4, CD127 and GITR on CD4+T cells by flow cytom-
etry. Gating strategies are shown in Fig. 2A-C. The fre-
quency of CD4+T cells expressing CD25 was very similar
between the groups (Fig. 2D). As CD25 is upregulated on

activated CD4+T cells, and thus is not a specific marker for
Treg cells, we sought to determine the frequency of Tg,
cells using more specific phenotypes. First, we analyzed
the frequency of CD4+CD25high T cells, known to be com-
posed mainly of Ty, cells [45], and no significant differ-
ence in the frequency of Ty, cells could be found between
controls and HTLV-1 subjects (Fig. 2E). We determined
the intracellular expression of CTLA-4 in CD4+CD25¢%,
and CD4+CD25Migh T cells and observed a decrease in fre-
quency of CTLA-4+ from HAM/TSP patients (Fig. 2F and
2G). Next, we assessed the expression of CD127. HAM/
TSP patients had a statistically significant increase in the
frequency of CD4+CD25+CD127'ow T cells compared to
Controls (Fig. 2H). In contrast, there was a slight decrease
in frequency of CD4+CD25highCD127!ow T cells in HTLV-1
infected groups, although this did not reach statistical sig-
nificance (Fig. 21). There were no differences in percent
expression of GITR between the groups (Fig. 2], 2K).

Decreased CTLA-4+ Tg,, cells correlate with increased
CD4+ T cell proliferation in HAMITSP patients

Our initial analysis indicated that the frequency of
CD4+CD25+CD127!ow T cells was higher in HAM/TSP
patients. However, there were a lower percentage of CTLA-
4+ Tpeg cells, indicating that HAM/TSP subjects might have
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Expression of Ki-67, HLA-DR and spontaneous production of IFNy by CD4* T cells from Control, HTLV and
HAM/TSP subjects. (A) Representative dot plots showing Ki-67 expression in CD4* T cells from a Control, a HTLV, and a
HAM/TSP subject. (B) Representative dot plots showing spontaneous IFNy production by CD4* T cells. (C) Percent CD4*Ki-

67* T cells; and (D) percent CD4*IFNy* T cells; or (E) percent CD4*HLA-DR* T cells from Control, HTLV, or HAM/TSP. The
line shown represents the mean.
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Figure 2

Immunophenotypes of CD25* or CD25high CD4* T cells in Control, HTLV, or HAM/TSP subjects. Dot plots

depict the gating strategies for CD25* and CD25"igh cells (A); CD127'ew (B); and CTLA-4 expression (C) are shown. The gates
for CD25* and CD4+*CD25high T cells were set based on the expression level of CD25 on CD4- T cells, where the pattern of
CD25 expression is more distinct. Accordingly, CD4*CD25high T cells were defined as those expressing CD25 at a level higher
than the bulk CD4-CD25* population. For D-K, individual results are represented in symbols, and the line represents the mean.
(D) % CD4*CD25"T cells; (E) % CD4*CD25heh T cells; (F) % CD4+*CD25*CTLA-4*T cells; (G) % of CD4*CD25hehCTLA-4* T
cells; (H) % CD4*CD25*CD 127" T cells; (I) % CD4*CD25hghCD 127w T cells; (J) % CD4+*CD25MehGITR* T cells; and (K) %

CD4*CD25hghGITR* T cells.
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Treg cells with a dysfunctional phenotype. Moreover, we
showed that HAM/TSP patients had an increased prolifer-
ation and T cell activation, as evidenced by higher fre-
quencies of HLA-DR, Ki-67 and INFy-expressing CD4+ T
cells. To test whether the higher frequency of Ty, cells was
associated with lower levels of activation or proliferation
of CD4+T cells, we compared the frequency of CTLA-4+,
CD127'% or GITR* Ty, cells with the percentage of
CD4+Ki-67+ T cells. The frequency of CTLA-4* Ty, was
negatively correlated with the frequency of CD4+Ki-67+T
cells in HAM/TSP patients only (Fig. 3A). In addition,
there was a negative correlation between the frequency of
CD127'°% Ty, cells and the percentage of CD4+*Ki-67+T
cells in controls, whereas no such correlation was found
in HTLV-1 infected subjects (Fig. 3B). There was no asso-
ciation between GITR* Ty, cells with the percentage of
CD4+Ki-67+T cells in any group (Fig. 3C).

The frequency of CD4*CD25*CTLA-4* and CD127'% Tg,,
cells was negatively correlated to HTLV-1 proviral load
Finally, we wanted to determine whether the frequency of
Treg cells was related to HTLV-1 proviral load. High CD4+
T cells activation and elevated HTLV-1 proviral load are
observed in HAM/TSP. We hypothesized that this phe-
nomenon would be related to a lower proportion of Tg,,
cells. We quantified HTLV-1 proviral load by real-time
PCR and correlated it with the frequency of the different
CD25-expressing CD4+T cell subsets. There was no corre-
lation between the frequency of CD4+CD25+ or
CD4+CD25Mhigh T cells with proviral load (Fig. 4A and 4B).
In contrast, there was a negative correlation between the
frequency of CD4+CD25+*CTLA-4+ T cells and proviral
load in HTLV only (Fig. 4C). Moreover, there was an
inverse correlation between CD127!ow T, cells and
HTLV-1 proviral load (Fig. 4F).

Reg

Discussion

Regulatory T cells are important for the maintenance of
peripheral T cell tolerance to self antigens, and can also
suppress T cell responses to tumors, parasites, viruses and
bacteria. In this study we addressed the relationship
between Ty, cells, T cell activation, and HTLV-1 proviral
load. Infection with HTLV-1 was associated with higher
spontaneous IFNy release by CD4+ T cells, but only in
HAM/TSP there was a marked increase in T cell prolifera-
tion.

The HTLV-1 derived tax protein can downregulate expres-
sion of the FOXP3, which presence is associated with Ty,
cell function [43,44]. Increased expression of tax can be
expected in patients with HAM/TSP, who have higher pro-
viral loads compared to asymptomatic carries. We
observed a higher proportion of CD4+ IENy+ T cells in
HTLV-1 infected subjects, which could also be indicative
of a decreased Tg,, cell fraction. Interestingly, only the
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HAM/TSP patients presented with a higher cell prolifera-
tion, as measured by Ki-67 staining, which correlated
markedly with HTLV-1 proviral load (data not shown).
These observations suggest that HTLV-1 directly affects
Tgeg cell number, and as proviral load increases, not only
is the control of IFNy lost, but controls on cell prolifera-
tion as well. Our data, together with the recent findings
that HTLV-1 tax downregulates FOXP3 expression, indi-
cate that Tg,, cell dysfunction can be a direct consequence
of HTLV-1 infection.

In order to better understand the role of Ty, cells in HTLV-
I infection and disease, we used CTLA-4 and CD127 stain-
ing in CD4+CD25high cells as markers for T, subsets.
CD127 and CTLA-4 have been described as useful markers
for Ty, and facilitate the identification of Ty, cells, even
without staining for FOXP3 [40]. In this study, we found
that an increased frequency of CD127!10WCD4+CD25* Ty,
in controls correlated negatively with CD4+T cell prolifer-
ation (Ki-67), indicating that these cells indeed have a reg-
ulatory immunophenotype. In contrast, increased
frequency of these cells correlated with increased CD4+T
cell proliferation in HTLV-1 infected individuals, suggest-
ing that these cells are not regulatory T cells in these indi-
viduals. In addiction, the elevated frequency of CTLA-4+
Treg cells was negatively correlated to CD4+T cell prolifer-
ation only in HAM/TSP patients, which suggest that it is a
better immunophenotype of Tg,, cells in HAM/TSP
patients, but more studies are necessary to confirm this.

We could detect a negative association between the fre-
quency of CTLA-4+ or CD127!°% Ty, cells and proviral
load, extending recent findings of an association between
FOXP3 expression and HTLV-1 infection [44]. We specu-
late that therapeutic manipulation of regulatory T cells
could positively impact disease pathogenesis. Two mech-
anisms might be involved, the first by suppressing the
exuberant anti-HTLV-1 CD8+ T cell mediated immune
response, and the second by suppression of CD4+ T cell
proliferation, which can result in lower proviral load.
However, stimulating an expansion of Ty, cells could also
provide additional targets for HTLV-1 replication, so such
studies should proceed with great caution.

In this study, there are some limitations. The study was
cross sectional, and with a limited number of patients in
each group. We hope that future longitudinal studies can
assess changes in Ty, cells over time in HTLV-1 infected
patients. We, and others, working in the regulatory T cells
field, are limited by the lack of definitive phenotypic
markers of Tg,,, and CD4+*CD25+*/high remains the stand-
ard identifiers. In this study we have added other markers,
but at the time the study was conducted, the FOXP3 anti-
body, commonly used to detect a Ty, cell population was
not commercially available. However, this may have been
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a fortuitous event, as recent reports suggest that FOXP3 is
also expressed on non regulatory T cells in humans
[46,47]. As we did not have access to tissue samples from
these subjects, we cannot exclude redistribution of cells
out of the peripheral blood into tissues, and the study of
regulatory T cells at secondary lymphoid sites and within
CSF will be of interest for a future study of HTLV-1 associ-
ated disease.

In conclusion, our data suggest a role of T, cells in the
pathogenesis of HAM/TSP. Further studies should help
delineate the ability of expanded Tge, cells to affect T cell
proliferation in HTLV-1 patients and the potential devel-
opment of therapeutic modulation of regulatory T cells in
HTLV-1 patients.

Conclusion

In this study, we showed that HTLV-I drives activation,
spontaneous IFNy production, and proliferation of CD4+
T cells. HAM/TSP patients have a decreased frequency of
Treg cells in peripheral blood, compared to healthy sub-
jects, markedly in the CD4+CD25hishCTLA+ phenotype.
The proportion of CD127!low Treg cells correlated inversely
with HTLV-1 proviral load. These results suggest that Tg,,
cells may be subverted in HAM/TSP patients, and contrib-
utes to the identification of novel therapeutic targets for
patients with HTLV-1-related disease.

Methods

Study subjects

Three groups of volunteers were enrolled. The first con-
sisted of seven HTLV-1-negative control volunteers; the
second consisted of ten HTLV-1 seropositive volunteers
without clinical and laboratory evidence of HTLV-1-asso-
ciated disease, and the last group was composed of nine
patients with the diagnosis of HTLV-1 associated myelop-
athy/tropical spastic paraparesis (HAM/TSP). After
approval by the Institutional Review Board, written
informed consent was obtained from all the participants
according to the guidelines of Brazilian Ministry of
Health. Samples were collected in EDTA-treated vacuum
tubes, and PBMC were frozen into liquid nitrogen after
separation using a ficoll gradient.

DNA extraction and determination of HTLV-I proviral
load

HTLV-1 proviral DNA was extracted from PBMCs using a
commercial kit (Qiagen GmbH, Hilden Germany) follow-
ing the manufacturer's instructions. The extracted DNA
was used as a template to amplify a fragment of 158 bp
from the viral tax region using previously published prim-
ers [48]. The SYBR green real-time PCR assay was carried
outin 25 pl PCR mixture containing 10x Tris (pH 8.3; Inv-
itrogen, Brazil), 1.5 mM MgCl,, 0.2 uM of each primer,
0.2 mM of each dNTPs, SYBR Green (18.75 Units/r x n;

http://www.biomedcentral.com/1471-2172/9/41

Cambrex Bio Science, Rockland, ME) and 1 unit of plati-
num Taq polymerase (Invitrogen, Brazil). The amplifica-
tion was performed in the Bio-Rad iCycler iQ system
using an initial denaturation step at 95°C for 2 minutes,
followed by 50 cycles of 95° C for 30 seconds, 57 °C for 30
seconds and 72°C for 30 seconds. The human housekeep-
ing B globin gene primers GH20 and PC04 [49] were used
as an internal control calibrator. For each run, standard
curves for the value of HTLV-1 tax were generated from
MT-2 cells of log,, dilutions (from 105 to 10° copy). The
threshold cycle for each clinical sample was calculated by
defining the point at which the fluorescence exceeded a
threshold limit. Each sample was assayed in duplicate and
the mean of the two values was considered as the copy
number of the sample. The amount of HTLV-1 proviral
load was calculated as follows: copy number of HTLV-1
(tax) per 1,000 cells = (copy number of HTLV-1 tax)/(copy
number of B globin/2) x 1000 cells. The method could
detect 1 copy per 103 PBMCs cells.

Flow cytometry

PBMCs were thawed and stained with directly conjugated
antibodies. Three different panels of antibodies were used
to evaluate the expression of proteins associated with Ty,
cells and T cell activation. All antibodies were from BD
Biosciences, unless otherwise noted. All panels contained
PerCP-conjugated anti-CD4 and allophycocyanin-conju-
gated anti-CD25, and in addition contained (1) FITC-con-
jugated anti-GITR and PE-conjugated anti-CD127
(Beckman Coulter, Miami, FL), (2) FITC-conjugated anti-
CD45RA and PE-conjugated anti-HLA-DR and (3) FITC-
conjugated anti-Ki-67 and PE-conjugated anti-CD152
(CTLA-4). Cells stained with PerCP-conjugated anti-CD4
alone and allophycocyanin-conjugated CD25 alone were
used to establish positive gates for FITC- and PE-conju-
gated antibodies. For panel 1 and 2, cells were stained
with all antibodies in PBS supplemented with 0.5%
bovine serum albumin (BSA) and 2 mM EDTA (FACS
buffer), followed by two washes in FACS buffer and fixa-
tion in 1% paraformaldehyde (PFA). For panel 3, cells
were first stained with PerCP-conjugated anti-CD4 and
allophycocyanin-conjugated anti-CD25, followed by two
washes in FACS buffer and fixation in 1% PFA. The cells
were subsequently washed twice with PBS containing
0.1% saponin (perm buffer), prior to staining with PE-
conjugated anti-CD152 and FITC-conjugated anti-Ki-67
diluted in perm buffer. All samples were analyzed on a
FACSCalibur flow cytometer (Becton Dickinson)
equipped with a 488 nm argon and a 633 nm red-diode
lasers for four color detection. Acquisition and analyses
were performed using CellQuest software (Becton Dickin-
son). Fluorescence voltages and compensation values
were determined using unstained cells and cells single-
stained with each of the fluorochrome-conjugated anti-
bodies, respectively. The gating strategy used was to gate
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on lymphocytes using a forward scatter versus side scatter
gate, followed by gating on CD4+ cells. The gate for
CD4+CD25+ cells was set using cells cells stained with the
PerCP-conjugated anti-CD4 antibody alone. Positive
gates for the FITC- and PE-conjugated antibodies were set
using cells stained with only PerCP-conjugated anti-CD4
and APC-conjugated anti-CD25 antibodies.

Cytokine flow cytometry

PBMCs were thawed and cultured for 24 hours in 96-well
U-bottom plates at a concentration of 4 x 105 cells/well.
Brefeldin A (BFA) was added at a concentration of 5 pg/ml
for the last 5 hours of the culture. After culture, cells were
harvested, stained with PE-conjugated anti-CD4, fixed in
4% PFA for 20 min, prior to being washed twice with
perm buffer. The cells were subsequently stained with
PerCP-conjugated anti-CD3 and allophycocyanin-conju-
gated anti-IFNy, washed twice in perm buffer and resus-
pended in FACS buffer, prior to being analyzed on a
FACSCalibur. All antibodies were from BD Biosciences.

Statistical analyses

Data sets were compiled and analyzed in Statistica, release
6.0 (Statsoft, Tulsa, OK) and Prism, release 4.0 (GraphPad
Software, San Diego, CA). Groups comparisons were per-
formed using non-parametric Kruskal Wallis ANOVA by
ranks test; associations between variables were evaluated
by Spearman rank order correlation's test. Critical p values
were considered statistically significant if below 0.05.
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