
BioMed CentralBMC Medical Genomics

ss
Open AcceResearch article
Host sequence motifs shared by HIV predict response to 
antiretroviral therapy
William Dampier1, Perry Evans2, Lyle Ungar2 and Aydin Tozeren*1

Address: 1Center for Integrated Bioinformatics, Drexel University, Bossone Research Center 711, 3120 Market Street, Philadelphia, PA 19104, USA 
and 2Genomics and Computational Biology and Department of Computer and Information Science, University of Pennsylvania, Levine Hall, 3330 
Walnut Street, Philadelphia, PA 19104, USA

Email: William Dampier - wnd22@drexel.edu; Perry Evans - evansjp@mail.med.upenn.edu; Lyle Ungar - ungar@cis.upenn.edu; 
Aydin Tozeren* - aydin.tozeren@drexel.edu

* Corresponding author    

Abstract
Background: The HIV viral genome mutates at a high rate and poses a significant long term health
risk even in the presence of combination antiretroviral therapy. Current methods for predicting a
patient's response to therapy rely on site-directed mutagenesis experiments and in vitro resistance
assays. In this bioinformatics study we treat response to antiretroviral therapy as a two-body
problem: response to therapy is considered to be a function of both the host and pathogen
proteomes. We set out to identify potential responders based on the presence or absence of host
protein and DNA motifs on the HIV proteome.

Results: An alignment of thousands of HIV-1 sequences attested to extensive variation in
nucleotide sequence but also showed conservation of eukaryotic short linear motifs on the protein
coding regions. The reduction in viral load of patients in the Stanford HIV Drug Resistance
Database exhibited a bimodal distribution after 24 weeks of antiretroviral therapy, with 2,000
copies/ml cutoff. Similarly, patients allocated into responder/non-responder categories based on
consistent viral load reduction during a 24 week period showed clear separation. In both cases of
phenotype identification, a set of features composed of short linear motifs in the reverse
transcriptase region of HIV sequence accurately predicted a patient's response to therapy. Motifs
that overlap resistance sites were highly predictive of responder identification in single drug
regimens but these features lost importance in defining responders in multi-drug therapies.

Conclusion: HIV sequence mutates in a way that preferentially preserves peptide sequence motifs
that are also found in the human proteome. The presence and absence of such motifs at specific
regions of the HIV sequence is highly predictive of response to therapy. Some of these predictive
motifs overlap with known HIV-1 resistance sites. These motifs are well established in
bioinformatics databases and hence do not require identification via in vitro mutation experiments.

Background
Human Immunodeficiency Virus (HIV) is a single
stranded RNA virus that contains nine genes coding for fif-
teen proteins [1,2]. HIV has a powerful effect on the

human immune system due to its ability to hijack hun-
dreds of human proteins in continued infection [3]. HIV's
POL gene codes for three important enzymes that are
essential to the life cycle of the virus: the protein reverse
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transcriptase (RT) is common to all retroviruses and tran-
scribes the viral RNA into double stranded DNA [1]. The
RT enzyme has no proofreading ability [4] which explains
the high mutation rate observed with in vitro experiments
for the HIV virus [5]. POL also encodes the integrase pro-
tein which fuses the viral DNA produced by RT into the
host genome [4]. The third enzyme coded by POL, pro-
tease (PR), is an enzyme that cleaves the multiple proteins
coded by HIV's GAG and POL genes into separate func-
tional units [1]. Mutations at the active sites of these three
enzymes or inhibition of enzyme activity by drugs disrupt
HIV's ability to replicate in host cells and thus block the
infection cycle [6].

Most of the drugs that are currently used for controlling
HIV infection target the three viral enzymes coded by the
HIV POL gene. Antiretroviral drugs such as zidovudine
(AZT), lamivudine (3TC), emtricitabine (FTC), zalcitab-
ine (ddC), stavudine (D4T), didanosine (DDI) and nevi-
rapine (NVP) target RT [7] whereas antiretroviral drugs
such as indinavir (IDV), nelfinavir (NFV), and atazanavir
(ATV) were designed as PR inhibitors [8]. Clinicians also
use a set of entry and integrase inhibitors in HIV treatment
[9-11]. When antiretroviral drug are used one at a time,
eventually a drug resistant viral phenotype will emerge
[12]. Viral loads (VL) from in vitro cultures of HIV infected
immune cells have diminishing growth rates in the pres-
ence of antiretroviral therapy but eventually a resistant
viral phenotype emerges [13]. The resistance conferring
mutations in the viral genome have been extensively doc-
umented and these mutations have been correlated to
response to therapy [13-16]. Combination of antiretrovi-
ral drugs has the advantage of targeting multiple stages of
the viral life cycle. The multi-target Highly Active Antiret-
roviral therapies (HAART) exert a high level of evolution-
ary pressure on the virus by effectively requiring multiple
simultaneous mutations to produce resistant strains [17-
19]. As a result, the virus takes much longer time to
develop resistance to several drugs at the same time [20].

HAART therapies often reduce viral replication to unde-
tectable levels. They decrease morbidity and mortality
rates but nonetheless can be ineffective in some individu-
als [21,22]. Search for new antiretroviral drugs with differ-
ent target sites along the HIV sequence is ongoing.
Targeting the virus itself may not be enough, however, to
block the progress of infection. One may also have to con-
sider the set of host proteins playing crucial roles in viral
replication as targets for therapy. Recently, researchers
have identified sets of human proteins that interact with
HIV proteins [23-25] and another set of host proteins
required for HIV infection through a functional genomic
screen (([26-28], but the modes of interaction of these
host proteins with specific HIV proteins are yet to be fully
explored. Nevertheless, the ability of HIV-1 viral proteins
to bind within the host cell network is likely to play a crit-

ical role in disease progression [29]. It is possible that this
new focus on host proteins interacting with HIV will lead
to new therapies targeting host cells required for HIV
infection [30].

In this study, we first cluster patients into responder and
non-responder categories based on viral load response to
antiretroviral therapy. We then used stepwise logistic
regression to differentiate responders and non-responders
using linear sequence motifs common to host and viral
genomes as features. We focused on viral load in the
responder/non-responder classification because recent
studies indicate that CD4 cell count monitoring does not
accurately identify individuals with virologic failure
among patients taking antiviral therapy [31]. A novel
aspect of our study is the recognition of bimodality [32]
in the viral load reduction in antiretroviral therapy in
patient data stored in the Stanford HIV Drug Resistance
Database [33] both at eight weeks and twenty four weeks
after the beginning of the therapy. In total, we used three
different methods for assigning responder phenotype
based on viral load. Multiple models of phenotype classi-
fication allowed us to identify the role of phenotype selec-
tion in determining significant features associated with
drug response.

Another novel feature of our study is the treatment of drug
response as a two body problem, namely that response to
drugs is assumed to be affected by both the viral and host
genotypes. We sought to identify linear motifs on the HIV
sequence that are also found in the host and are function-
ally annotated: host transcription factor binding sequence
motifs [34], miRNA binding sequence motifs on the
nucleotide sequence [35] and eukaryotic linear motifs
[36] on the protein amino acid sequences. The motivation
to use such features in predicting responder/non-
responder categories comes from the observed phenom-
ena of the virus hijacking host cell apparatus for its self
replication [37]. Another important motivation is to find
a feature set based solely on viral sequence and not requir-
ing a priori information obtained via virus-specific in vitro
cell assays. This type of a feature set is attractive, as it can
be used to explore the drug response of viruses to antiviral
therapy in the absence of extensive data on resistance
mutations. Previous research on quantitative prediction
of patient response to antiretroviral drugs in HIV infection
[38-43] has employed similar and even more advanced
machine learning algorithms than used here, but has not
made explicit use of biologically meaningful linear
motifs.

Results
Responder/Non-responder classification
Clinical annotation of more than 2,000 RT sequence sam-
ples in the Stanford HIV Drug Resistance database con-
tained measurements of VL at six time points during the
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course of twenty-four week therapy. The drugs used in var-
ious single and combination therapies as well as the num-
bers of HIV-1 individuals taking the therapy are shown in
Table 1. As described in the methods section, the first clas-
sification method for responders and non-responders, SD
or Standard Datenum [39], was based on the fold-change
of the entire patient database between the 0 and 8 week
time points. The SD method classifies patients as respond-
ers if their viral load decreases by 100-fold over this time
period. All other patients are labelled as non-responders.
As shown in Figure 1A, this led to binomial distribution
with clear peaks identified for responders and non-

responders. The second method for phenotype classifica-
tion, Incremental Reduction (IR), is based on patients
having a reduction of viral load in four out of six weeks.
Figure 1B shows the sub populations of responders and
non-responders for this classification as a function of VL
at three different instances in the clinical trial. It is clear
from the figure that responders move towards zero VL
whereas non-responders are much less mobile in this set-
ting. The third method for phenotype classification (BM)
was based on the observation that viral load reduction
after 24 weeks of therapy exhibited a bimodal distribution
(Figure 1C). This method used a cutoff of 2,000 copies/

Table 1: Therapy Classification

Standard Datenum Incremental Reduction Bimodal Classification

R NR Mean AUC R NR Mean AUC R NR Mean AUC

AZT 526 390 0.7750 581 335 0.8550 395 521 0.7802

AZT, IDV 182 148 0.7803 189 141 0.9281 144 186 0.9107

DDI 466 273 0.7572 503 236 0.8363 272 467 0.7648

DDI, NFV 249 130 0.7352 264 115 0.8004 175 204 0.6814

D4T 450 307 0.7654 482 275 0.8081 274 483 0.7683

D4T, NFV 266 153 0.7499 280 139 0.6664 181 238 0.6713

D4T, NFV 372 200 0.7377 391 181 0.8455 260 312 0.7613

D4T, DDI, NFV 234 115 0.7518 242 107 0.7764 173 176 0.6817

3TC 582 466 0.7721 654 394 0.9280 408 640 0.7788

3TC, IDV 187 151 0.7748 196 142 0.9030 144 194 0.8763

3TC, NFV 202 159 0.7535 242 119 0.8810 175 186 0.8606

3TC, AZT 509 379 0.7731 560 328 0.8439 391 497 0.7845

3TC, AZT, IDV 177 145 0.7849 184 138 0.8858 144 178 0.8815

DDI, EFV 248 121 0.7389 208 89 0.9312 192 177 0.6711

D4T, EFV 260 125 0.7406 285 100 0.8479 194 191 0.9887

D4T, DDI, EFV 233 107 0.7516 254 86 0.9446 188 152 0.7499

3TC, EFV 207 130 0.7313 245 100 0.9731 179 166 0.9497

All Therapies 1115 904 0.7644 1188 831 0.8351 700 1319 0.8402

The overall statistics of the clinically annotated reverse transcriptase sequences from the Stanford HIV-1 Drug Resistance Database. The table 
shows breakdown of patients in each therapy regimen using the three different classification rules: Standard Datenum (SD), Incremental Reduction 
(IR), and Bimodal Classification (BM). R; responders, NR; non responders. The average AUC over 500 training/testing iterations indicate the 
success in differentiating responders from non responders using short linear sequence motifs as features in machine learning.
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mL to differentiate between responders and non-respond-
ers. Subpopulations corresponding to each drug regimen
shown in Table 1 also exhibited similar bimodal distribu-
tions.

The overlap between these three methods is shown in the
Venn diagram in Figure 2. More than half of the respond-
ers from each method are also declared responders by the
other two methods. However, 244 of the 925 patients
labelled as responders by the SD method at eight weeks
are not considered responders after 24 weeks by the BM.
This suggests that after a strong initial response to therapy,
some patients regress between 8th and 24th week of inter-
vention with antiretroviral drugs. We used these three
clinically relevant phenotype classification methods to

identify sequence motifs associated with the responder
group in each classification.

Conserved linear motifs along HIV and their correlation 
with response to antiretroviral drugs
Our results show that the HIV sequence, although highly
variant in nucleotide sequence, expresses eukaryotic linear
motifs (ELMs) that are largely conserved over hundreds of
subtype B and subtype C sequences, as shown in Figure 3.
The motifs recognized in globular domain regions are not
shown as they are less likely to be instrumental in the
interactions of HIV-1 proteins with host targets. The figure
illustrates the presence of ELMs at high density along the
flexible, domain-free regions of the HIV proteins. ELMs
found on HIV proteins are largely conserved in frequency

Responder ClassificationsFigure 1
Responder Classifications. A graphical representation of the three phenotype classification methods: Standard Datenum 
(SD), Incremental Reduction (IR) and Bimodal classification (BM). Figure 1A: SD, A histogram showing the log10 change in viral 
load of all patients in the database. Patients labelled as "responders" are marked in pink and non-responders in "blue". Figure 
1B: IR, Three scatter plots representing the viral load vs. CD4 counts for all patients in the database after 8, 12, and 24 weeks 
of therapy. Patients which decreased in viral load in 75% of their visits are labelled as "responders" and marked in pink; those 
that did not are labelled as "non-responders" and marked in blue. Figure 1C: BM, A histogram of the change in viral load after 
24 weeks of therapy. Those patients that decreased by more than 2000 copies/ml were labelled as "responders" and are 
marked in pink; those that did not were labelled as "non-responders" and are marked in blue.
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of appearance in eukaryotic proteomes (unpublished
observations) and as such these motifs are good candi-
dates in feature selection for predicting response to antivi-
ral drugs.

We used Step-Wise Logistic Regression (SWLR) to classify
patients into responder or non-responder categories
based on the presence or absence of ELMs, miRNA bind-
ing sites, TF binding sites, and resistance sites, collectively
referred to as features. SWLR employs an iterative algo-
rithm to determine which features should be included in
the final logistic regression model [44]. In brief, the algo-
rithm starts with an initial group of features and fits a
logistic regression model. It then discards any features
with a near zero coefficient and determines which of the
excluded features may have a non-zero coefficient if
added to the model. This process repeats until it converges
to a solution; In our experience this occurs within 100 iter-
ations.

We used SWLR in 500 iterations of training and testing at
equal proportions for all responder/non-responder sam-
ples shown in Table 1. The resulting Receiver Operator
Characteristics (ROC) curves for IR classification for the
therapy regimens presented in Table 1 are shown in Figure
4. These ROC curves show high prediction accuracy of
responders with the features used in the model. The area
under the ROC curve (AUC) is an indicator of the com-

bined sensitivity (ability to detect true positives) and spe-
cificity (ability to detect true negatives) of the model. As
shown in Figure 4, random mixing of the responder and
non-responder populations by 20% drastically reduced
AUC for all drug regimens. Random mixing by 50%
resulted in AUC values nearly equal to 0.5 as would be
expected for randomly selected populations. These results
confirm the utility of the selected features for predicting
responder/non-responder identity using logistic regres-
sion.

The AUC values for all three phenotype classification
methods are shown in Table 1. Note that AUC values for
BM and IR phenotype classifications are similar and point
to high accuracy of prediction of outcome with these clas-
sification methods. The SD method, on the other hand,
gave AUC values that were somewhat smaller than the
other two methods. It is possible that the feature set used
in our SD analysis is not optimal for predicting responders
after eight weeks of therapy.

Regression Coefficients
The average number of regression coefficients (features)
found significant over 500 training/testing iterations
ranged from five to ten, depending on the drug regimens
presented in Table 1. These features corresponeded to two
specific resistance sites (RS)s and ELMs. In a set of control
SWLR computations, we used other motifs such as human
transcription binding site motifs and miRNA binding
motifs on the RT sequence, but none of them were found
to be significant in regression. Shown in Figure 5 are
regression coefficients with absolute values greater than
0.5 for the three phenotype classifications: SD (Figure
5A), IR (Figure 5B), and BM (Figure 5C). Note that the
two resistance sites on the figure are highly predictive of
outcome in single drug regimens such as AZT and DDI tar-
geting RT along with the ELMs that overlap this part of the
sequence. Mutation RS V108 is a strong indicator of poor
response to AZT, DDI, 3TC, and AZT, 3TC combination at
8 weeks (SD classification) whereas RS M36 has a negative
effect on a larger spectrum of drug combinations (Figure
5A). These two resistance sites are the only ones that
emerged in the set of features that are highly correlated
with response to antiretroviral drugs. However, the regres-
sion does not lose accuracy when resistance sites are
excluded from the features used in the analysis (data not
shown). In this restricted set the significance of ELMs
overlapping the resistance sites increases to compensate
for the deletion, confirming the important role this
sequence region plays in signalling resistance to some of
the antiretrovirals targeting RT. Our findings point to
resistance sites (or overlapping ELMs) having strong cor-
relation to response to single antiretroviral therapies, but
response to HAART therapies are correlated strongly with
functional host protein motifs that are also expressed by
the RT.

Venn DiagramFigure 2
Venn Diagram. Venn diagram showing the intersection 
between responder sets corresponding to SD, IR, and BM 
classification.
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One of the most consistent predictors of positive outcome
across therapy regimens is the presence of ELM-Lig-SH3-3
(Figure 5A). This is the motif recognized by the SH3
domains of host proteins with a non-canonical class II rec-
ognition capacity [45]. The SH3 domain is a protein-pro-
tein interaction module commonly found in intracellular
signalling and adaptor proteins. The SH3 domains of
multiple endocytic proteins have been recently implicated
in binding ubiquitin, which serves as a signal for diverse
cellular processes including protein destruction [45].

The two resistance sites and the ELMs that overlap them
continue to be predictors of negative outcome in terms of
response to subsets of antiretroviral therapies in pheno-
type classification based on incremental reduction of the
VL (Figure 5B, IR Classification). In this case, the consist-
ent positive predictor is the motif ELM-Lig-MAPK-1.
MAPK interacting molecules that carry this docking motif
help to regulate specific interaction in the MAPK cascade
[46,47]. It is feasible that human MAPK is recognizing the
ELM on these RT proteins, decreasing their efficacy
through phosphorylation or other inhibition methods.

Figure 5C, showing the BM classification method, reveals
the resistance site M36 as a consistent indicator for nega-

tive response and ELM-Lig-SH2-STAT 5 as a strong indica-
tor for positive response to antiretroviral therapy. This
ELM is a motif recognized by proteins that have a signifi-
cant impact on innate immunity during sepsis [48]. The
innate immune system provides immediate defence
against infection and serves as the first line of host defence
during infection [49]. Recent research point to the deple-
tion of white blood cells associated with innate immunity
and their recovery under HAART [50].

Among the host proteins that have been documented to
interact with the HIV RT protein, those that have at least
one of the ELMs shown in Figure 5 are presented in Table
2. The table contains 33 host proteins with varying func-
tions closely related to the immune response and signal-
ling. The most common gene ontology categories [51]
and KEGG pathways [52] among these proteins include
adenyl ribonucleotide binding, phosphorylation, cell
death, and apoptosis and pathways such as natural killer
cell mediated cytotoxicity and the MAPK signalling path-
way (Table 3). Our present knowledge of the grammar of
protein interactions between the host and the virus does
not allow us to draw definitive models of the network of
interactions that differentiates responders from non-
responders in HAART therapies. Nonetheless, the results

Feature AnnotationFigure 3
Feature Annotation. Annotation of a short linear motifs (Eukareotytic Linear Motifs, miRNAs binding sites, human tran-
scription factor binding sites) along the viral sequence for 100 subtype C and 500 subtype B sequences. The colour code is as 
follows: homology Islands (green), human miRNA binding-sites (blue), human TF sites (silver), cleavage ELMs (red), ligation 
ELMs (purple), modification ELMs (brown), and export ELMs (pink). The clinically annotated sequence region is shown in the 
black box.
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presented above provide a start towards constructing a
plausible mechanism of how viral and host genotypes
affect response to antiretroviral therapies

Discussion
The deadly course of HIV infection eventually leading to
AIDS and associated opportunistic infections has been
altered for a majority of individuals under HAART thera-
pies thanks to combination antiretroviral therapies. These
therapies have also reduced viral load dramatically in
most patients, rendering them much less effective in trans-
mitting the virus to others [53]. Research has focused on
discovering new drugs targeting HIV proteins as well as on

identifying host proteins necessary for viral growth as fur-
ther possible targets for drugs. However, the interaction
between the viral and host genotypes jointly affecting an
individual's response to antiretroviral drugs has not been
fully explored.

In this study we hypothesized that those host sequence
motifs that are involved in protein-protein and protein/
DNA/RNA interactions and also found in viral genomes
are features that could play important roles in determin-
ing HIV-1 disease progression. Our prediction technique
determines whether a particular therapy regimen is com-
plementary to the sequence profile of each patient. Our

ROC CurvesFigure 4
ROC Curves. Receiver Operator Characteristic (ROC) curves determined by the stepwise-logistic regression (SWLR) for 
the therapy regimens presented in Table 1 using the IR classification. The BOLD blue shows the average ROC curve over 500 
iterations. The solid black line indicates the prediction ability with 20% shuffling of the responder v non-responder categories. 
The dashed line indicates the corresponding averages of completely shuffled responder vs. non-responder categories.
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thinking is motivated by the accumulating experimental
evidence that viruses utilize motifs found in the host
genome and proteins for integrating into host cell molec-
ular networks and hijacking their function for viral repli-
cation [54,55]. Using linear sequence motifs shared by
both the host and the virus provides an approach for
investigating the plausible mechanisms of host virus inter-
actions and suggesting those that may be altered by
antiretroviral drugs.

We have used known resistance sites and host motifs
found on HIV reverse transcriptase as features for differen-
tiating responders from non-responders (or weak
responders) in stepwise logistic regression for 16 different
combinations of antiretroviral drug regimens containing
at least one drug against HIV reverse transcriptase.
Responder phenotype was defined multiple ways to gain
insights into drug response at 8 weeks (SD phenotype
classification) and 24 weeks (BM phenotype classifica-
tion) after the beginning of the therapy and somewhere in
between (IR Phenotype classification). Host motifs that
appear to be highly relevant to viral replication such as the
transcription site binding motifs [56,57] and miRNA
binding site sequence motifs [58,59] could not be
included into the analysis because these motifs are not
contained within the RT region. Two resistance sites on
HIV RT were found to be indicators of negative outcome,
especially for regimens consisting of antiretrovirals target-
ing RT, but their influence was lower in HAART therapies.
For the HAART therapy cases, the ELMS that contained
these two resistance sites could be deleted from the model
without sacrificing prediction accuracy. On the other
hand, a number of ELMs were strongly correlated with
positive outcome at different stages of antiretroviral ther-
apy. These ELMs were associated with binding events lead-
ing to phosphorylation, ubiquination and the innate
immune response.

Our approach to relate HIV sequence motifs to the course
of infection does not require a priori information about
how the HIV sequence would mutate in the presence of
antiretroviral drugs. We were able to make accurate pre-
dictions without the resistance site information available
in the literature. The input to our machine learning algo-
rithm is simply the HIV sequence. We use publicly availa-
ble bioinformatics tools to annotate these sequences with
host motifs relevant to outcome. We then identify the
motifs on the sequence that differentiate between
responders and non-responders. These motifs can then be
linked to specific viral host protein interactions and the
pathways of these interactions. The promise of our
approach will be fully explored with the availability of
clinically annotated HIV whole genome sequences
obtained at different time points during HAART therapy.

Conclusion
Linear binding motifs found in both the host and viral
proteomes constitute a set of features highly predictive of
response to therapy involving different combinations of
antiretroviral drugs. Stepwise logistic regression as used
here utilizes only the HIV-1 sequence and does not
require annotations of resistance sites specific to various
antiretroviral drugs. This study emphasizes finding
sequence motifs which facilitate binding between viral
and host proteins. This binding may allow the hijacking

SWLR Feature Regression CoefficientsFigure 5
SWLR Feature Regression Coefficients. Heatmaps indi-
cating the average of the SWLR regression coefficient for the 
motifs used in the classification. Blue colour in the ruler bar 
indicates that presence of an ELM motif creates greater likeli-
hood of being in the responder category (R ELM) whereas 
red indicates greater likelihood of being in the non-
responder category (NR ELM). Top Panel: SD; Middle Panel: 
IR, Bottom Panel: BM.
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Table 2: Interacting Proteins

Entrez ID Symbol Gene Name Significant ELMs Present

59 ACTA2 actin, alpha 2, smooth muscle, 
aorta

The localization of the HIV-1 
reverse transcription complex to 
actin microfilaments is mediated by 
the interaction of a reverse 
transcription complex component 
(HIV-1 Matrix) with actin, but not 
vimentin (intermediate filaments) or 
tubulin (microtubules)

60 ACTB Actin, beta Eukaryotic beta-actin binds to either 
the large subunit (p66) of HIV-1 
reverse transcriptase or to the HIV-
1 Pol precursor polyprotein in vitro; 
this interaction is believed to be 
important for the secretion of HIV-
1 virions

70 ACTC1 actin, alpha, cardiac muscle 1 The localization of the HIV-1 
reverse transcription complex to 
actin microfilaments is mediated by 
the interaction of a reverse 
transcription complex component 
(HIV-1 Matrix) with actin, but not 
vimentin (intermediate filaments) or 
tubulin (microtubules)

1457 CSNK2A1 casein kinase 2, alpha 1 Casein kinase II phosphorylates 
HIV-1 RT p66 and p51 in human 
cells

3439, 3440, 3449 IFNA1, IFNA2, IFNA16 IFN-alpha interferes with the 
initiation of HIV-1 reverse 
transcription resulting in a significant 
reduction in the relative levels of 
HIV-1 proviral DNA

3458 IFNG Interferon, gamma Up-regulation of LMP7 by IFN-
gamma enhances proteasomal 
degradation of HIV-1 RT and 
presentation of the VIYQYMDDL 
epitope derived from HIV-1 RT

4772, 4773 NFACT1, NFACT2 nuclear factor of activated T-cells NFATc facilitates HIV-1 RT reverse 
transcription activity and enhances 
HIV-1 infectivity in human T cells

5286 PIK3C2A phosphoinositide-3-kinase, class 2, 
alpha polypeptide

HIV-1 RT heterodimer expressed in 
bacteria can be phosphorylated in 
vitro by several purified mammalian 
protein kinases including auto-
activated protein kinase (PK), CKII, 
cytosolic protamine kinase (CPK), 
myelin basic protein kinase 1 
(MBPK1), and PRKC

5578, 5579, 5580, 5581, 5584, 
5588, 5590

PRKCA, PRKCB1,
PRKCD,
PRKCE, PRKCI, PRKCQ, PRKCZ

HIV-1 RT heterodimer expressed in 
bacteria can be phosphorylated in 
vitro by several purified mammalian 
protein kinases including auto-
activated protein kinase (PK), CKII, 
cytosolic protamine kinase (CPK), 
myelin basic protein kinase 1 
(MBPK1), and PRKC
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5594, 5604, 6300 MAPK1, MAP2K1, MAPK12 mitogen-activated protein kinase 1 MEK1 in HIV-1 producer cells is 
able to activate virion-associated 
MAPK in trans, and the activated 
MAPK facilitates efficient 
disengagement of the HIV-1 reverse 
transcription complex from the cell 
membrane and subsequent nuclear 
translocation

5696 PSMB8 proteasome subunit, beta type, 8 Up-regulation of LMP7 by IFN-
gamma enhances proteasomal 
degradation of HIV-1 RT and 
presentation of the VIYQYMDDL 
epitope derived from HIV-1 RT

6117, 6118, 6119 RPA1, RPA2, RPA3 Replication protein A and HIV-1 
nucleocapsid protein interfere with 
the strand displacement DNA 
synthesis of HIV-1 reverse 
transcriptase by binding to the 
displaced strand and keeping it away 
from the newly synthesized strand

7150 TOP1 topoisomerase (DNA) I Topoisomerase I (topo I) enhances 
HIV-1 reverse transcriptase activity 
in vitro and this effect can be 
inhibited by the topo I-specific 
inhibitor camptothecin

7157 TP53 tumor protein p53 
(Li-Fraumeni syndrome)

Tumor suppressor protein p53 
displays 3' -> 5' exonuclease activity, 
and interaction of p53 with HIV-1 
reverse transcriptase (RT) can 
provide a proofreading function for 
HIV-1 RT

10527 IPO7 importin 7 Importin 7, an import receptor for 
ribosomal proteins and histone H1, 
is involved in the active nuclear 
import of the intracellular HIV-1 
reverse transcription complex 
(RTC) containing HIV-1 RT, IN, NC, 
MA, and Vpr

29935 RPA4 replication protein A4, 34 kDa Replication protein A and HIV-1 
nucleocapsid protein interfere with 
the strand displacement DNA 
synthesis of HIV-1 reverse 
transcriptase by binding to the 
displaced strand and keeping it away 
from the newly synthesized strand

50810 hepatoma-derived growth factor, 
related protein 3

Hepatoma-derived growth factor 2 
(HRP2) restores salt-stripped HIV-1 
preintegration complex (PIC) 
activity in vitro

60489 apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide-like 
3G

Vif-negative HIV-1 produced from 
293T cells transiently expressing 
hA3G are impaired in early and late 
viral DNA production, and in viral 
infectivity, which are correlated 
with an inability of tRNA(3)(Lys) to 
prime reverse transcription

A table of human proteins from the NIAID HIV-1 interaction database which are known to interact with HIV-1 RT and expressing the drug 
response predicting ELMs

Table 2: Interacting Proteins (Continued)
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of host protein binding sites from their usual binding
partners and thus alter the signalling pathways of the host
cell. Our study points to competitive binding of HIV pro-
teins to host proteins using motifs found in the host as the
mechanism of interplay between the host and pathogen
genotypes in dictating response to therapy. Our method is
applicable to other viral infections where the viral
sequence is known but resistance sites to antiviral thera-
pies have not yet been documented.

Methods
Data sources for HIV1 sequences and clinical phenotype 
assignment
This study utilizes sequence and clinical data from two
distinct sources. All whole genome HIV-1 sequences were
downloaded from the Los Alamos HIV Sequence Data-
base http://www.hiv.lanl.gov/ in order to get a motif
expression map of the whole genome. As of 9/1/2006, this

dataset consisted of 1,112 subtype B and 922 subtype C
whole genome sequences, along with a smaller number of
samples from other subtypes. This dataset also contained
five reference sequences each for alignment of subtypes B
and C.

We used data from the Stanford HIV Drug Resistance
Database [33] in order to investigate the clinical relevance
of host protein and DNA motifs on the RT region of the
HIV-1 sequence. The Stanford database curates clinical
information from drug trials on large HIV cohorts and
associates them with the sequence coding the protein tar-
geted by the drug. As of 11/15/2008, the database con-
tained few PR region sequences. However, the dataset
contained 2,019 RT sequences annotated with clinical
parameters such as CD4 counts, VLs and the specific
antiretroviral therapy as shown in Table 1. Each patient in
this subset had at least 1 sequence fragment from RT, had

Table 3: Biological Context

Category Term Count % p-value

GO BP Level 5 GO:0016310~phosphorylation 13 39.39% 5.21E-8

GO BP Level 5 GO:0008219~cell death 10 30.30% 7.86E-5

GO BP Level 5 GO:0006260~DNA replication 6 18.18% 9.30E-5

GO BP Level 5 GO:0006915~apoptosis 9 27.27% 3.16E-4

GO BP Level 5 GO:0006935~chemotaxis 5 15.15% 4.02E-4

GO MF Level 5 GO:0004697~protein kinase C activity 7 21.21% 1.22E-12

GO MF Level 5 GO:0004672~protein kinase activity 11 33.33% 1.75E-6

GO MF Level 5 GO:0032559~adenyl ribonucleotide binding 15 45.45% 1.97E-6

GO MF Level 5 GO:0003697~single-stranded DNA binding 5 15.15% 6.65E-6

GO MF Level 5 GO:0004707~MAP kinase activity 2 6.06% 0.0395

KEGG PATHWAY hsa04650:Natural killer cell mediated cytotoxicity 10 30.30% 8.77E-9

KEGG PATHWAY hsa04664:Fc epsilon RI signaling pathway 8 24.24% 1.30E-7

KEGG PATHWAY hsa04530:Tight junction 9 27.27% 3.36E-7

KEGG PATHWAY hsa04370:VEGF signaling pathway 7 21.21% 1.05E-6

KEGG PATHWAY hsa04912:GnRH signaling pathway 6 18.18% 1.24E-4

KEGG PATHWAY hsa05223:Non-small cell lung cancer 5 15.15% 1.34E-4

Gene Ontology categories (level 5) and KEGG pathways associated with the host proteins listed in Table 2. Count refers to the number of proteins 
from Table 2 which have the associated term. P-values were determined using the DAVID enrichment tool using the set of all human proteins with 
the ELMs in Table 2 as a background set.
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4 or more CD4 and VL measurements at 0, 2, 4, 8, 12, and
24 weeks during the course of a constant therapy regimen.

Phenotype Classification
We focused on VL in the responder/non-responder classi-
fication [31] and examined the patient population using
three methods of responder/non-responder classification:
Standard Datenum (SD), Incremental Reduction (IR) and
BiModal Classification (BM). The Standard Datenum
method labels patients as responders if their VL decreases
by 100-fold over 8 weeks of therapy [39]. The reduction in
VL over the 24 week period logged by the Stanford HIV
Drug Resistance Database exhibited a bimodal distribu-
tion for the patient population. Parameters of this distri-
bution were obtained using the expectance maximization
method described in [32] and indicated that a reduction
of 2000 copies/mL in viral load would accurately split the
responder and non-responder distributions. We refer to
this method as bimodal classification. The third method
we used was designed to avoid potential noise issues that
could arise from relying the VL measurement on a single
clinical visit [60]. The phenotype classification according
to incremental reduction of the VL is such that if a
patient's VL decreases between at least four visit pairs,
then those patients are labelled as responders.

Linear Motifs on HIV Genome and Proteome and 
Resistance Sites
Our classification method uses the presence and absence
of short linear motifs on the HIV genome. These motifs
can be grouped into three basic types: eukaryotic linear
motifs (ELMs), nucleotide-based motifs and a priori-based
resistance mutations. In order to evaluate the relative
positions of nucleotide motifs and protein motifs on the
same platform, we annotated the protein motifs back to
their corresponding nucleotide positions. This could cre-
ate some ambiguity since HIV has multiple overlapping
reading frames. However, our clinical dataset only con-
tained sequences from the RT region. We used a local
BLASTx query [61] on a database of HIV-1 subtype B and
C reference samples to translate the nucleotide fragments
into their corresponding protein sequences (see Addi-
tional file 1). This ensured the proper translation even if
the start and stop codons were missing from the sequence.

The first feature group consisted of ELM ligation sites and
subcellular targeting sequences. These were identified on
HIV-1 protein amino acid sequences using the ELM web-
server tool [36]. The webserver tool filters out ELMs that
fall into the globular regions proteins due to their pre-
dicted location within the 3D structure of the protein
[36]. The second feature group consisted of HIV-1
sequence motifs that corresponded to annotated human
transcription factor (TF) binding site motifs and miRNA
binding sites. We used the MATCH™ web server [62] to
annotate the TF binding sites on HIV-1 sequences with the

public version of the TRANSFAC ® database as of 11/14/08
[34]. We required a core similarity of 0.75 and a global
similarity of 0.70 in parameter assignment and chose
among alternatives the method that minimized false neg-
atives [62]. For the annotation of miRNA binding sites,
recognition sequences for human miRNA were obtained
from a human miRNA database [35]. As of 11/14/08 this
database contained 417 experimentally verified human
miRNA binding recognition sequences. The HIV
sequences were scanned using the RNAhybrid program
[63] and the background parameters of the extreme value
distribution were created from 1,000 random sequences
with dinucleotide distributions identical to our compiled
HIV-1 sequence database [63]. Any binding site which
had a p < 0.01 was annotated as a potential miRNA bind-
ing site. The third group of features consisted of resistance
mutation sites on HIV sequence [64]. In order to capture
the known HIV-1 therapy resistance mutation sites on the
amino acid sequence of RT, we created regular expressions
similar to ELMs which identify the known resistance con-
ferring mutations (RSs) from the Stanford HIV-1 Resist-
ance Database [33].

Predicting Therapy Outcome
We used stepwise logistic regression (SWLR) to assess the
potential of the extracted short linear sequence features
along the RT sequence in differentiating between respond-
ers and non responders [44]. SWLR was implemented in
the MATLAB™ 2007b Statistics toolbox [65] (see Addi-
tional file 1). This regression method employs an iterative
algorithm to determining the features that should be
included in a predictive model. We used p-value < 0.01 as
an entrance cutoff and p-value > 0.1 as a removal cutoff.
In our study the algorithm converged to a final solution
within 50–200 iterations.

SWLR algorithm was applied to differentiate responders
from non-responders in three different assignments of the
phenotype for 500 iterations of 2-fold cross validation.
Since the efficiency of the SWLR algorithm is sensitive to
the class composition of the training data [44] we ensured
that each training set consisted of roughly 50% respond-
ers and 50% non-responders. After each set of training we
determined the specificity and sensitivity of our classifier
on the independent testing data and plotted the receiver
operator characteristics (ROC) curve for each iteration in
our scheme. The area under the ROC curve (AUC) repre-
sents the likelihood that one can identify a responder
accurately using the method. This procedure was per-
formed independently for each therapy regime under con-
sideration and for the whole population shown in
Table 1.
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