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ABSTRACT
Decades of studies have established that nuclear lamin polymers form the nuclear lamina, 
a protein meshwork that supports the nuclear envelope structure and tethers heterochromatin 
to the nuclear periphery. Much less is known about unpolymerized nuclear lamins in the nuclear 
interior, some of which are now known to undergo specific phosphorylation. A recent finding that 
phosphorylated lamins bind gene enhancer regions offers a new hypothesis that lamin phosphor-
ylation may influence transcriptional regulation in the nuclear interior. In this review, we discuss 
the regulation, localization, and functions of phosphorylated lamins. We summarize kinases that 
phosphorylate lamins in a variety of biological contexts. Our discussion extends to laminopathies, 
a spectrum of degenerative disorders caused by lamin gene mutations, such as cardiomyopathies 
and progeria. We compare the prevailing hypothesis for laminopathy pathogenesis based on 
lamins’ function at the nuclear lamina with an emerging hypothesis based on phosphorylated 
lamins’ function in the nuclear interior.
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Introduction

The nuclear lamina is a protein meshwork that 
covers the nuclear side of the inner nuclear mem-
brane in animal cells. Nuclear lamins are a class of 
intermediate filament proteins and constitute the 
nuclear lamina by polymerizing and assembling 
into filaments. The nuclear lamina provides struc-
tural integrity to the nucleus and serves as 
a scaffold for interphase chromosomes by tether-
ing heterochromatin domains to the nuclear per-
iphery [1–3]. In addition, nuclear lamins are 
thought to participate in various cellular processes 
[4] including transcriptional regulation [5,6], chro-
mosome organization [3], DNA damage response 
[7], cell signaling [8,9], cell cycle regulation [10], 
and mechanotransduction [11,12]. Mutations in 
genes encoding nuclear lamins cause a spectrum 
of human disorders collectively called laminopa-
thies, including cardiomyopathies, muscular dys-
trophies, and the premature aging disorder 
Hutchinson-Gilford progeria [13]. The molecular 
mechanisms by which nuclear lamins participate 
in various biological processes remain elusive, as 

do the pathogenic mechanisms underlying 
laminopathies.

There are two nuclear lamin types, A-type and 
B-type [14]. A-type lamins include Lamin A and 
Lamin C (Lamin A/C), two splice isoforms 
encoded by LMNA in humans. B-type lamins 
include Lamin B1 encoded by LMNB1 and 
Lamin B2 encoded by LMNB2 in humans. The 
A-type lamin gene arose in vertebrate evolution 
from the ancestral B-type lamin genes, which are 
conserved across metazoans [15]. Each lamin sub-
type forms separate lamin polymers and filaments 
in the nuclear lamina [6,16]. A-type lamins are 
expressed robustly in differentiated cells but nearly 
undetectable in pluripotent stem cells and during 
early embryogenesis [17–20]. In contrast, B-type 
lamins are thought to be expressed in every cell 
[21,22]. The biological significance of the cell-type 
specificity and species specificity of different lamin 
subtypes is poorly understood.

Nuclear lamins have also been observed in the 
interior of the nucleus of interphase cells [6,23– 
25]. Nuclear-interior lamins were originally 
thought to constitute a macromolecular ‘nuclear 
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matrix’, a hypothetical chromatin scaffold in the 
nuclear interior [24,26]. However, recent studies 
have found that at least some fraction of nuclear- 
interior lamins are soluble, mobile, and unpoly-
merized [6,27–30]. Thus, nuclear-interior lamins 
exhibit molecular features starkly different from 
those of polymer lamins at the nuclear lamina.

Phosphorylation of nuclear-peripheral lamins 
provides the mechanistic basis for nuclear lamina 
disassembly during the mitosis phase of the cell 
cycle. Nuclear lamin phosphorylation causes lamin 
depolymerization at the onset of mitosis for 
nuclear envelope breakdown [31–33]. At the end 
of mitosis, nuclear lamins are dephosphorylated 
and reassembled into polymers in the nuclear 
lamina. Lamin phosphorylation has also been 
observed in interphase [34,35], but the molecular 
details of interphase-phosphorylated lamins had 
been obscure until recently. Recent studies found 
that interphase phosphorylation marks a fraction 
of nuclear lamins in the nuclear interior [27–29]. 
Furthermore, some phosphorylated lamins in the 
nuclear interior bind to genomic regions charac-
teristic of gene enhancers in the human genome 
[28]. Thus, a focus on phosphorylation of nuclear 
lamins has opened a new avenue for investigating 
nuclear lamin functions in the cell.

In this review, we summarize the current under-
standing of molecular features, localization, regu-
lation, and functions of phosphorylated nuclear 
lamins. We distinguish the various cellular path-
ways through which lamins are phosphorylated. 
We discuss our recent observation suggesting 
that phosphorylated lamins act as transcriptional 
activators at enhancers in the nuclear interior. 
Finally, we extend our discussion to the ways in 
which laminopathy-causing mutations might 
influence lamin phosphorylation and the functions 
of phosphorylated lamins, offering new hypotheses 
for the pathogenesis of laminopathies.

Lamin phosphorylation and nuclear lamina 
disassembly during mitosis

Nuclear lamins are composed of three structural 
domains: the short N-terminal head domain (aa1- 
33 in human Lamin A/C; amino acid position in 
UniProtKB P02545), the central rod domain 
(aa34-383 in Lamin A/C), and the C-terminal tail 

domain (aa384-646 in Lamin A) [36–40] Figure 
1a, B. The tail domain includes an immunoglobu-
lin (Ig) fold domain (aa436-544) that harbors var-
ious protein and DNA interacting sites [41]. The 
central rod domains of two lamin molecules inter-
act in parallel to form dimers [38]. Lamin dimers 
then interact in a head-to-tail fashion to form 
polymers, with the tail domain being protruded 
out of the polymer axis [38,42,43]. Lamin poly-
mers further interact in an antiparallel fashion to 
form tetrameric filaments [44].

Phosphorylation of nuclear lamins reaches the 
highest level at the onset of the mitosis phase of the 
cell cycle to disassemble the lamin polymers 
[42,43,45]. Mitotic lamin phosphorylation predomi-
nantly occurs at two residues flanking either side of the 
central rod domain, often called ‘mitotic sites’, which 
are Ser22 and Ser392 in Lamin A/C Figure 1b, Ser23 
and Ser393 in Lamin B1 (amino acid position in 
UniProtKB P20700), and Thr34, Ser37, and/or 
Ser405 in Lamin B2 (amino acid position in 
UniProtKB Q03252) [31,32]. Consistent with the pre-
sence of these pairs of mitotic sites, Lamin A, Lamin B, 
Lamin C have approximately 2 moles of associated 
phosphate per mole of lamin during mitosis [46]. 
Evidence suggests that every Lamin A/C molecule is 
phosphorylated at Ser22 during mitosis [28]. 
Phosphorylation at the two mitotic sites induces 
lamin depolymerization in vitro [33,47] and is 
required for nuclear lamina disassembly in vivo [48]. 
Evidence also suggests that depolymerized lamins are 
dimers during mitosis [16]. Conversely, dephosphor-
ylation of the mitotic sites is required for nuclear lamin 
polymerization in vitro [47] and nuclear lamina 
assembly in vivo [49]. In addition to the two canonical 
mitotic sites, 28 other serine and threonine residues in 
Lamin A/C have been reported to exhibit increased 
phosphorylation during mitosis [27,35,50] 
(Supplementary Table 1). Many of these residues 
also flank the rod domain Figure 1b, although the 
contribution of these additional phosphorylations to 
lamin depolymerization during mitosis is not well 
understood.

There are several interesting differences between 
A-type and B-type lamins in their localization dur-
ing mitosis. Lamin A/C are dissociated from the 
nuclear membrane and dispersed throughout the 
mitotic cytoplasm upon phosphorylation and depo-
lymerization. In contrast, B-type lamins remain 
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associated with the remnants of the nuclear mem-
brane [46,51]. The association of B-type lamins 
with the remnants of the nuclear membrane is 
thought to be mediated by their C-terminal farne-
sylation, which is absent in Lamin A/C. Lack of 
farnesylation in Lamin A is due to the protease- 
mediated cleavage of the C-terminus during Lamin 
A maturation, and this cleavage site is encoded in 
an exon acquired during LMNA gene evolution in 
vertebrates [15]. Lamin C lacks the farnesylation 
site altogether. Toward the end of mitosis, both 
A-type and B-type lamins accumulate on the sur-
face of condensed telophase chromatin, but in dif-
ferent ways [52,53]. Lamin A/C accumulation starts 
at the central region of telophase chromatin (called 
the ‘core’ region) and this process depends on the 
prior localization of Lamin A/C-interacting protein 
BAF (Barrier-to-Autointegration Factor) at the core 
region [52,53]. In contrast, Lamin B1 accumulation 
does not begin at the core and the process is inde-
pendent of BAF [52,53]. Lamin A/C remain 

phosphorylated when localized to telophase chro-
matin [54], and evidence suggests that Lamin A/C 
are dephosphorylated on the telophase chromatin 
surface for repolymerization [55]. Whether B-type 
lamins are also dephosphorylated on the telophase 
chromatin surface has not been explored. These 
differences of mitotic localization between A-type 
and B-type lamins might be related to the observa-
tion that B-type lamins promote assembly of the 
mitotic spindles during mitosis, while A-type 
lamins appear to lack this function [56]. Whether 
A-type lamins have specific functions during mito-
sis is not known.

Nuclear lamin phosphorylation in interphase

The first report that nuclear lamins are phosphory-
lated in interphase dates to 1980 [34], although the 
biological significance of interphase phosphorylation 
had long been obscure until recently. One study esti-
mated that the level of interphase lamin 

Figure 1. Lamin polymerization and phosphorylation. (a) Schematic representation of lamin polymerization. Lamins form dimers 
through rod domain interactions. Lamin dimers associate longitudinally into polar head-to-tail polymers. (b) Distribution of 
phosphorylation sites in Lamin A/C. Phosphorylation sites are stratified by the cell-cycle phase in which the residue is reported to 
be phosphorylated.

NUCLEUS 301



phosphorylation is 4–7 times lower than their mitotic 
phosphorylation level (therefore 0.3–0.5 moles of 
phosphates per mole of lamin) [46], suggesting that 
only a subset of lamins undergo phosphorylation dur-
ing interphase. Compared to Lamin A/C, interphase 
phosphorylation of B-type lamins has been much less 
investigated [57,58]. Reviewing the literature, we iden-
tified 92 total phosphorylation sites reported for 
Lamin A and/or Lamin C in any cell cycle stage 
[27,35,50,59–64] (Figure 1b; Supplementary Table 1). 
Of the 92 phosphorylation sites in Lamin A/C, 25 are 
known to be phosphorylated during interphase in 
human HeLa or murine A9 cell lines [27,35]. 
Eighteen of the 25 interphase phosphorylation sites 
in Lamin A/C are also reported to be phosphorylated 
during mitosis, including Ser22 and Ser392, the cano-
nical mitotic sites. In fibroblasts, Ser22- 
phosphorylated Lamin A/C is observed in G1, S, and 
G2 phases of interphase, with some variability in the 
Ser22 phosphorylation level between interphase cells 
[28]. Consistent with the notion that Ser22 phosphor-
ylation drives lamin depolymerization, Ser22- 
phosphorylated Lamin A/C in interphase are localized 
in the nuclear interior, not at the nuclear periphery 
[27,28]. Lamin A with phospho-mimetic Ser22Asp or 
phospho-mimetic Ser392Asp substitutions are highly 
mobile in interphase nuclei [27], suggesting that Ser22 
and Ser392-phosphorylated Lamin A/C in interphase 
represent unpolymerized Lamin A/C. Unlike during 
mitosis, however, the nuclear lamina appears intact in 
interphase cells with Ser22-phosphorylated Lamin A/ 
C present in the nuclear interior [28]. Furthermore, 
the Ser22-phosphorylated population appears to 
represent a small fraction of all Lamin A/C molecules 
in the interphase nucleus [28]. Thus, interphase Ser22- 
phosphorylation occurs in a small fraction of Lamin 
A/C and does not induce depolymerization of the 
entire nuclear lamina in normal cells. Phospho- 
mimetic substitution of Lamin A/C at Ser390, 
Ser404, or Ser407 also promotes relocalization of 
Lamin A/C to the nuclear interior, similarly to 
Ser392 and Ser22 phosphorylation [27]. Evidence sug-
gests that Ser403 phosphorylation promotes nuclear 
import of Lamin A/C, while Ser628 phosphorylation 
restricts nuclear import [27,65]. Given the large over-
lap between interphase and mitotic phosphorylation 
sites, some phosphorylated nuclear lamins in 

interphase might be carryovers from lamin phosphor-
ylation in mitosis. Alternatively, nuclear lamins may 
be phosphorylated de novo in interphase by kinases 
active in interphase.

We recently observed that Lamin C is more 
strongly phosphorylated at Ser22 than Lamin A in 
interphase fibroblasts. This high degree of Lamin 
C phosphorylation may be related to the previous 
observation that Lamin C is more soluble than 
Lamin A in interphase cells [16]. What makes Lamin 
C more susceptible to phosphorylation than Lamin A? 
Unlike Lamin A and B-type lamins, Lamin C does not 
undergo farnesylation, and consequently, newly 
synthesized Lamin C is thought to populate the 
nucleoplasm first before becoming incorporated into 
the lamina. On the other hand, newly synthesized 
precursor Lamin A and B-type lamins are directly 
incorporated into the nuclear lamina through the 
contiguous ER membrane/nuclear membrane struc-
ture to which they are tethered by farnesylation [66]. 
A prediction based on this difference in the lamina 
incorporation pathways is that Lamin A and B-type 
Lamins build the foundation of the nuclear lamina 
meshwork, on which Lamin C meshwork assembles. 
While exact localization of Lamin C within the nuclear 
lamina has not yet been defined, a recent study using 
super-resolution microscopy reported that localiza-
tion of Lamin A/C (detected by an antibody recogniz-
ing both Lamin A and C) is closer to the nuclear 
interior than Lamin B1 within the nuclear lamina 
meshwork [67]. Thus, one possibility is that Lamin 
C is most accessible by kinases of all lamin subtypes 
within the nuclear lamina by virtue of their differential 
localization within the nuclear lamina.

In summary, the nuclear-interior localization of 
phosphorylated forms of lamins presents the exciting 
possibility that phosphorylated lamins may have 
unexplored functions distinct from nuclear- 
peripheral polymerized lamins. In the next section, 
we discuss regulators of lamin phosphorylation.

Kinases and phosphatases for nuclear lamins

Numerous kinases and phosphatases for nuclear 
lamins have been identified in a variety of biolo-
gical contexts (Figure 2; Supplementary Table 1). 
Cyclin-Dependent Kinase 1 (CDK1) and Protein 
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Kinase C (PKC) phosphorylate nuclear lamins at 
the onset of mitosis. CDK1 becomes active speci-
fically at the onset of mitosis after forming 
a complex with Cyclin B. The CDK1-Cyclin 
B complex phosphorylates Thr19, Ser22, and 
Ser392 of Lamin A/C, Ser23, and Ser393 of 
Lamin B1, and Thr34, Ser37, and Ser405 of 
Lamin B2 for lamin depolymerization in mitosis 
[31,57,68,69]. PKC phosphorylates Ser395 and 
Ser405 of Lamin B1 during mitosis [70], and evi-
dence suggests that PKC also phosphorylates Ser5, 
Ser395, Thr416, and Ser572 of Lamin A/C [35]. 
While neither the CDK1-Cyclin B1 complex nor 
PKC is known to accumulate specifically at the 
nuclear envelope at the onset of mitosis [71–73], 
there is little doubt that lamin phosphorylation 
predominantly takes place at the nuclear periphery 
because phosphorylation is required for depoly-
merization of nuclear-peripheral lamins [31–33]. 
The current model suggests that phosphorylation 
of nuclear lamins as well as other nuclear envelope 

proteins by CDK1, PKC, and other kinases culmi-
nates in nuclear envelope breakdown in mitosis 
[66]. Unlike CDK1 [74], PKC activity itself is not 
restricted to mitosis [75]. Nuclear lamins are 
dephosphorylated at the end of mitosis (telophase) 
for nuclear lamina reformation, and this process is 
mediated by phosphatases. Phosphatases PP1 and 
PP2A dephosphorylate Lamin A/C at Thr19 and 
Ser22 [76] and Lamin B2 [77] and are required for 
nuclear envelope reassembly upon mitotic exit 
[78,79]. PP1 is known to accumulate on the sur-
face of telophase chromatin, as are lamins [55,79]. 
Therefore, lamins are likely dephosphorylated on 
the chromatin surface for repolymerization. The 
activity of PP1/PP2A and CDK1 is mutually antag-
onistic [80], providing the mechanistic basis for 
the phosphorylation–dephosphorylation cycle of 
nuclear lamins during mitosis. Beyond the mitotic 
exit, PP1 and PP2A become active in various other 
biological contexts such as glycogen [81] and 
sphingolipid metabolism [82], as well as the 

Figure 2. Regulators and functions of lamin phosphorylation. (a) Kinases and phosphatases known to regulate lamin phosphoryla-
tion are shown. Phosphorylation of lamins could cause depolymerization and localization to the nuclear interior. (b) Phosphorylated 
Lamin A/C bind to enhancers of active genes in the nuclear interior.
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DNA damage response [83], potentially contribut-
ing to regulation of lamin phosphorylation in non- 
mitotic contexts.

Among lamin kinases active in interphase are 
ERK1 and ERK2 (also known as MAP kinases), 
two closely related kinases active under various 
extracellular stimuli. ERK1 and ERK2 phosphorylate 
Lamin A/C at Ser22 [84]. Ser22 of Lamin A/C is 
within both the CDK and ERK recognition sequence 
motifs. ERK1 and ERK2 can directly interact with 
Lamin A and Lamin C in vitro and in vivo [85]. An 
interesting possibility is that ERK1 and ERK2 phos-
phorylate Lamin A/C for nuclear-interior localiza-
tion in interphase in response to various conditions 
triggering cellular stress. One such condition may be 
the type of soft extracellular environment in which 
Ser22 and Ser392 phosphorylation is known to be 
promoted [29,86]. In this context, nuclear-interior 
localization of phosphorylated Lamin A/C is thought 
to facilitate rounding of the nucleus in response to 
rounding of the cell under soft microenvironments 
[29,86]. Another lamin kinase active in interphase is 
Akt (also known as Protein Kinase B), active in many 
cellular processes including glucose metabolism [87]. 
Akt phosphorylates Lamin A/C at Ser404 in the 
mouse myoblast C2C12 cell line, and this phosphor-
ylation is promoted by insulin [88,89]. Akt also 
phosphorylates Ser458 of Lamin A/C in muscle tis-
sues isolated from LMNA-related myopathy patients 
[90]. In addition, a proteome study identified Thr10, 
Ser406, Ser407, Thr409, Ser414, Thr416, and Thr548 
of Lamin A/C as substrates of Akt and ribosomal S6 
kinases in cancer cell lines [62].

Several lamin kinases are known to promote exten-
sive modulation of the nuclear lamina in interphase 
cells. PKC-δ phosphorylates B-type lamins for nuclear 
lamina disassembly during apoptosis [91,92]. During 
sea urchin fertilization, PKC in oocytes phosphory-
lates Lamin B1 of the sperm nuclei, leading to dis-
solution of the sperm nuclear lamina required for 
male pronucleus formation [93]. CDK5, a member 
of the cyclin-dependent kinase family that does not 
require cyclins for activation [94], phosphorylates 
Ser22 and Ser392 of Lamin A/C and Ser23 and 
Ser393 of Lamin B1 in the mouse neuronal HT22 
cell line [95]. Evidence suggests that an aberrant 
increase of CDK5 activity in neuronal cells causes 
nuclear dispersion through lamin disassembly, result-
ing in neuronal death in Alzheimer’s disease [95]. 

CDK5 activity has also been reported in non- 
neuronal cells, such as in muscle, in which CDK5 
promotes differentiation of myoblasts [94], although 
the relationship between lamin phosphorylation and 
myogenesis is unclear. Chk1, a kinase that coordinates 
cell-cycle arrest with DNA damage response, phos-
phorylates Ser307 of Lamin A/C [96]. Chk1 is known 
to localize at the nuclear periphery upon mechanical 
and osmotic stress and is thought to contribute to 
structural alteration of the nuclear envelope [97]. 
Therefore, Ser307 phosphorylation of Lamin A/C 
may contribute to the structural change of the nuclear 
lamina upon mechanical or osmotic stress.

Finally, nuclear lamin phosphorylation can be cat-
alyzed by viral kinases for virus egress. UL97, 
a CDK1-like kinase of human cytomegalovirus 
(HCMV), phosphorylates Lamin A/C at Ser22 [98]. 
Consistently, HCMV infection dramatically increases 
Ser22-phosphorylated Lamin A/C levels in the 
nuclear interior [99]. UL97-mediated Ser22 phos-
phorylation is recognized by prolyl isomerase PIN1 
to promote Lamin A/C depolymerization [99]. The 
US3 kinase of herpes simplex virus type 1 (HSV-1) 
also phosphorylates Lamin A/C [100], and a study 
suggests the target residues are Ser22 and Ser392 [99].

In summary, a number of kinases and phos-
phatases operate on nuclear lamins within 
diverse biological contexts, sometimes at identi-
cal residues. It is plausible that these kinases and 
phosphatases regulate the equilibrium between 
polymer lamins and unpolymerized lamins in 
the interphase nuclei (Figure 2a). What remain 
to be defined are the subcellular locations at 
which lamin phosphorylation and dephosphory-
lation take place during interphase. Furthermore, 
the functional significance of lamin phosphoryla-
tion is poorly understood apart from structural 
modulation of the nuclear lamina. In the next 
section, we discuss a new direction of research 
suggesting that phosphorylated lamins have spe-
cific functions in gene regulation in the nuclear 
interior.

Phosphorylated lamin c at enhancers

Nuclear lamins exhibit a high affinity to DNA and 
chromatin, with a nano-molar range dissociation 
constant (KD) for interactions between the 
C-terminal domain of Lamin A/C and DNA or 

304 S. Y. LIU AND K. IKEGAMI



nucleosomes [101]. Polymer nuclear lamins at the 
nuclear periphery interact with large heterochro-
matin domains called lamina-associated domains 
(LADs), which contain mostly transcriptionally 
inactive genes [102–106]. By tethering LADs to 
the nuclear periphery, nuclear lamins influence 
the spatial organization of chromosomal regions 
[1]. Evidence suggests that nuclear lamins also 
promote transcriptional repression of some of the 
genes embedded in LADs [107–109]. Given the 
chromatin binding property of nuclear lamins, 
one hypothesis had been that phosphorylated 
lamins in the nuclear interior might also bind 
chromatin, but at different locations than LADs.

We recently investigated the genomic distribu-
tion of Ser22-phosphorylated Lamin A/C in inter-
phase human fibroblast cells [28]. Using an 
antibody specific to Ser22 phosphorylation of 
Lamin A/C in chromatin immunoprecipitation 
coupled with high-throughput sequencing (ChIP- 
seq), we observed that Ser22-phosphorylated 
Lamin A/C interacts with numerous genomic 
sites with features of active enhancers, near genes 
undergoing active transcription. The enhancer-like 
features of Ser22-phosphorylated Lamin A/ 
C-binding sites are in stark contrast to transcrip-
tionally-inactive, megabase-wide heterochromatin 
features of LADs [1,102–106]. As described earlier, 
Ser22-phosphorylated Lamin C is more abundant 
than Ser22-phosphorylated Lamin A in interphase 
fibroblasts. Consistent with this observation, 
Lamin C with phospho-mimetic Ser22Asp and 
Ser392Asp substitutions binds more strongly to 
putative enhancers than Lamin A with the same 
phospho-mimetic substitutions [28]. These obser-
vations suggested that Lamin C is the primary 
form binding to putative enhancers upon phos-
phorylation. Thus, phosphorylated Lamin C may 
act as a transcriptional activator directly regulating 
transcription at enhancers in the nuclear interior 
Figure 2b.

In what biological context might the enhancer 
binding of Ser22-phosphorylated Lamin C be pro-
moted? Our study revealed that Ser22- 
phosphorylated Lamin C-bound sites overlap 
almost exclusively with the genomic sites occupied 
by the AP-1 transcription factor c-Jun [28]. c-Jun 
is activated by multiple kinases including JNKs 
(Jun-N-terminal kinases) and ERK upon various 

extracellular stimuli [110]. While direct interaction 
between Lamin A/C and c-Jun has not been 
reported, Lamin A/C is known to interact with 
c-Fos, the binding partner of c-Jun in the AP-1 
transcription factor complex, at the nuclear per-
iphery [85,111]. Evidence suggests that c-Fos is 
unphosphorylated and inactive when interacting 
with Lamin A/C at the nuclear periphery, and 
ERK2-dependent phosphorylation of c-Fos at the 
nuclear lamina relocalizes c-Fos to the nuclear 
interior for DNA binding [85]. One hypothesis 
based on these observations is that Lamin C and 
c-Jun/c-Fos might be phosphorylated together at 
the nuclear periphery by ERK2 and directed to 
AP1-target enhancers. Overall, an attractive 
model is that various cellular conditions that pro-
mote lamin phosphorylation result in 
a transcriptional response directly mediated by 
phosphorylated Lamin C binding to gene enhan-
cers Figure 2.

The lamin A/C-LAP2α complex

Several studies have utilized chromatin fractiona-
tion to probe chromatin regions associated with 
nuclear-interior lamins [112–114]. Lund et al. per-
formed ChIP-seq using an antibody that detects 
total Lamin A/C but in a soluble fraction obtained 
by micrococcal nuclease digestion, a mild lysis 
condition that enriches unpolymerized lamins 
[112]. This procedure identified low-level contin-
uous enrichment of Lamin A/C across large 
regions outside of LADs [112]. These Lamin A/ 
C-associated regions were over-represented for 
histone modifications associated with transcrip-
tional repression [112]. A similar observation was 
made via total Lamin A/C ChIP-seq in a soluble 
fraction obtained by mild mechanical DNA shear-
ing [113]. Lamin A/C-associated regions found via 
this procedure overlapped genomic regions bound 
by LAP2α, a Lamin A/C-binding protein exclu-
sively localized in the nuclear interior 
[113,115,116]. Therefore, LAP2α-associated 
nuclear-interior Lamin A/C likely bind to tran-
scriptionally inactive regions outside of LADs. 
The difference in genomic localization profiles 
between LAP2α-associated Lamin A/C and Ser22- 
phosphorylated Lamin C (which binds to putative 
active enhancers) suggests that LAP2α-associated 
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Lamin A/C and Ser22-phosphorylated Lamin 
C represent distinct pools of nuclear-interior 
Lamin A/C. The interaction between Lamin A/C 
and LAP2α is mediated by the C-terminal region 
of Lamin A/C (amino acids 319–572), which har-
bors numerous interphase phosphorylation sites 
[116]. One possibility is that phosphorylation and 
dephosphorylation within the C-terminal region 
affects the Lamin A/C–LAP2α interaction, thereby 
regulating an exchange between LAP2α-associated 
and non-associated Lamin A/C in the nuclear 
interior.

The function of the LAP2α has been investigated 
extensively [117,118]. LAP2α binds Lamin A/C and is 
thought to retain Lamin A/C in the nuclear interior 
during the G1 cell-cycle phase [119,120]. Lamin A/C 
and LAP2α interact with Retinoblastoma Protein (RB) 
[121,122], a repressor of the E2F-mediated G1-to-S cell 
cycle transition [123]. Lamin A/C deletion results in 
reduction of RB abundance, presumably due to an 
increased susceptibility of RB to proteasome-mediated 
degradation [124,125], and promotes cell-cycle pro-
gression into the S-phase [124]. Similarly, LAP2α- 
knockout cells are defective in cell cycle arrest [119]. 
These studies suggest that LAP2α-associated nuclear- 
interior Lamin A/C protects RB from degradation, 
thereby negatively regulating cell proliferation. 
Whether Ser22-phosphorylated Lamin A/C partici-
pates in regulation of RB has not been explored.

Laminopathies

There are over 200 known autosomal-dominant 
point mutations in LMNA that cause human dis-
ease. These diseases, collectively called laminopa-
thies, include cardiomyopathies, muscular 
dystrophies, lipodystrophies, peripheral neuropa-
thies, and Hutchinson-Gilford progeria [126]. 
Pathogenic mutations in LMNB1 and LMNB2 are 
much less frequent [127], possibly due to the peri-
natal requirement of LMNB1 and LMNB2 as 
opposed to postnatal requirement of LMNA 
[128–130]. The laminopathy mutations in LMNA 
cause nonsynonymous substitutions in the vast 
majority of cases. There is no apparent relation-
ship between the amino acid locations of the 
mutations and disease phenotypes except in a few 
cases [14]. There is a phenotypic overlap among 
certain laminopathies such as Emery-Dreifuss 

muscular dystrophy type 2 (EDMD2) and dilated 
cardiomyopathy type 1A (CMD1A), both of which 
affect the cardiac muscle [131]. Although the 
mechanisms by which LMNA mutations cause 
laminopathies remain unknown, a number of 
molecular changes have been reported in cells or 
tissues derived from laminopathy patients or in 
animal or cellular models of laminopathies. These 
molecular changes include abnormal gene expres-
sion [132], abnormal cell signaling [133], increased 
DNA damage [134], abnormal localization of tel-
omeres [135], altered nuclear shape [136], and 
altered response to mechanical stress [137]. 
A challenge in finding treatment for laminopathies 
has been to identify the molecular changes that 
trigger their pathogenesis and distinguish these 
upstream molecular changes from downstream 
molecular changes.

The prevailing hypotheses for laminopathies

There have been two prevailing, non-mutually 
exclusive hypotheses for the pathogenic mechan-
ism underlying laminopathies, both based on 
lamins’ functions at the nuclear periphery [13]. 
The gene expression hypothesis states that lamino-
pathy mutations disrupt interactions between the 
nuclear lamina and LADs, leading to abnormal 
gene expression. The structural hypothesis states 
that laminopathy mutations render the nuclear 
envelope structurally defective, causing dysregula-
tion of intranuclear processes.

The gene expression hypothesis has been stu-
died extensively in the context of Hutchinson- 
Gilford progeria syndrome (HGPS), a premature 
aging syndrome caused by heterozygous LMNA 
mutations [138]. HGPS is caused predominantly 
by a mutation within the Lamin A-specific region 
of the LMNA gene that activates cryptic splicing 
and results in a mutant Lamin A protein called 
‘progerin’ [138]. Progerin lacks the C-terminal 
cleavage site that is used to detach the farnesylated 
C-terminal end in normal Lamin A processing, 
thus being permanently farnesylated [138]. 
Progerin accumulates at the nuclear periphery 
due to this permanent farnesylation, and progerin 
accumulation has been hypothesized to cause dis-
organization of heterochromatin at lamina- 
associated domains (LADs) [139]. Supporting this 
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hypothesis, in progeria-patient fibroblasts, some 
LADs lose interactions with nuclear-peripheral 
Lamin A, and the losses of LADs coincide with 
losses of histone H3 trimethylation at lysine 9 and 
lysine 27, two modifications that mark heterochro-
matin [28,140]. Similar losses of heterochromatin 
have been observed by immunofluorescence and 
electron microscopy in progeria-patient cells 
[140,141].

Recently, several groups, including ours, have 
conducted detailed analyses to define whether 
losses of heterochromatin are responsible for dys-
regulated gene expression in laminopathies. Our 
parallel analysis of gene expression, lamina–chro-
matin interaction, and histone modifications 
revealed that only a very small number of dysregu-
lated genes are located within lost LADs in pro-
geria-patient fibroblasts, although LAD losses do 
accompany losses of heterochromatin-associated 
histone modifications [28]. Similar observations 
have been reported for other laminopathies. Lee 
et al. found increased chromatin accessibility within 
LADs, indicative of losses of heterochromatin, in 
the cardiomyocytes differentiated from the induced 
pluripotent stem cells (iPSC) derived from LMNA- 
related dilated cardiomyopathy patients [142]. 
However, increased chromatin accessibility within 
LADs was not directly responsible for abnormal 
activation of platelet-derived growth factor 
(PDGF) signaling that caused arrhythmic pheno-
types of the mutant cardiomyocytes [142]. Bertero 
et al. performed chromatin conformation analysis 
in cardiomyocytes differentiated from other 
LMNA-related cardiomyopathy-patient iPSCs and 
identified genomic regions that lose heterochroma-
tin [143]. Again, the heterochromatin change did 
not explain most gene expression alterations in the 
mutant cardiomyocytes [143]. Together, these 
independent studies suggest that the alteration of 
LADs is unlikely to be a major contributor to 
abnormal gene expression changes in 
laminopathies.

Phosphorylated lamin C–enhancer binding is 
altered in progeria

An emerging new hypothesis, drawing upon evi-
dence provided by recent reports on phosphory-
lated lamin activity, is that impaired functions of 

phosphorylated Lamin A/C in the nuclear interior 
underlie the pathogenesis of laminopathies. We 
therefore recently examined whether interactions 
between Ser22-phosphorylated Lamin C and 
enhancers are altered in the fibroblasts derived 
from progeria patients. This investigation led us 
to observe that a specific subset of enhancer-like 
elements either gain or lose interactions with 
Ser22-phosphorylated Lamin C in progeria [28]. 
Consistent with the hypothesis that Ser22- 
phosphorylated Lamin C acts as a transcriptional 
activator, gains of Ser22-phosphorylated Lamin 
C binding were correlated with acquisition of his-
tone acetylation and c-Jun binding at the binding 
sites, and losses with reduction of histone acetyla-
tion and c-Jun binding in progeria-patient cells 
[28]. Furthermore, gains and losses of Ser22- 
phosphorylated Lamin C binding were accompa-
nied by increased and decreased expression of 
nearby genes in progeria-patient cells, respectively. 
In particular, we found that abnormally activated 
genes with nearby gains of Ser22-phosphorylated 
Lamin C are important in the pathophysiology of 
progeria [28]. In these progeria-patient cells, pro-
gerin itself was not phosphorylated at Ser22, and 
the phosphorylation level of Lamin C and sub-
nuclear localization of Ser22-phosphorylated 
Lamin C did not appear to change. Thus, it 
remains unclear how Ser22-phosphorylated 
Lamin C is misdirected in progeria. Given the 
observation that progerin directly interacts with 
Lamin C [144], one possibility is that the pro-
gerin–Lamin C interaction alters the binding spe-
cificity of Lamin C. Several chemical compounds 
known to inhibit the interaction between Lamin 
A/C and progerin [144] may be useful for examin-
ing this possibility.

Laminopathy mutations that affect lamin 
phosphorylation

There are multiple ways in which laminopathy 
mutations could affect nuclear lamin phosphoryla-
tion. First, laminopathy mutations could lead to 
nonsynonymous substitutions of the residues sub-
ject to phosphorylation. Such pathogenic substitu-
tions in Lamin A/C include Thr10Ile associated 
with lipodystrophy [145], Ser22Leu associated 
with dilated cardiomyopathy [146], Ser27Ile 
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associated with limb-girdle muscular dystrophy 
with dilated cardiomyopathy [147], Ser143Phe 
associated with congenital muscular dystrophy 
[148], and Thr528Lys associated with Emery- 
Dreifuss muscular dystrophy [59,149] 
(Supplementary Table 1). Whether these muta-
tions affect assembly or localization of Lamin A/ 
C has not to date been characterized. Pathogenic 
missense substitutions in Lamin A/C are appar-
ently not over-represented among phosphoryla-
tion sites, potentially due to the critical role of 
Lamin A/C phosphorylation during mitosis 
(pathogenic substitutions overlap 22% of phos-
phorylation sites vs. 42% of non-phosphorylation 
sites. Pathogenic site data from http://www.umd. 
be/LMNA/). Second, pathogenic mutations may 
alter kinase-recognition motifs surrounding phos-
phorylation sites. While this scenario has not been 
explored in detail, Lin et al. predicted that patho-
genic LMNA mutations decrease Lamin A/C phos-
phorylation overall in an in silico analysis [150]. 
Third, pathogenic mutations may alter the acces-
sibility of kinases or phosphatases to target resi-
dues through protein conformation changes. 
Mitsuhashi et al. reported that Ser458, a site within 
the Ig fold domain, is phosphorylated in the mus-
cle tissues of LMNA-related muscular-dystrophy 
patients only when mutations are located within 
the Ig fold [90]. In contrast, Ser458 was not phos-
phorylated in neuromuscular disorders unrelated 
to LMNA mutations or cells expressing mutant 
Lamin A that causes non-myopathic laminopa-
thies [90]. The authors found that the kinase 
Akt1 phosphorylates Ser458 and speculated that 
myopathy-causing LMNA mutations render 
Ser458 accessible to Akt1 through 
a conformational change of the Ig fold domain 
[90]. However, Ser458 phosphorylation has later 
been reported in LMNA-wild-type HeLa cells [27]. 
Finally, there are reports that laminopathy muta-
tions are associated with changes in Lamin A/C 
phosphorylation at undefined residues. Cenni et al. 
reported strong reduction of overall Lamin A/C 
phosphorylation in myoblasts and myotubes 
derived from various muscular dystrophy patients 
with LMNA gene mutations [89]. Lin et al. 
reported that R60G substitution, which causes 
dilated cardiomyopathy, renders this mutant pro-

tein more resistant to phosphorylation by p38 
MAPK at undefined sites [150]. These studies 
highlight multiple ways in which pathogenic 
LMNA mutations could affect Lamin A/C phos-
phorylation. Overall, however, only a small num-
ber of studies have investigated the impact of the 
laminopathy mutations on lamin phosphorylation. 
Therefore, an unbiased survey of the phosphoryla-
tion state of Lamin A/C in tissues affected in 
laminopathies is warranted.

Conclusion & outlook

Our review catalogs an extensive repertoire of phos-
phorylation sites in nuclear lamins as well as kinases 
and phosphatases that regulate lamin phosphorylation 
(Supplementary Table 1). We recognize a wide variety 
of biological contexts that promote lamin phosphoryla-
tion during interphase Figure 2. Instead of phosphory-
lated lamins solely existing as byproducts of lamin 
disassembly during mitosis, an emerging hypothesis 
posits that phosphorylated lamins have specific func-
tions in the nuclear interior in interphase cells. One 
example of such a function is the binding of Ser22- 
phosphorylated lamin C to the genomic regions char-
acteristic of active enhancers near transcriptionally 
active genes [28]. Recent studies highlight multiple 
ways in which laminopathy mutations are predicted 
to affect lamin phosphorylation and functions of phos-
phorylated lamins. Thus, lamin phosphorylation pre-
sents a new avenue to investigate lamin functions in the 
cell and the molecular basis for the pathogenesis of 
laminopathies.

Our review also clarifies a number of impor-
tant questions that have been left unanswered. 
These questions concern the biological contexts 
in which nuclear lamin phosphorylation is regu-
lated by specific kinases and phosphatases; the 
subcellular locations at which these kinases and 
phosphatases operate on lamins; the functions of 
phosphorylated nuclear lamins at chromatin and 
in other cellular processes; and the mechanisms 
by which laminopathy mutations affect lamin 
phosphorylation and the functions of phosphory-
lated lamins. Addressing these questions will 
require the development of new tools and tech-
niques, such as phosphorylation-specific antibo-
dies, manipulation of phosphorylation states 
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in vivo, and a proteome-wide survey of lamin 
phosphorylation in normal and disease tissues. 
Finally, it should be noted that other post- 
translational modifications, such as sumoylation, 
acetylation, and ADP-ribosylation, have been 
reported for lamins but not studied as extensively 
as phosphorylation [41,151]. We anticipate a new 
endeavor to characterize functions and regula-
tory mechanisms of various post-translational 
modifications of nuclear lamins in the coming 
years.
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