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Abstract Overexpression of Bcl-2 protein occurs via both t
(14;18)-dependent and independent mechanisms and con-
tributes to the survival and chemoresistance of non-
Hodgkin lymphomas. HA14–1 is a nonpeptidic organic
small molecule, which has been shown to inhibit the
interaction of Bcl-2 with Bax, thereby interfering with the
antiapoptotic function of Bcl-2. In this study, we sought to
determine the in vitro efficacy of HA14–1 as a therapeutic
agent for non-Hodgkin lymphomas expressing Bcl-2.
Assessment of cell viability demonstrated that HA14–1
induced a dose- (IC50=10 μM) and time-dependent growth
inhibition of a cell line (SudHL-4) derived from a t(14;18)-
positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1
effectively induced apoptosis via a caspase 3-mediated
pathway but did not affect either the p38 MAPK or p44/42
MAPK pathways. Western blot analyses of Bcl-2 family
proteins and other cell cycle-associated proteins were
performed to determine the molecular sequelae of HA14–
1-induced apoptosis. The results show down-regulation of
Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2
proteins, without change in Bax levels during HA14–1-
mediated apoptosis. Our findings further elucidate the
cellular mechanisms accompanying Bcl-2 inhibition and
demonstrate the potential of Bcl-2 inhibitors as therapeutic
agents for the treatment of non-Hodgkin lymphomas.
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Introduction

The B-cell lymphoma-2 gene product (Bcl-2), a key player
in the regulation of cellular apoptosis, is overexpressed in
nearly 60% of all non-Hodgkin lymphomas (NHL) [1, 2].
Bcl-2, the prototypic antiapoptotic member of the Bcl-2
protein family, is overexpressed as a result of chromosomal
translocation (14;18) [3–5] and/or as a consequence of
transcriptional up-regulation in NHLs. The Bcl-2 oncopro-
tein exerts its effects by inhibiting apoptosis in cells that are
normally bound for death [3, 6, 7]. Studies have shown that
Bcl-2 can inhibit cell death from a broad array of apoptotic
stimuli, including radiation [8, 9], chemotherapy drugs [10–
12], and growth factor withdrawal [8, 13]. These character-
istics are directly linked to resistance of many forms of
conventional cancer therapies.

Efforts to target Bcl-2 overexpression have focused on
antisense therapies [14, 15]. Other strategies are being
investigated to disrupt the overexpression of Bcl-2. One
such approach utilizes the properties of small molecules to
antagonize the function of the target protein. HA14–1 [ethyl
2-amino-6-bromo-4(1-cyano-2ethoxy-2-oxoethyl)-4H-
chromene-3-carboxylate] is a nonpeptidic organic small
molecule that binds to the BH3 binding pocket of Bcl-2,
effectively competing with Bak BH3 for interaction with
Bcl-2 [16]. The interference of HA14–1 with the surface
pocket of Bcl-2 has been shown to successfully impede the
function of Bcl-2 and reduce cell viability and induce
apoptosis of human acute myeloid leukemia (HL-60) cells
[16] and lymphoma cells [17] that overexpress Bcl-2. Its
mechanism of action is diverse and has been shown to
initiate autophagy [18], reconstitute impaired mitochondrial
pathway of apoptosis in renal cell carcinoma cell lines [19],
and sensitize tumor cells to immune-mediated destruction
[20]. Other reports have shown that HA14–1 has synergis-
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tic effects with MEK/MAPK in overcoming the aggressive
apoptosis-resistant phenotype of acute myeloid leukemia
cells [21]. It has also been observed that sequential exposure
of myeloma cells to proteasome inhibitors, followed by
treatment of HA14–1, results in a substantial increase in
apoptotic effects [22] via the translocation of Bax from the
cytosol to the mitochondria, thus enhancing cytochrome
release to the cytosol [23]. It has also been shown that
HA14–1 interacts synergistically with cyclin-dependent
kinase inhibitors to induce mitochondrial injury and apopto-
sis in myeloma cells through a free radical-dependent and
Jun NH2-terminal kinase-dependent mechanism [24].

In this study, we have examined the effect of HA14–1 on
the viability of cell lines derived from mature B-cell NHLs,
the mechanism of growth inhibition, and its effect on key
cell cycle-associated proteins. Our results suggest that
inhibitors of Bcl-2 may have utility in the treatment of
patients with NHLs.

Materials and methods

Cell culture and drug treatment

The SudHL-4 [t(14;18)+;Bcl-2+] and SudHL-5 [t(14;18)−;
Bcl-2−] cell lines were obtained from ATCC (Manassas, VA,
USA) and grown in RPMI 1640 (ISC Bioexpress, Kaysville,
UT, USA) supplemented with 4.5 g/L glucose, 9.5 g/L N-2-
hydroxyethylpiperazine-N′-2-ethanesulfonic acid, 1.6 g/L
sodium bicarbonate, 0.11 g/L sodium pyruvate, 10% heat-
inactivated fetal bovine serum, and 100 U/ml of penicillin–
streptomycin mixture (Gibco Life Technologies, Grand
Island, NY, USA). Each cell line was incubated with varying
concentration of HA14–1 (Maybridge Chemical Company,
Trevillett, UK, and Calbiochem, La Jolla, CA, USA)
dissolved in dimethyl sulfoxide (DMSO). The initial
concentration of each cell line was 1×105 cells per milliliter.
The cells were harvested at various time points for viability
assays, proliferation assay, apoptosis analysis, and lysate
preparation. Separate control cells were sustained under
identical conditions as the treated cells and were exposed to
equal volumes of DMSO diluent.

Cell viability and proliferation

Cell viability was assessed by the [3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide assay] (MTT) assay
[25]. The desired standard of cell viability at the initiation
of each experiment was 90% for each cell line. Briefly,
0.1 ml cells (0.5×105 cells) per well were seeded in a 96-
well plate. MTT (10 mg/ml, 10 μl/well; Sigma, St. Louis,
MO, USA) was added to each well and incubated at 37°C
for 2 h. Cells were then lysed by adding 0.1 ml per well of lysis

solution (20% sodium dodecyl sulfate, 50% N,N-dimethyl
formamide, pH 4.7). Absorbance was measured at 570 nm
using an enzyme-linked immunosorbent assay (ELISA)
reader. All MTT assays were performed in triplicate.

Caspase-3 activity assay

Caspase-3 activity (CaspACE Assay System, Colormetric,
Promega, Madison, WI, USA) measurements were conducted
on cells grown under the previously stated conditions at a
concentration of 105 cells per milliliter. HA14–1 was added
to SudHL-4 cells to create a positive (induced apoptosis)
control. Z-VAD-FMK inhibitor was used at a final concen-
tration of 50 μM. A negative control was prepared using
untreated cells. Following a 23-h incubation period, the cells
were harvested and washed with ice-cold phosphate-buffered
saline (PBS) and resuspended in cell lysis buffer at a
concentration of 108 cells per milliliter. The cells were lysed
by freezing and thawing and then incubated on ice for
15 min. The cell lysates were centrifuged at 15,000×g for
20 min at 4°C and the supernatant fraction was collected
for use as cell extract. Replicate wells were prepared
according to the CaspACE assay system protocol and then
incubated for 4 h at 37°C. The absorbance was measured at
405 nm using an ELISA reader.

Cell lysate preparation

Cells were collected and washed twice with cold PBS and
then resuspended in cell lysis buffer at a concentration of
107 cells per milliliter. The cells were lysed by sonication.
Protein concentrations of cell extracts were measured using
the Bradford protein assay (BioRad Protein Assay, Hercules,
CA, USA).

Western blot analysis

Forty micrograms of protein from the prepared lysates was
resolved in a 12% sodium dodecyl sulfate polyacrylamide
gel electrophoresis gel using a BioRad minigel system.
Separated proteins were then transferred onto a nitrocellu-
lose film using a semidry transfer apparatus (BioRad). The
antibody dilutions and sources used for immunoblot
analysis are shown in Table 1. Protein bands were
visualized using Western Blotting Luminol Reagent (Santa
Cruz Biotechnology, Santa Cruz, CA, USA).

Densitometric analysis

Densitometric analyses of Western blots were performed
using ImageMaster Total Lab v1.11 (Amersham Pharmacia
Biotech, Uppsala, Sweden). p38 MAPK was used as
loading control for normalization.
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Statistical analysis

Statistical calculations were preformed for MTT assay to
determine standard error of mean representing three
separate experiments done in triplicate. Standard error of
mean was calculated using Excel software (Microsoft,
Redmond, WA, USA).

Results

HA14–1 decreases cell viability

To examine the effects of HA14–1 on the viability of
NHLs, we initially evaluated two cell lines with varying
Bcl-2 expression: SudHL-4 (Bcl-2 positive) and SudHL-5
(Bcl-2 negative) (Fig. 1). Preliminary experiments using
MTT assay showed that SudHL-4 cells demonstrated a

significant decrease in cell viability in response to HA14–1,
while the SudHL-5 were less sensitive. After a 24-h treatment
with 10 μM HA14–1, SudHL-5 cells demonstrated cell
viability of 80%, where as SudHL-4 cells showed a significant
reduction in viability at approximately 50% compared to
control (Fig. 2). For subsequent experiments, we focused our
studies on SudHL-4 cells.

SudHL-4 cells were treated with increasing concentra-
tions of HA14–1 for variable time points. HA14–1 decreased
the viability of SudHL-4 cells in a dose-dependent manner
(Fig. 3a), with an IC50 of approximately 10 μM at 24 h. A
notable reduction in cell viability (10% of control) occurred
at 2.5 μM at 6 h. Cell viability decreased with increasing
doses of HA14–1 of up to 15 μM, after which the response
leveled off to 20–40% of the control.

We also measured the viability of the cells treated with 5
and 10 μM of HA14–1 over a period of 72 h. HA14–1

Fig. 1 Basal Bcl-2 expression levels of two NHL cell lines visualized
by Western blot analysis as described in the “Materials and methods”
section. The level of Bcl-2 expression is high in SudHL-4 cells and
negligible in SudHL-5 cells with equivalent protein loading deter-
mined by BCA protein concentration assay. p38 was used as loading
control

Fig. 2 Cell viability measured by MTT assay of two NHL cell lines
treated with HA14–1. Each cell line was exposed to 5 and 10 μM of
the drug and analyzed after 24 h. The data represent the mean ±
standard error of mean of triplicate measurements. Similar data was
observed in two additional independent experiments

Antibody Source Dilution Company

Bcl-2 Mouse mono (1:1,000) Santa Cruz Biotechnology

Bcl-xl Rabbit poly (1:1,000) Upstate Biotechnology, Billerica, MA, USA

p38 Mouse mono (1:1,000) Cell Signaling Technology, Danvers, MA, USA

Bax Rabbit poly (1:1,000) Upstate Biotechnology

Mcl-1 Mouse mono (1:1,000) Santa Cruz Biotechnology

p27 Mouse mono (1:1,000) Santa Cruz Biotechnology

Bad Mouse mono (1:1,000) Cell Signaling Technology

Caspase 3 Mouse mono (1:1,000) Cell Signaling Technology

Phospho p44/42 Mouse mono (1:1,000) Cell Signaling Technology

p44/42 Mouse mono (1:1,000) Cell Signaling Technology

Phospho H2A Mouse mono (1:1,000) Upstate Biotechnology

Parp Mouse mono (1:1,000) Upstate Biotechnology

Phospho p38 Mouse mono (1:1,000) Cell Signaling Technology

Anti-Mouse IgG Donkey (1:1,000) Cell Signaling Technology

Anti-Rabbit IgG Goat (1:1,000) Cell Signaling Technology

Table 1 List of antibodies used
for the study
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resulted in a time-dependent decrease on the viability SudHL-
4 cells. At both concentrations, a decrease in cell viability was
seen as early as 6 h. The 10 μM dose consistently had a
twofold effect on the cells over the 5-μM dose. Cells treated
with 5 μM HA14–1 showed maximal growth inhibition at
54 h with viability approximately 60% of control, while cells
treated with 10 μM HA14–1 showed maximal growth
inhibition at 54 h with viability approximately 40% of control
(Fig. 3b).

HA14–1 induces caspase-3-mediated apoptosis

To determine the mechanism of HA14–1-mediated decrease
in cell viability, we performed Western blot analysis of
drug-treated SudHL-4 cells and evaluated the expression of
caspase-3. We observed a significant increase in full-length

caspase-3 protein levels at increasing concentrations and
duration of drug exposure.

Densitometric analysis of the Western blot showed a 2.6-
fold increase in caspase-3 levels after 6 h, and a 4.5-fold
increase after 24 h, in cells treated with 10 μM HA14–1
(Fig. 4a). Caspase-3 activity was also measured using the
CaspACE Assay System (Fig. 4b). We observed a 1.6-fold
increase in caspase-3 activity after 23 h compared to
control, which was abrogated by the pan-caspase inhibitor
Z-VAD-FMK.

Effect of HA14–1 on cell cycle and signaling proteins

Western blot analyses of Bcl-2 family proteins, and other
cell cycle associated proteins, were performed to determine
the molecular sequelae of HA14–1-induced apoptosis.
There was minimal change in the levels of either
phospho-p38 or phospho-p44/42, demonstrating that
HA14–1 did not affect p38 MAPK or p44/42 MAPK
pathways. From our experiments and other reports [26, 27],

Fig. 3 a Cell viability of SudHL-4 cells treated with various
concentrations of HA14–1, measured at variable time points by
MTT assay. Cells were exposed to increasing concentrations of
HA14–1 (1–50 μM) and viability evaluated at 6, 24, 54, and 72 h.
The data represent the mean ± standard error of mean of triplicate
measurements. b Cell viability of SudHL-4 cells treated with HA14–1
measured at various time points by MTT assay. Cells were exposed to
5 and 10 μM HA14–1 and viability evaluated at various time points.
The data represent the mean ± standard error of mean of triplicate
measurements

Fig. 4 a Western blot analysis of caspase-3 expression in HA14–1
treated SudHL-4 cells. SudHL-4 cells were exposed to 10 μM of
HA14–1 for 2, 6, and 24 h and expression of caspase-3 evaluated by
Western blot analysis as described in the “Materials and methods”
section with equivalent protein loading determined by BCA protein
concentration assay. Densitometric analysis was performed to deter-
mine relative expression of caspase-3 compared to control (C) and
represented in relative densitometric units (RDU). b Caspase activity
of HA14–1-treated SudHL-4 cells measured by the CaspACE Assay
System. SudHL-4 cells were exposed to 10 μM of HA14–1 for 23 h
and caspase-3 activity was evaluated. A pan-caspase inhibitor Z-VAD-
FMK was used to inhibit caspase-3 induction. The data represent the
mean ± standard error of mean of triplicate measurements. Induction
of caspase-3 activity observed at 23 h with 10 μM HA14–1 was
increased by 1.6-fold, but was not statistically significant
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p38 was shown to have consistent expression regardless of
exposure; thus, Western blots for p38 MAPK were used as
protein loading control (Fig. 5). In contrast, a twofold
down-regulation of Mcl-1 was seen when cells were treated
with 10 μM HA14–1 as early as 6 h, which was sustained

through 24 h (Fig. 5). Our results also show a sixfold up-
regulation of p27kip1 at concentrations of 5 μM spanning
from 2 to 24 h, but less significant up-regulation was
observed at 10 μM (Fig. 5). Bad also demonstrated an
increase in expression at 5 μM, with relatively minimal
change seen at 10 μM (Fig. 5). Bcl-xl and Bcl-2 proteins
both showed significant increase in expression throughout
all concentrations of drug treatment (Fig. 5). Bax levels
fluctuated throughout the treatments, with a slight increase
at short exposures and low dosage, but a slight decrease of
activity at longer exposures and higher doses of the drug
(Fig. 5).

Inverse relationship between Bcl-2 and Mcl-1 levels

To evaluate whether HA14–1 affects the expression of
other antiapoptotic proteins, we analyzed the basal levels
of Bcl-2 and Mcl-1 in two cell lines (Fig. 6). Expression of
Bcl-2 and Mcl-1 showed an inverse relationship. The cell
line exhibiting a high level of Bcl-2 expression (SudHL-4)
exhibited a low level of Mcl-1 expression. The cell line
with minimal Bcl-2 expression (SudHL-5) demonstrated a
high level of Mcl-1 expression. This trend was also
observed during HA14–1-induced apoptosis where levels
of Bcl-2 increased with concomitant decrease in Mcl-1,

Fig. 6 The inverse relationship between the expression of Bcl-2 and
Mcl-1 in SudHL-4 and SudHL-5 cells, shown by Western blot as
described in the “Materials and methods” section with equivalent
protein loading determined by BCA protein concentration assay. p38
was used as loading control

Fig. 5 Expressions of Bcl-2 family and cell cycle-associated proteins
in response to HA14–1. SudHL-4 cells were exposed to 5 and 10 μM
HA14–1 and total cell lysates were collected at 2, 6, and 24 h. The
expression of a p38, b Mcl-1, c p27kip1, d Bad, e Bcl-2, f Bcl-xl, and g
Bax were determined by Western blot analysis, as described in the
“Materials and methods” section, using appropriate antibodies listed in
Table 1, with equivalent protein loading determined by BCA protein
concentration assay. Densitometric analysis was performed to deter-
mine relative expression of the proteins compared to control (C) and
represented in relative densitometric units (RDU)

R
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suggesting that the expression of the two antiapoptotic
proteins may be inversely regulated (Fig. 5b, e).

Discussion

The antiapoptotic protein Bcl-2 represents a potential target
for therapy in many neoplasms including B-cell lymphomas.
In this study, we demonstrate the potential utility of HA14–1
as an inducer of cellular apoptosis in cell lines derived from
mature B-cell NHLs exhibiting varying levels of Bcl-2
expression. We demonstrate that HA14–1 induced the most
significant degree of apoptosis in the SudHL-4 cell line,
which represents a transformed follicular lymphoma that
overexpresses Bcl-2 as a result of the t(14;18) chromosome
translocation.

The small molecule, ethyl 2-amino-6-bromo-4-(1-cyano-
2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14–
1), functions as a Bcl-2 inhibitor by competitively blocking
the binding of proapoptotic molecules such as Bak and Bax
[16]. The therapeutic potential of HA14–1 has been
demonstrated for a variety of hematologic malignancies
including acute myeloid leukemia, acute lymphoblastic
leukemia, chronic lymphocytic leukemia, chronic myeloid
leukemia, and multiple myeloma [16, 17, 21–23]. Further-
more, synergistic effects with MEK/MAPK inhibitors [21,
28], cytarabine and CDK inhibitors [24], and flavopridol, as
well as the ability to sensitize tumor necrosis factor-related
apoptosis-inducing ligand-resistance cell lines [28], has
been demonstrated. Importantly, it does not affect the
viability of peripheral blood lymphocytes [29].

Our studies demonstrated that HA14–1 induced cellular
apoptosis of Bcl-2(+) NHL cells, exhibiting both dose- and
time-dependent characteristics. Cellular apoptosis was
mediated by caspase-3 activation as demonstrated by both
the caspase-3 activity assay and the Western blot analysis.
These data are consistent with previous observations [17].

Analysis of various cell cycle and signaling proteins in
HA14–1-treated SudHL-4 cells showed the up-regulation of
Bcl-2, Bcl-xL, p27Kip1, and Bad, while a down-regulation
of Mcl-1 was observed. The up-regulation of p27Kip1 may
indicate the presence of cells in G0/G1 growth arrest, which
accompanies cellular apoptosis. On the other hand, over-
expression of p27Kip1 itself has been shown to induce
apoptosis [16] and may be a mediator of HA14–1 activity.
The up-regulation of Bcl-2 was surprising and may be
explained by two possible events: First, Bcl-2 up-regulation
during apoptosis can be seen as a response to cellular
apoptotic signals, suggesting that even cells that constitu-
tively overexpress the Bcl-2 protein can further up-regulate
its expression in response to certain stimuli. Secondly, the
increased levels of Bcl-2 may represent the displaced Bcl-2
protein that may have a longer half-life within the cell.

Indeed, others have reported a similar increase in Bcl-2
during troglitazone (high-affinity ligand for peroxisome
proliferators-activated receptor-gamma) -mediated apopto-
sis [30].

Our data also showed that HA14–1 decreased the cell
viability of lymphoma-derived cell lines that did not express
Bcl-2 (SudHL-5), suggesting that HA14–1 may inhibit other
protein members of the Bcl-2 family. The mechanism by
which this occurs is unknown; however, it has been speculated
to involve the low-affinity interactions with other members of
the Bcl-2 family that possess the BH3-binding groove such as
Bcl-xL [16]. In this regard, the SudHL-5 cells do express
Bcl-xL (data not shown), which was down-regulated by
similar doses of HA14–1. Alternatively, the effect of HA14–
1 on SudHL-5 cells may be Bcl-2-independent and involve
cellular necrosis, an observation made by other investigators
in acute leukemic blasts [17, 23].

We observed an inverse relationship between the
expression of Bcl-2 and Mcl-1 proteins in the cell lines
analyzed. This reciprocal relationship between Bcl-2 and
Mcl-1 has been previously noted in both nonneoplastic
lymphocytes and in malignant lymphomas of B- and T-cell
derivation [2]. Of interest, our results suggest that NHL
cells may use one predominant member of the Bcl-2 family
for regulation of cell survival. Additional studies to
evaluate the interactions of HA14–1 and Bcl-2 family
proteins, along with a more comprehensive study of the
relationship between Bcl-2 and Mcl-1, may prove beneficial
in developing better therapies for B-cell NHLs.

Conflict of interest The authors declare that they have no conflicts
of interest.
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