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Identifying the relations among different regions of the brain is vital for a better

understanding of how the brain functions. While a large number of studies have

investigated the neuroanatomical and neurochemical connections among brain

structures, their specific findings are found in publications scattered over a large number

of years and different types of publications. Text mining techniques have provided the

means to extract specific types of information from a large number of publications with

the aim of presenting a larger, if not necessarily an exhaustive picture. By using natural

language processing techniques, the present paper aims to identify connectivity relations

among brain regions in general and relations relevant to the paraventricular nucleus of

the thalamus (PVT) in particular. We introduce a linguistically motivated approach based

on patterns defined over the constituency and dependency parse trees of sentences.

Besides the presence of a relation between a pair of brain regions, the proposed method

also identifies the directionality of the relation, which enables the creation and analysis of

a directional brain region connectivity graph. The approach is evaluated over the manually

annotated data sets of the WhiteText Project. In addition, as a case study, the method is

applied to extract and analyze the connectivity graph of PVT, which is an important brain

region that is considered to influence many functions ranging from arousal, motivation,

and drug-seeking behavior to attention. The results of the PVT connectivity graph show

that PVT may be a new target of research in mood assessment.

Keywords: text mining, natural language processing, connectivity relation extraction, neuroinformatics, brain

region connectivity graph, brain region dictionary, paraventricular nucleus of the thalamus, PVT

INTRODUCTION

Many studies have been conducted to identify the relations among brain regions in various
species and this information is already available in the free text of the biomedical literature, albeit
scattered in a large number of studies published over a sizable time period. Our aim is to propose
a linguistically empowered approach by using natural language processing (NLP) techniques to
automatically extract connectivity relations among brain regions from publications. By doing so,
we target with the present study to obtain neuroanatomical connectivity among brain structures
to be extended in subsequent studies to neurochemical and functional relations. After generating a
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map of connections, we will be in a position to automatically
extract a brain region’s relations and its effects onmany functions
such as arousal, motivation, depression and attention. As a case
study, we focus on a specific brain region, the paraventricular
nucleus of the thalamus (PVT), which belongs to midline and
intralaminar group of thalamic nuclei and is long considered to
have a non-specific effect on cortical arousal. Our main reason
for choosing PVT as a particular target of research is that recent
studies have begun to attribute more specific functions to this
group of thalamic nuclei because of their rich neuroanatomical
and neurochemical projections (Hsu and Price, 2009; Li and
Kirouac, 2012; Vertes et al., 2015).

Most previous studies on text mining in the biomedical
domain have focused on extracting information about proteins
and genes from scientific publications. Shared tasks such as
BioCreative (Krallinger et al., 2008; Arighi et al., 2011) and
BioNLP (Kim et al., 2009, 2011; Nédellec et al., 2013) have
boosted research in this area. Both rule-based (Fukuda et al.,
1998; Hur et al., 2009) and machine learning based methods
(McDonald and Pereira, 2005; Hsu et al., 2008) have been
proposed for identifying names of proteins/genes in scientific
texts. Several approaches ranging from entity co-occurrence
(Jelier et al., 2005; He et al., 2009) and pattern matching based
methods (Blaschke and Valencia, 2002) to more complex NLP
and/or machine learning based methods have been proposed for
extracting the relations among proteins (Giuliano et al., 2006;
Erkan et al., 2007; Fundel et al., 2007; Airola et al., 2008; Tikk
et al., 2010; Quan et al., 2014).

Developing text mining methods in the neuroinformatics
domain for identifying brain region entities and mining the
neuroanatomical relations among them is a relatively new
research topic, compared to the more widely studied areas
of biomedical text mining focusing on genes, proteins, and
diseases. Only a handful of studies have been conducted in
neuroscience text mining so far, most of which adapt and
extend the methods proposed in the well-studied area of protein-
protein interaction extraction. In the context of the Neuroscholar
system, which is one of the first studies tackling the use of
advanced NLP methods for neuroscience data mining, Burns
et al. (2008) extracted neuroanatomical information from tract-
tracing experiments with an F-Measure of 79% on identifying the
mentions of five types of neuroscience named entities related to
tract-tracing-experiments. They used conditional random fields
(CRF) with a feature set utilizing morphological, lexical, syntactic
and semantic information on a manually annotated corpus of
1047 sentences from 21 documents. French et al. (2009) had a
similar CRF based approach with a richer feature set and reported
92% precision and 86% recall on the task of identifying brain
region mentions in text. In their extended study, French et al.
(2012) have focused on the connectivity between the entities
and applied co-occurrence based methods and kernel-based
supervised machine learning methods, which have originally
been proposed for extracting protein-protein interactions. Tikk
et al. (2010) evaluated nine different kernel based methods on the
task of protein-protein interaction extraction and later on their
study became the base evaluation framework in different tasks
such as drug-drug interaction extraction (Segura-Bedmar et al.,

2011) and neuroanatomical relation extraction (French et al.,
2012, 2015; Richardet et al., 2015). French et al. (2012) reached
high recall and low precision with co-occurrence based methods,
whereas following the framework of Tikk et al. (2010) with the
shallow linguistic kernel they obtained 70.1% recall and 50.3%
precision values. Recently, within the WhiteText project aiming
at developing corpora and tools for extracting neuroanatomical
connectivity statements from text, French et al. (2015) tested
their approach on an enhanced corpus with new abstracts and
obtained similar findings with a precision of 51% and recall
of 67%. Richardet et al. (2015) built their research on this
approach by improving the kernels with filters and lexical rules
developed according to the sentence structures. The proposed
filters are mostly applied in order to remove the unlikely brain
region connections and the rules mainly depend on the surface
structures of the sentences such as the locations of the brain
regions in the sentences. Vasques et al. (2015) extended this work
to find the targets of a seed in tractography projects.

In the present paper, we propose a NLP based approach
for neuroanatomical relation extraction from neuroscience
publications. Unlike most previous neuroanatomical relation
extraction studies that aimed at utilizing supervised machine
learning based methods originally proposed for protein-protein
interaction extraction, we target developing a high-precision
knowledge-based linguistically motivated approach specifically
designed for the neuroscience domain. Different from the rule-
based method proposed in Richardet et al. (2015), which only
makes use of the surface structures of sentences; we utilize the
parse tree analyses of sentences. Our approach is based on using
predefined patterns for selecting the potential neuroanatomical
connectivity relation describing sentences and leveraging the
deeper syntactic analysis of the sentences, specifically the
constituency and dependency parse trees, for identifying the
related brain region entities. The brain region entities are
identified and normalized by utilizing a brain region dictionary
created in this study. We use theWhiteText corpus (French et al.,
2012, 2015) consisting of abstracts to develop and evaluate our
approach. In addition, we present our results on a manually
annotated corpus of 14 full text articles relevant to a specific
brain region (PVT). Finally, as a case study, we apply our method
to extract neuroanatomical relations from articles in PubMed
relevant to PVT. During the extraction of the relations, we also
focus on the direction of the relations, which allows us contribute
to the prior work with a directional connectivity graph between
the brain regions. The compiled brain region dictionary and
the manually annotated sentences in the full-text corpus are
additional contributions of our work and are made publicly
available for future neuroscience text mining studies.

MATERIALS AND METHODS

Data Preparation
Corpus
Two different corpora were used in this research. The first is
the WhiteText corpus that contains 3205 abstracts manually
annotated for brain region mentions and the interactions among
them (French et al., 2012, 2015). As done in the previous studies
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(French et al., 2012, 2015; Richardet et al., 2015), we only
considered the relations that are described in a single sentence,
and discarded the ones that span multiple sentences. We used
the first version of the corpus (French et al., 2012) consisting
of 1377 abstracts (containing 3097 connectivity relations) as
our development set, and the 1828 abstracts (containing 2111
connectivity relations) added to the second version of the corpus
(French et al., 2015) as our test set.

The second corpus that we compiled and used was PVT
specific. A list of 558 PVT related publications is retrieved from
PubMed by using the following query (on 14th of August, 2015).

“(“paraventricular”[All Fields] AND (“thalamic”[All Fields]
OR “thalamus”[All Fields]) AND (“nucleus”[All Fields] OR
“nuclei”[All Fields]) NOT “hypothalamus”[All Fields] NOT
“hypothalamic”[All Fields]) OR (“Paraventricular Thalamic
Nucleus”[All Fields] OR “paraventricular nucleus of thalamus”[All
Fields] OR “paraventricular nucleus of the thalamus”[All Fields]
OR “paraventricular thalamus”[All Fields])”

The PVT corpus is used in two different ways during the
evaluation. The abstracts of 451 publications (for which the full
text was not publicly available) and 107 publicly available full
text publications constituted the first data set and provided the
basis for our application on the PVT case study. Secondly, 14
of these full text papers were selected by neuroscience domain
experts and fully annotated with brain region mentions and
connectivity statements. These 14 papers were selected randomly
from a set of publications, which were known to be PVT related
and included review papers. As the annotation guideline, we
applied three steps. First, all brain region entities mentioned in
the articles were annotated without regard to connectivity. Then
all types of relations including neuroanatomical, neurochemical,
and functional connections were marked. Lastly, we identified
and evaluated only the neuroanatomical relations at the
sentence level, when the text specifically mentioned identifiable
connectivity between brain structures. Table 1 shows sample
sentences from the annotated PVT corpus. The PubMed IDs
of the publications in the PVT corpus, as well as the sentences
manually annotated for neuroanatomical connectivity relations
of the 14 full text papers are available as Supplementary
Materials1.

Creation of a Brain Region Dictionary
We used a dictionary-based approach to identify the brain
region entities that participate in neuroanatomical relations
and normalized their mentions to canonical (unique) names.
We constructed a dictionary of brain regions including their
acronyms and synonyms, where an acronym is the abbreviation
of the brain region entity and a synonym is a similar word or
phrase used for the same brain region entity in text. A portion of
the created dictionary with sample entries is shown in Table 2.

During the dictionary creation step, we initially gathered
a dictionary of 892 brain regions and 562 acronyms from
the NeuroNames ontology (Bowden and Dubach, 2003)

1https://github.com/erincgokdeniz/relation_extraction/tree/master/
PVTResearch/supplementary.

and NeuroLex (Larson and Martone, 2013), which is a
dynamic lexicon of neuroscience concepts. We expanded this
initial dictionary by including synonyms of brain regions
by investigating a set of neuroscience publications and
compiling the different usages of brain region mentions
in the neuroscience literature. We considered brain
region direction information such as anterior, posterior,
ventral, dorsal, rostral, and caudal during the dictionary
creation process. For instance, “anterior PVT” and
“PVT” are listed as separate brain region entities in our
dictionary.

The resulting enriched dictionary contains 3044 brain region
entities with their synonyms and acronyms. The created brain
region dictionary is made publicly available as Supplementary
Materials for future text mining studies2.

Neuroanatomical Relation Extraction
We developed a linguistically motivated knowledge-based
approach for neuroanatomical relation extraction. The workflow
of the proposed approach is shown in Figure 1. Automated
relation extraction in general relies on finding the correct
sentences that describe an interaction between brain regions.
For this purpose, as a first step, the publications (abstracts or
full text) were split into sentences. After feeding these sentences
into our system a list of candidate sentences, which might
contain relations were selected by using predefined patterns.
Then, NLP techniques were used to identify the brain regions
that are described as being related in these sentences. We used
the dependency and constituency parse trees of the sentences
and applied linguistic rules over these parse trees to extract the
portions of sentences that were likely to contain brain region
entities participating in a neuroanatomical relation, i.e., the
candidate brain region entities. Based on predefined patterns, we
also identified relation directionality by labeling the candidate
brain region entities as “agents” or “targets”. For example, from
a sentence like “X receives input from Y,” we obtained the
information that Y is the agent and X is the target of the relation,
i.e., the directionality of the relation is Y→X. In the relation
decision step, the candidate brain region entities were searched
in the brain region dictionary, and a neuroanatomical relation
was identified if the candidate agent and target were matched in
the dictionary. Finally, the agents and targets of the identified
neuroanatomical relations were normalized to their canonical
names using the brain region dictionary and a directional brain
region connectivity graph was created. The graph can be further
analyzed to generate new scientific hypotheses. The details of
each step in our method are described in the following sub-
sections.

Sentence Splitting
The Stanford Core NLP tool (Manning et al., 2014) was used for
splitting the publications into their sentences.

2 Supplementary Materials can be found at: https://github.com/erincgokdeniz/
relation_extraction/tree/master/PVTResearch/supplementary.
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TABLE 1 | Sample sentences from the annotated PVT corpus.

Sentence Brain Region 1 Direction Brain Region 2

These experiments confirm projections from Pa, Pt, and other midline

nuclei to the amygdala.

Pa → Amygdala

These experiments confirm projections from Pa, Pt, and other midline

nuclei to the amygdala.

Pt → Amygdala

In addition, we found that the aPVT was strongly innervated by the

ventral subiculum but this projection largely did not involve the pPVT.

aPVT ← Ventral subiculum

The paraventricular thalamus (PVT), a midline thalamic nucleus,

receives dense innervations from lateral hypothalamic orexin neurons

(Peyron et al., 1998; Kirouac et al., 2005) and is involved in the

regulation of cognition, anxiety, emotionality and addiction behaviors

(Huang et al., 2006; Li et al., 2009, 2010a,b, 2011).

PVT ← Hypothalamic orexin neurons

The first two sentences are from Hsu and Price (2009), the third sentence is from Li et al. (2014), and the last sentence is from Choi et al. (2012).

TABLE 2 | Sample entities from the Brain Region Dictionary.

Brain Region Acronyms Synonyms

Parietal lobe PL Parietal cortex, parietal region, lobus parietalis

Suprachiasmatic nucleus SCN Suprachiasmatic nuclei

Cingulate gyrus CgG Cingular gyrus, cingulate area, cingulate region, Gyri cinguli, Gyrus cinguli

Subthalamus SbTh Subthalamic region, ventral thalamus, thalamus ventralis

Parabrachial nucleus – Parabrachial nuclei, parabrachial

Paracentral nuclues PC Paracentral thalamic nucleus, nucleus paracentralis, paracentral nucleus of the thalamus, paracentral

Pattern-Based Sentence Selection
After preparing the data, the first phase of relation extraction was
to scan the publications and extract the sentences that contained
the predefined patterns. The extracted sentences at this step were
the first candidates that might include neuroanatomical relations
among brain regions.

We manually designed a set of patterns, which are
strings of keywords that mostly reveal a relation, when
there are two or more brain region entities in a sentence.
Some of the patterns that were used in this research are
“projection to, innervation of, receive input from, project
from, efferent from.” For example, the following sentence
contains a relation between the “dorsal midline thalamus” and
“accumbens nucleus” brain regions signaled by the pattern
“projection to.”

“An anterograde tracer injection into the dorsal midline thalamus

revealed strong projections to the accumbens nucleus.” (Hsu and
Price, 2009)

Neuroanatomical relations are in general signaled by pattern
keywords. Since each keyword can have different prepositional
suffixes (e.g., projection from, projection of, projection to) and
different tenses (e.g., projects to, projecting to, projected to),
regular expressions were used to cover the different usages
of the patterns. As shown in the below regular expression
for the pattern “project to,” the patterns were considered
to be case insensitive and are likely to contain additional

words between their original keywords (i.e., between “project”
and “to”).

(?i)project(ing|s|ed) {0, 1} ((\w)∗) {0, 2}to
The list of designed patterns and the corresponding regular

expressions are shown in Table 3. The sentences in the
publications that match these patterns (regular expressions) were
selected as candidate sentences and provided as input to the
relation extraction component described in the next sub-section.

Candidate Generation Using NLP Techniques
After generating the list of sentences, which were candidates
for hosting brain region relations, a detailed syntactic analysis
of each sentence was done. There were two dependents of the
patterns: agents and targets. If both of these dependents included
brain region entities, then we considered that there was a relation
between these entities. There could be more than one relation
within a given sentence, if dependents included more than one
brain region.

To be able to identify whether a dependent is an agent
or target, we needed the directionality of the relation and
this information was gathered directly from the patterns. For
example, for the patterns like “receive input from, projection
from, efferent from,” it is likely that the text string that follows
the pattern is agent. On the other hand, for the “project into,
innervate, terminate in” patterns, the same text reveals the target.

The Stanford Parser was used to syntactically parse the
sentences and obtain their constituent elements (Klein and
Manning, 2003). One of the dependents (agent or target)
in general occurred right after the pattern keyword. The
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FIGURE 1 | Steps to extract neuroanatomical relations.

constituency (phrase structure) parse tree is traced until we reach
the pattern and then we selected the first Noun Phrase (NP)
following the pattern in the bracketed notation of the parse tree.
After finding the NP, all of the leaves under this NP were used
to generate the candidate dependent. In Figure 2, a bracketed
notation of the parse tree for the “The suprachiasmatic nucleus
is well known to project densely to Pa in rats” sentence (taken
from Hsu and Price, 2009) is presented and in Figure 3 the tree
representation of the same sentence is shown. The identified NP
is enclosed in a box in these figures.

In some sentences, the prepositional phrase (PP) following
the detected NP modifies the NP and may contain candidate

TABLE 3 | List of the patterns that are used in the research.

List of Patterns

Innervate (?i)innervat(e|es|ing){1}

innervation of (?i)innervation(s){0,1} of

projection to (?i)projection(s){0,1} to

projection to from (?i)projection(s){0,1} to ((\\w+)\\s){0,8} from

projection of (?i)projection(s){0,1} of

projection target of (?i)projection target(s){0,1} of

projection from (?i)projection(s){0,1} from

projection from to (?i)projection(s){0,1} from ((\\w+)\\s){0,8} to

project to (?i)project(ing|s|ed){0,1} ((\w)*){0,2}to

project into (?i)project(ing|s|ed){0,1} ((\w)*){0,2}into

project from to (?i)project(s|ed|ing){0,1} from ((\\w+)\\s){0,8} to

receive input from (?i)receiv(e|es|ing|ed){0,1} ((\w)*){0,4}input(s){0,1}

((\w)*){0,3}(from)

receive fiber from (?i)receiv(e|es|ing|ed){0,1} ((\w)*){0,4}fiber(s){0,1}

((\w)*){0,3}(from)

receive innervation from (?i)receiv(e|es|ing|ed){0,1} ((\w)*){0,4}innervation(s){0,1}

((\w)*){0,3}(from)

receive [ae]fferent from (?i)receiv(e|es|ing|ed){0,1} ((\w)*){0,4}[ae]fferent(s){0,1}

((\w)*){0,3}(from)

traveling from to (?i)travel(s|ling){0,1} ((\w)*){0,2}from ((\w)*){0,5}to

exit through (?i)exit(s|ing){0,1} ((\w)*)*through

exit from (?i)exit(s|ing){0,1} ((\w)*)*from

FIGURE 2 | Bracketed Notation of Parse Tree for the sentence: “The

suprachiasmatic nucleus is well known to project densely to Pa in

rats.” The first noun phrase after the pattern (project to) is selected.

dependents for the relation. Therefore, if a detected NP was
followed by a PP, which contains the keyword “including,” then
it was also added as part of the candidate brain region text
(dependent). An example sentence is provided below.

“Studies in rats show that the caudal DR projects strongly to limbic
structures including the amygdala and hippocampus,...” (Hsu and
Price, 2009)

To find the first dependent (brain region candidate) that follows
the pattern keyword, we used the constituency parser. On the
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FIGURE 3 | Parse Tree for the sentence: “The suprachiasmatic nucleus

is well known to project densely to Pa in rats.” The retrieved candidate

dependent is “Pa in rats.”

other hand, for the second dependent, the text extraction phase
was more complex. The second dependent can be found in
different locations of the sentence. It can be at the beginning,
right before the pattern, or close to the end of the sentence after
the pattern. The dependency tree of a sentence can capture the
long-distance relations among its words. We used the Stanford
Dependency Parser (De Marneffe et al., 2006) to analyze the
dependency structures of the sentences and obtain the second
candidate dependent, which does not necessarily occur close to
the pattern. The output of the Stanford Dependency Parser is the
Stanford Dependencies representation, which is a description of
the grammatical relationships among the words in a sentence (De
Marneffe et al., 2006).

A dependency was considered as relation(governor-pos1,

dependent-pos2) where the governor and the dependent were
words in the sentence and pos1 and pos2 indicate the positions
of the two words in the sentence. Relation is one of the
50 grammatical relations defined in the Stanford Parser (De
Marneffe et al., 2006).

As the starting point of identifying the second dependent,
when a pattern was found in a sentence, one of the dependency
types below is searched in the dependency tree. The pattern
keyword in these types could be either governor or dependent.
The descriptions of all the dependency types can be found in the
Stanford Parser dependencies manual with sample sentences and
dependency trees3.

3Stanford Parser Dependencies Manual can be found at: http://nlp.stanford.edu/
software/dependencies_manual.pdf.

(1) Direct object (dobj)
(2) Nominal subject (nsubj)
(3) Passive nominal subject (nsubjpass)
(4) Controlling subject (xsubj)
(5) Noun Compound Modifier (nn)
(6) Reduced non-finite verbal modifier (vmod)

We worked on these grammatical relations under three
different groups according to the sentence structures as described
in the following sub-sections.

Relations where the pattern keyword is in

nsubj/nsubjpass/xsubj/nn relations
This rule set was applied for the pattern keywords that contain
nsubj, nsubjpass, xsubj, or nn type of relations. In these cases,
the governor/dependent that was found in this relation was
directly considered as a candidate brain region. Additionally, two
different rules were applied when the pattern keyword was found
in these relations.

1. If the pattern keyword was found as a dependent, then the
Prepositional Modifier (prep) of the governor was retrieved.
The dependent of the prep relation was selected as a candidate
brain region. Then the Adjectival Modifier (amod) or Noun
Compound Modifier (nn) relations are also gathered as parts
of the candidate brain region.

2. If the pattern keyword was found as a governor, all the
relations that contained the dependent as a governor were
selected. The dependents of these relations are retrieved as
candidate brain regions. A portion of the dependency tree for
a sample sentence, for which this rule applies, is presented in
Figure 4. The extracted relations and candidate brain regions
from this sentence are presented below.

Sentence: “This topography is consistent with findings in rats, in
which the external lateral parabrachial subnucleus projects strongly
to the anterior paraventricular thalamic nucleus (Pa), and less so
to the middle and posterior paraventricular thalamic nucleus –
(Pa)(Krout and Loewy, 2000).” (Hsu and Price, 2009)

Relations: nsubj(projects-17, subnucleus-16), det(subnucleus-16,
the-12), amod(subnucleus-16, external-13), amod(subnucleus-
16, lateral-14), nn(subnucleus-16, parabrachial-15)

The candidate brain regions were returned in sorted order by
their positions in the sentence:

the-12, external-13, lateral-14, parabrachial-15,
subnucleus-16.

Special case for nsubj where the pattern keyword is in dobj
This specific case was an extension of the rule set described in
the previous subsection for nsubj relations that had a pattern
keyword in a Direct Object (dobj) relation. Our candidate
brain region detection algorithm started by finding the pattern
keyword in a dobj relation type. Then, the governor of the dobj
relation was searched as the governor of a Nominal Subject
(nsubj) relation. The dependent of the nsubj relation was taken as
a candidate brain region. Differently from the other nsubj cases
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FIGURE 4 | Dependency Tree for the sentence: “This topography is consistent with findings in rats, in which the external lateral parabrachial

subnucleus projects strongly to the anterior paraventricular thalamic nucleus (Pa), and less so to the middle and posterior paraventricular thalamic

nucleus (Pa)(Krout and Loewy, 2000).”

(described in the previous subsection), in this case, the nsubj
relation did not need to contain the pattern keyword.

Additionally, this rule was extended to consider the modifiers
of the nominal subject. Each dependent retrieved from a nsubj
relation, was searched in the Adjectival Modifier (amod), Noun
Compound Modifier (nn), and Prepositional Modifier (prep)
relations as a governor. If such a relation was identified, the
dependent of the relation wasmarked as a candidate brain region.
Lastly, all identified candidate brain region words were returned
in sorted order based on their sentence position information.

A portion of the dependency tree of the following sample
sentence is shown in Figure 5.

Sentence: “An anterograde tracer injection into the dorsal midline
thalamus revealed strong projections to the accumbens nucleus,
basal amygdala, lateral septum, and hypothalamus.” (Hsu and
Price, 2009)

Relations: dobj(revealed-10, projections-12), nsubj(revealed-10,
injection-4), amod(injection-4, anterograde-2), nn(injection-4,
tracer-3), prep_into(injection-4, thalamus-9), amod(thalamus-9,
dorsal-7), amod(thalamus-9, midline-8)

The candidate brain regions were returned in sorted order by
their positions in the sentence:

anterograde-2, tracer-3, injection-4, dorsal-7, midline-8,
thalamus-9.

Relations where the pattern keyword is a vmod
This group of rules first found the vmod relations where
the pattern keyword was a dependent. In the next step,
the complementary relations Adjectival Modifier (amod) or
Noun Compound Modifier (nn) involving the governor of the
identified vmod relation were retrieved. If any relation was found
in this step, the dependent of the relation was retrieved as a
candidate brain region. A sample sentence and the retrieved
candidate brain regions are presented below.

Sentence: “Here, we combined neuronal tract-tracing using the
retrograde tracer cholera toxin b (CTb) with Fos expression to
examine the effect of acute nicotine administration on orexin

neurons projecting to the basal forebrain or PVT.” (Pasumarthi and
Fadel, 2008)

Relations: vmod(neurons-30, projecting-31), nn(neurons-30,
orexin-29)

The candidate brain regions were returned in sorted order by
their positions in the sentence:

orexin-29, neurons-30.

Relation Decision
After the candidate generation phase (Section Candidate
Generation Using NLP Techniques), the identified candidates
were searched in the Brain Region Dictionary, in which a brain
region (BR) was represented with its name, acronyms, and
synonyms. A neuroanatomical relation was extracted, if at least
two different brain region entities werematched in the dictionary,
and one of them had the role of agent, whereas the other had the
role of target. For the success of the dictionary matching process,
we applied several steps as described below.

First we checked whether there was a full match between
the agent/target and the dictionary entity (Step 1 in Table 4). If
there was no match, this might have meant that the agent/target
consisted of more than one brain region. Therefore, we split
the text into strings from the conjunctions “and” and “or,” and
the punctuation marks “comma” and “semicolon” (Step 2 and
Step 3.a in Table 4; i.e., “the NAS, PFC, and amygdala” text was
split as “NAS,” “PFC,” and “amygdala”). In addition, for each text
string, there was a post-processing step, which removed some
commonly used words like “of,” “the,” “area,” and “part.” If there
was still no match for that text string, two more steps were
applied. First, a substring search for this text string was done
in all dictionary entities and the candidates were retrieved and
secondly this text string was split into tokens from the spaces
and then each token is searched in the brain region dictionary
separately (Step 3.b in Table 4).

After finding the brain regions from the dictionary, only the
longest version of the overlapping brain regions were selected.
For example, if “thalamus” and “midline thalamus” are matched
in the dictionary for a candidate brain region, then we selected
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FIGURE 5 | Dependency Tree for the sentence: “An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the

accumbens nucleus, basal amygdala, lateral septum, and hypothalamus.”

TABLE 4 | Relation decision phase using the dictionary on the annotated dataset.

Step Candidate Agent/Target Annotated BRs Available Entities Matching

found by the Application in publication in Dictionary Type

1 Text: “thalamus”

Candidate Brain Regions: thalamus

Thalamus thalamus Full Match

2 Text:

“the NAS, PFC and amygdala”

Candidate Brain Regions:

NAS

PFC

amygdala

NAS

PFC

Amygdala

NAS

PFC

Amygdala

Full Match

3 Text:

“dorsal thalamus and SCN”

dorsal midline thalamus

SCN

dorsal midline thalamus

thalamus

midline thalamus

SCN

Full Match for SCN

3.a Candidate Brain Regions:

(tokenization by “and”)

dorsal thalamus

SCN

No match for dorsal thalamus

3.b Candidate Brain Regions:

(tokenization by space)

dorsal

thalamus

Partial match for thalamus

“midline thalamus” as the extracted brain region. “Thalamus” was
not selected, since it overlaps with “midline thalamus,” which is a
longer match.

As the last step of relation extraction we defined whether
the extracted brain regions were “full match” or “partial match”
when compared with the annotated data set. If an extracted
brain region matched only a part of the brain region in the
annotated sentence, this was considered as a partial match.
For example, assume that the application retrieved “thalamus”
as a brain region and the manually annotated brain region
text in the sentence was “dorsal midline thalamus.” In this
case, the extracted brain region was considered as a partial
match and the evaluation results were shown as “Lenient” in
Section PVT case study, which meant that the extracted brain
region might have been equal to or part of the annotated brain
region.

Evaluation Approach
We used the precision, recall, and F-measure metrics to
evaluate our relation extraction approach. The automatically
extracted neuroanatomical connectivity relations (i.e., pairs
of brain region entities) are compared with the manually
annotated (gold standard) pairwise neuroanatomical
relations. Precision is defined as the proportion of
correctly retrieved neuroanatomical relations (i.e., true
positives) to all the relations that the application retrieves
(i.e., sum of true positives and false positives), whereas
recall is defined as the proportion of correctly retrieved
neuroanatomical relations (i.e., true positives) to all the
neuroanatomical relations in the gold standard annotation
(i.e., sum of true positives and false negatives). F-
Measure is the harmonic mean of the precision and recall
values.
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Comparison with Previous Work Using the WhiteText

Corpus
We used the WhiteText corpus in order to compare our results
with the previous studies (French et al., 2012, 2015; Richardet
et al., 2015) that used the same data set processed with the
abbreviation expansion algorithm of Schwartz andHearst (2003).
We processed the original abstracts obtained from PubMed
using the same abbreviation expansion algorithm. In addition,
French et al. (2012, 2015) and Richardet et al. (2015) evaluated
their connectivity relation extraction methods by providing
the gold standard brain region mentions as input. Therefore,
instead of using our brain region dictionary, we used the gold
standard brain region mentions provided in the annotations of
the sentences in the WhiteText corpus. For instance, for the
sampleWhiteText annotation shown below, the candidate agents
and targets identified by our approach were matched against
“spinal trigeminal nucleus” and “cochlear nucleus” in the relation
decision phase. The same matching strategy described in Section
Relation Decision was used. Partial matches were also considered
as correct.

<entity id=“WhiteTextUnseenEval.d5917.s0.e0” text= “spinal
trigeminal nucleus”. />
<entity id=“WhiteTextUnseenEval.d5917.s0.e1” text=
“cochlear nucleus”.. />
<pair interaction=“True” e1= “WhiteText...s0.e1”
e2=“WhiteText..s0.e0” />

The WhiteText corpus has been provided as two different data
sets in time. In French et al. (2009, 2012), the first data set
with 1377 annotated abstracts were shared, and then 1828
more abstracts were provided as the second data set of the
WhiteText corpus (French et al., 2015). Richardet et al. (2015)
also used the first data set during their research. In our approach
(Linguistically Motivated Approach) we used the first data set
while developing our system to improve the patterns and the
NLP techniques that we applied, whereas the second data set with
1828 abstracts was only used as a test set. The second data set
contains 2111 true connectivity relations. In these relations, there
are also some interactions that include the same entities more
than once in a sentence. Since we provided one pair for each
sentence with the same entities in our application, we removed
the redundant records from the evaluation. The total number of
true-interactions that were used as gold standard was 1898.

Experiments for the PVT Case Study
For the PVT case study, we have two different evaluation sets.

In the first evaluation, connectivity relation extraction results
are given for 14 full text publications, which are manually
annotated by domain experts. Rather than using the manually
annotated gold standard brain region mentions as done during
the evaluation over the WhiteText corpus, we used our
dictionary for identifying the brain regions that participate in the
connectivity relations.

In the second evaluation, to provide automated extraction
results on the PVT corpus, which consists of 558 publications, we
executed our application on the abstracts of the 451 publications
(the full text of which are not publicly available) and 107 full text

publications (which are publicly available). We further used the
output of this evaluation on connectivity graph generation.

Evaluation of Directionality Identification
The accuracy of our approach for finding the directionality
of the connectivity relations was computed by considering
the true positive relations extracted by our system. Accuracy
was computed by calculating the proportion of true positive
relations with correctly identified directionality to all true
positive relations retrieved by our system.

RESULTS

Evaluation on the WhiteText Corpus
Table 5 summarizes the results of our “linguistically motivated
approach” and the results of the previous studies obtained on the
WhiteText corpus. The corresponding data set information used
by each study for evaluation is also shown.

The total number of true-interactions that were used as gold
standard in theWhiteText corpus test set (2nd data set) was 1898.
We extracted 360 relations by using our application and 277 of
these relations were true positives, whereas we misinterpreted
83 of these relations. Overall, the precision on the test set was
76.94% with a recall level of 14.59%. The only previous study
that used the same data set is the study of French et al. (2015),
which obtained 51% precision and 67% recall by using the
Shallow Linguistic Kernel (SLK) originally proposed for protein
interaction extraction by Giuliano et al. (2006). As one of the aims
of our study, we achieved higher precision by using a knowledge-
based approach compared to the kernel-based machine learning
approach.

Additionally, Table 5 shows the results for the WhiteText
corpus first data set, which contains 1377 abstracts and 3097
relations. Our application extracted 709 relations, where we
had 536 true-positives, and 173 false-positives. This evaluation
corresponded to 75.60% precision and 17.31% recall. Similarly
to the WhiteText corpus second data set, the study of French
et al. (2012) obtained 70.10% recall and 50.30% precision by
using the SLK. On the same data set, Richardet et al. (2015)
provided their results for different combination of Kernel, Filters
and Rules. In Table 5, Kernel represents the machine learning
model (i.e., the Shallow Linguistic Kernel), the Ruta rules are
the ones that are manually crafted on the Apache UIMA Ruta
workbench (Kluegl et al., 2014), and filters are the custom
filters like discarding some sentences. By applying the kernel-
based approach only, they improved the results of French et al.
and obtained 60% precision with %68 recall. Their rule-based
approach obtained 72% precision and 12% recall. Being a rule-
based method targeting higher precision at the expense of recall,
the rule-based method of Richardet et al. (2015) is the most
similar one to ours. The rules in Richardet et al. (2015) are
defined over the surface forms of the sentences. On the other
hand, our rules utilize the syntactic and dependency parse trees
of sentences leading to both higher precision and higher recall
values. Richardet et al. (2015) achieved their highest precision of
82% by combining their three approaches (i.e., kernel, filter, and
rules). However, this lowered recall to 7%.
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TABLE 5 | Evaluation Results on the WhiteText Corpus of the proposed Linguistically Motivated Approach and the previous related studies.

Precision (%) Recall (%) F-Measure (%)

Linguistically Motivated Approach—2nd dataset (1828 abstracts) 76.94 14.59 24.53

(French et al., 2015)—2nd dataset (1828 abstracts)

Shallow Linguistic Kernel (SLK) 51.00 67.00 57.92

Linguistically Motivated Approach—1st dataset (1377 abstracts) 75.60 17.31 28.17

(French et al., 2012)—1st dataset (1377 abstracts)

Shallow Linguistic Kernel (SLK) 50.30 71.10 58.30

(Richardet et al., 2015)—1st dataset (1377 abstracts)

Kernel (SLK) 60.00 68.00 64.00

Ruta Rules 72.00 12.00 21.00

Filter–Kernel 66.00 19.00 29.00

Kernel–Rules 81.00 10.00 18.00

Filter–Kernel–Rules 82.00 7.00 12.00

Using a knowledge-based approach came with more accurate
results with the cost of missed relations when it is compared
with the semi-automated or fully automated machine learning
techniques. Therefore, comparing our approach with the Kernel
results of French et al. (2012, 2015) and Richardet et al. (2015),
the precision we obtained was higher, whereas the recall was
lower. On the other hand, comparing with rule based approach
of Richardet et al. (2015), we achieved higher recall, since we had
more fine-grained rules at the linguistic level.

PVT Case Study
A particular point of interest and a motivating factor in our
undertaking the present study was due to a bottom-up view
of depression proposed by one of us (Canbeyli, 2010, 2013).
Briefly, it was proposed that mood and depressive symptoms
can be modulated by varying the intensity, duration and quality
of stimulation by means of sensory input via visual, auditory,
taste and olfactory systems, among others, as well as physical
exercise. This bottom-up approach, in contradistinction to the
more established account of depression and its therapies by top-
down processes, is able to integrate a large body of evidence
from studies that have manipulated depression by sensorimotor
modulation in animal models of mood and depression and
offers a new avenue of potential treatments for depression
in humans. Canbeyli (2013) proposed a circuitry for the
integration of bottom-up sensorimotor peripheral input to the
neurocircuitry underlying depression in humans and animals
with “top-down”—potentially more cognitive influences—from
the neocortex. The amygdala in particular was proposed as a key
element in the nexus of the top-down and bottom-up processes.
While the amygdaloid complex is a critical component of the
neurocircuitry of depression, it is remarkable that the PVT,
particularly with its connections to lower brainstem structures
involved in visceromotor input and its connections to the
amygdala, the infra- and pre-limbic cortices as well as the
subgenual cingulated gyrus area, is also in a position to integrate
the bottom-up sensorimotor influences. As the PVT connectivity
graph and the following discussion will show, PVT may be a new
target of research in mood assessment.

Evaluation on the Annotated PVT Corpus
For the evaluation of the PVT case study, we used the 14manually
annotated full texts, which were PVT specific publications.

As the output of the Relation Extraction phase (Section
Neuroanatomical Relation Extraction), we generated the
candidate relation pairs constructed of the agents and targets.
The brain region dictionary we created (Section Creation
of a Brain Region Dictionary) was used to validate the
existence of brain region entities in the texts of the agents
and targets. Therefore, the impact of a comprehensive
dictionary was very high on the accuracy of the evaluation
results.

The manually annotated data set of PVT from the 14
publications used in the present study contained 322 relations:
97 of these relations did not have any of our predefined patterns
(Table 3) in their corresponding sentences. Therefore, they were
already missed, since the corresponding sentences were not
selected as candidates for further processing. In the light of this
information, themaximum level of recall that our approach could
reach was 69.88%.

Using NLP techniques, our application extracted 161 relation
candidates out of 225 “pattern-including” relations. When we
compared each relation candidate with the annotated data set,
the number of full matches was 107 and the number of partial
matches was 15, whereas the number of incorrect predictions
was 20. For the remaining 19 relation candidates, we evaluated
the results in two different ways. These 19 candidates included
the agents and the targets and were matching with the brain
region entities in the brain region dictionary. This meant that we
hit a relation with correct brain regions; therefore we evaluated
these values as full or partial matches. We shared these results
as NLP-based results in Table 6. On the other hand, during
the annotation process, these relations were found to be too
generic or ambiguous and eliminated depending on the sentence
structure. In this second approach they were considered as
incorrect predictions and were given as part of Strict and Lenient
evaluations.

The following sentence contained three of these 19 relations.
Our application retrieved the relation candidates “PVT”-“PFC,”
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TABLE 6 | PVT case study evaluation.

Precision Recall F-Measure

(%) (%) (%)

Strict (Full Match) 66.43 33.23 44.30

Lenient (Full Match + Partial Match) 75.78 37.89 50.52

NLP-based 87.58 43.79 58.39

“PVT”-“NAS,” and “PVT”-“AMG” and they are likely to refer to
a relation. However, these relations were considered either too
generic or ambiguous, and therefore, have not been manually
annotated in the data set.

“.., it appears likely that there are no substantial differences in the
degree to which stress activates PVT neurons that innervate the
PFC, NAS and AMG.” (Bubser and Deutch, 1999)

Actually, this is one of the core points that we would like to
highlight with automated relation extraction. Using different
techniques, we can automatically extract brain region relations,
but this is still an input for further evaluation and domain
knowledge is crucial to turn this input to valuable information.
We consider this NLP-based evaluation as also valuable and share
it in addition to the Strict and Lenient results. Table 6 shows
these evaluation results by classifying them as Strict Comparison,
which is the full-match of brain regions from the dictionary,
Lenient Comparison, which is the full matches and partial
matches of the brain regions, and lastly NLP-based comparison,
which additionally includes the true-positive relations that the
application finds, but not annotated by domain experts.

When we compared and evaluated the WhiteText and PVT
corpora, we reached two conclusions. Firstly, recall value was
higher with the PVT corpus, and the main reason was the
percentage of the sentences that we could match with the
patterns. For the WhiteText corpus, the maximum recall that we
could reach was 57.7%, whereas for PVT annotated corpus it was
69.88%. Thus, the PVT corpus contained more relations aligned
with the patterns.

Secondly, the precision values of the patterns were similar
across the two data sets. Although the patterns were tuned based
on the WhiteText corpus, they could effectively be applied to
other data sets in this domain with precision levels of at least
70–75%.

Lastly, the total number of document-level unique relations
was computed by eliminating the duplicate relations occurring in
the same document so that a pair of brain regions was extracted
only once from the document. Out of 322 relations in the 14
annotated papers, the total number of relations that are unique
at document-level was 237. Only 7 of these 237 relations were in
the abstract part of the publications, which meant that only 3%
of the relations were available in the abstracts within this corpus.
Using full text publications instead of abstracts mostly assured to
obtain more relations to be extracted. A strength of our system is
that it obtained the same success level on full text documents as
well as on abstracts.

TABLE 7 | Top brain regions as agent or target in a relation.

Brain Region Agent Target Total

PVT 92 75 167

Locus coeruleus 39 23 62

Nucleus accumbens 8 47 55

Suprachiasmatic nucleus 30 18 48

Amygdala 10 29 39

TABLE 8 | Top Relations that are automatically extracted from PVT Corpus.

Agent Target Number of Relations

PVT Nucleus accumbens 23

PVT Prefrontal cortex 13

Suprachiasmatic nucleus PVT 10

PVT Amygdala 8

PVT Medial prefrontal cortex 6

The PubMed IDs of the 14 annotated PVT papers and the
annotated sentences are shared as Supplementary Materials.
Considering that some of the publications are not publicly
available, the publications are not fully provided.

Full PVT Corpus and Connectivity Graph
We ran our application for the data set which consisted of
558 publications (451 abstracts and 107 full text publications)
and 811 relations were extracted from this corpus including
343 different brain regions. Further analysis on the relations
showed that PVT was the target of 75 relations, and the source
of 92 relations. Table 7 shows the top five brain regions with
the highest number of total relations and Table 8 shows the five
most frequent relations that are extracted from the PVT data
set. It is not surprising that PVT is the most highly connected
brain region in this corpus, since the corpus was created from
publications relevant to PVT. The other highly connected brain
regions in this PVT specific corpus are locus coeruleus, nucleus
accumbens, suprachiasmatic nucleus, and amygdala. Besides
nucleus accumbens and amygdala, prefrontal cortex and medial
prefrontal cortex are other brain regions frequently occurring as
targets in a PVT connectivity relation in the literature. On the
other hand, suprachiasmatic nucleus occurs more frequently as
an agent.

In Figure 6, we applied these 811 relations to a connectivity
network graph. The brain regions are defined as nodes and the
edges between them represent the literature-mined connectivity
relations. For each connectivity mention extracted between a pair
of brain regions from the literature, an edge is added between the
corresponding nodes. The higher the number of edges is between
two nodes in the graph, the more connectivity mentions between
the corresponding pair of brain regions were extracted from
the publications. We use a color map where green and yellow
represent low edge counts for a node, whereas orange and red are
used for higher edge counts for a node. The nodes of the graph
grew larger according to the edge count. Similarly, for the edge
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color mapping we used edge betweenness. The edge betweenness
of an edge is defined as the number of the shortest paths between
pairs of nodes that run along it (Girvan and Newman, 2002).
High edge betweenness score means that if this edge is removed,
it will have a high impact on the connections between the nodes.

While creating the graph, the agents and the targets were
matched with the unique entities in the dictionary.

Various versions of the connectivity graph (with the arrows
showing the direction or with different network analysis styles)
are given as Supplementary Materials.

Directionality of the Relations
One of the contributions of our research to existing works was to
define the direction of the relations.

As mentioned in the Relation Decision section, we defined a
rule for each pattern that determines the direction of the relation.
During the test phase of the WhiteText and PVT corpora, in
addition to agent and targets we also added the directionality
information as the output. The accuracy of the directionality
prediction approach is shown in Table 9.

From the second dataset of theWhiteText corpus, we obtained
277 true positive relations out of 360. In addition to extracting
277 relations correctly, the accuracy of the directions was
calculated as 100%, which is also validated by one of the authors
(RC)4. Since the remaining 83 false positive relations were already
misclassified, we did not check their directionalities. The results
also showed that 205 of these directions were from the first brain
region mention to second brain region mention, and 72 of the
predicted directions were from the second one to the first one.
So, a majority classifier baseline classifying each direction from
the first brain region mention to the second would obtain an
accuracy of 74%, which is considerably lower than the accuracy
achieved by our approach.

For the annotated PVT corpus, 122 out of 322 relations were
retrieved.When we evaluated the directionality of these relations,
119 out of 122 were predicted correctly which corresponds to an
accuracy of 97.54%. As shown in Table 7, PVT, locus coeruleus,
and the suprachiasmatic nucleus were the main agents initiating
the projections. On the other hand, PVT, nucleus accumbens, and
amygdala were the main targets in these connectivities.

DISCUSSION

A major aim of the present study was to provide a new approach
in text mining to chart out neuroanatomical connections of
a specific brain structure. We have presented a linguistically
motivated approach to extract neuroanatomical connectivity
relations from scientific publications by using NLP techniques.
Our approach leverages the constituency and dependency parse
trees of sentences and defines the agents and the targets by also
providing the directionality of the relations.

The strength of our approach comes from the patterns and
rules that are defined over the parse trees of the sentences. The

4The manually annotated directions for the true positive relations extracted from
the WhiteText and PVT corpora are available as supplementary files as well as
in Github repository: https://github.com/erincgokdeniz/relation_extraction/tree/
master/PVTResearch/supplementary.

selection criteria for the patterns heavily depend on the individual
success of each pattern to lead to a relation.We use the patterns to
identify candidate sentences for further processing and relation
extraction. A limitation of our approach is that only relations
from sentences that match one of our predefined patterns can
be extracted. On the other hand, whenever a pattern is found in
a sentence, it is very likely that a relation extracted after further
processing is correct. Therefore, our expectation from the present
study was to obtain high precision and low recall values. We
preferred to have a target of at least 60% precision level for each
pattern, and as a consequence, the maximum recall value that our
application could reach was approximately 70% (on the PVT data
set). It is up to the researchers to define the optimum level for
their evaluations. In this study, our goal was to design a high
precision system so that many false positive relations are not
included in the brain region connectivity graph, which could lead
to incorrect interpretations.

Most previous studies on connectivity extraction among
brain regions from text used machine learning based methods
originally proposed for extracting protein-protein interactions.
French et al. (2012) evaluated seven kernel functions for the
task of brain region connectivity extraction, which have been
benchmarked for protein-protein interaction extraction by Tikk
et al. (2010). On the WhiteText corpus all-paths graph kernel
(Airola et al., 2008) and k-band shortest path spectrum kernel
(Tikk et al., 2010), which make use of the dependency parses
of sentences, obtained similar performances to the Shallow
Linguistic Kernel (SLK) (Giuliano et al., 2006), which only uses
shallow linguistic information including surface forms of words,
word lemmas, and part-of-speech tags. The other evaluated
kernel functions, namely subset tree kernel (Collins and Duffy,
2001), partial tree kernel (Moschitti, 2006), spectrum tree kernel
(Kuboyama et al., 2007), and subtree kernel (Vishwanathan and
Smola, 2004) are based on the constituency parses of sentence.
These functions obtained significantly lower scores than the first
three kernel functions both in terms of precision (lower than
45%) and recall (lower than 26%) (French et al., 2012). These
results are in agreement with the ones reported for the task
of protein-protein interaction extraction by Tikk et al. (2010),
where SLK obtained 47.5% precision and 54.5% recall over the
commonly used AIMED data set, and performed similarly to the
dependency tree based kernel functions, which achieved superior
performance compared to the constituency parse tree based
kernel functions. The results by Tikk et al. (2010) and French
et al. (2012) do not reveal a clear strength in using dependency
and constituency analysis in a kernel based supervised machine
learning set-up, since SLK obtains better or similar performance
compared to the kernel functions that are based on deeper
syntactic analysis. On the other hand, our study shows that using
dependency and constituency parsing improves performance
in a rule-based set-up for brain region connectivity extraction.
Richardet et al. (2015) extended the study by French et al. (2012),
with Ruta rules (Kluegl et al., 2014) and custom filters. Ruta
rules, which were manually crafted on the Apache UIMA Ruta
workbench (Kluegl et al., 2014) according to the structures of
the sentences, obtained precision of 72.00% and recall of 12.00%
on the WhiteText corpus. Our rule-based approach, which
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FIGURE 6 | PVT Connectivity Graph: With Color Mapping of edge count on nodes and edge betweenness on edges.

TABLE 9 | Accuracy of the direction prediction for each corpus.

Corpus Number of True Relations Number of Relations Number of Correctly Accuracy (%)

in the Corpus Examined for Direction Identified Directions

WhiteText corpus 1898 277 277 100.00

PVT Corpus (14 annotated publications) 322 122 119 97.54

utilizes deeper linguistic analysis of sentences, achieved higher
precision (75.60%) and higher recall (17.31%) than the rule-based
approach of Richardet et al. (2015), and higher precision than the
kernel based machine-learning methods in French et al. (2012,
2015) and Richardet et al. (2015) at the cost of lower recall.
Although Richardet et al. (2015) achieved the highest precision of
82.00% by combining the machine learning approach with rules
and filters, this resulted in a significantly lower recall level of 7%.

Additionally, by using the predefined patterns to find the
agent and the target, we were able to make a contribution
on a missing feature of prior work on relation extraction:
directionality of the relation. According to the grammatical
structure of the sentences and the pattern usages, we identified
the relation directionality between the brain regions and the
overall accuracy of extracted directions was more than 97%.

In the PVT case study, we used a dictionary-based approach
while extracting the brain regions from publications. It is known
that in the neuroscience literature brain region entities are
not used in a unique and standardized way. There are several
different names of each brain region and the corresponding
abbreviations may vary. Using brain region mentions directly
without normalizing them to canonical brain region names
would result in redundant entities (nodes) that referred to
the same brain region in the connectivity graph. By using a
dictionary, we accepted the possible loss on finding all the brain

regions from the texts, but on the other hand we leveraged
the dictionary usage on the connectivity graph by providing
canonical names for the brain regions.

A decision point for us was whether to use the existing
ontologies or to create our own dictionary. Before constructing
the dictionary, we investigated the existing brain ontologies.
Brain Architecture Management System (BAMS) (Bota and
Swanson, 2008) is an ontology that includes brain regions
and their relations for rats. Neuroscience Information
Framework Standard Ontology (Bug et al., 2008) and Textpresso
(Muller et al., 2008) are also comprehensive resources on the
neuroscience domain. These ontologies are very helpful to have
a standard consistent terminology of the brain regions with their
acronyms and synonyms. A disadvantage of these ontologies is
that they are not specifically defined for text mining purposes.
Relevant publications do not commonly use brain region names
as they are referred to in these ontologies. For example, while
most of the brain regions in these ontologies are given with
“nucleus” attached to the structures, in the publications the
authors can omit the term “nucleus” (e.g., “dorsomedial” is
used instead of “dorsomedial nucleus”). Another example is
the usage of “caudal DR” in the publications instead of “caudal
dorsal raphe,” which is the form that occurs in most available
ontologies. Secondly, authors may prefer to use different
acronyms instead of the widely used acronyms of the brain
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regions. For example, BrainInfo portal5 which contains the
NeuroNames knowledgebase, uses “PV” and “PVT” as acronyms
of paraventricular nucleus of the thalamus, whereas in some
publications “Pa” is used as an acronym for the same brain
region Hsu and Price (2009). French and Pavlidis (2012) and
Richardet et al. (2015) showed that creating dictionaries by
expanding the brain region names in the existing ontologies by
including synonyms gathered from the literature improves recall
in named entity recognition and normalization. We followed a
similar approach to these previous studies and created a brain
region dictionary by including synonyms that we manually
compiled from the literature for the brain region names in
the NeuroNames ontology (Bowden and Dubach, 2003) and
NeuroLex (Larson and Martone, 2013). Since we needed to
obtain the anatomical directions during the text mining process,
we created the brain region entities in the dictionary with the
direction information such as anterior, posterior, ventral, dorsal,
rostral, caudal, etc.

During the relation extraction phase, we faced several
difficulties. One was related to the WhiteText corpus. This
manually annotated corpus was considered as gold standard
for the first evaluation phase of our research. Since this corpus
is enhanced with the abbreviation expansion algorithm, we
also needed to use the same approach. Schwartz and Hearst
Abbreviation Expansion Algorithm (Schwartz and Hearst, 2003)
is used for this purpose and it requires the replacement of the
short forms of the abbreviations with their long forms. The
short form is also added right after the long form. We skipped
this step on the PVT case study, since the abbreviations were
already included as part of the brain region dictionary under
the rubric of acronyms. Another challenge while extracting the
relations was the ambiguity when brain regions are used in
the text with conjunctions (e.g., “dorsal and ventral cortex” or
“basolateral and basomedial nuclei of the amygdala”).We initially
decided to evaluate these phrases as one brain region entity,
since theWhiteText corpus considered such phrases as one brain
region mention. For the PVT corpus, we needed to remove
the conjunction and create two different brain region entities
from these mentions. After the implementation of this phase,
we noticed that the overall precision was reduced due to false
positives, hence, we kept ambiguity resolution as a project for
future work.

An additional aim of the present study was to provide
by means of a connectivity graph an overview of the
neuroanatomical connectivity relations of PVT that may suggest
potentially new functions for the midline thalamic structure.
As demonstrated in Figure 6, PVT has far reaching direct
connectivity with a large number of brainstem, subcortical and
cortical structures. These neuroanatomical connections have yet
to be adequately interpreted in terms of potential functions
that may be served by subcircuits involving a more restricted
number of PVT connections. Nevertheless, there is a growing
realization that the PVT is not merely a component of a general
behavioral arousal mechanism or a stress circuitry (Bubser and
Deutch, 1999; Vertes et al., 2015), but is likely to be critically

5http://www.braininfo.org,

involved in more specific functions. Our PVT case study listed
SCN (suprachiasmatic nucleus) and nucleus accumbens among
the brain regions with central roles in a PVT specific connectivity
graph (Tables 7, 8). Recent studies in the literature support
this hypothesis by suggesting new functions for PVT based on
its connectivity. It has been suggested that PVT may be an
important factor in sleep/wake cycles because it is connected
with hypothalamic structures such as the SCN (suprachiasmatic
nucleus) and dorsomedial hypothalamus and receives strong
orexigenic projections from the hypothalamus (Colavito et al.,
2015). Furthermore, due to its prominent relationship with the
nucleus accumbens, PVT has been investigated in connection
with reward mechanisms and drug addiction (Matzeu et al.,
2014).

In the light of the vast connectivity uncovered by our present
study, we hope that there may be more interest in delineating
neuroanatomical subcircuits involving the PVT as potential
substrates for various functions. Toward that goal, we hereby
propose in outline form a PVT circuitry that we hope to
elucidate in a future article that may be underlying a mood
modulatory mechanism. Briefly, our analysis of PVT connections
has uncovered a strong connectivity between the PVT and several
structures known to be involved in mood and depression in
both humans and animals. As demonstrated in Tables 7, 8 and
Figure 6, PVT has its strongest connection (i.e., highest number
of connectivity mentions in the literature) with SCN. It is also
connected with the nucleus accumbens, the amygdaloid complex
and the extended amygdala that includes the bed nucleus of
the stria terminalis (BNST) and the ventromedial prefrontal
cortex. Along with other functions that they may share, these
structures are also involved in mood and depression especially
as indicated by studies on animal models of depression. Thus,
depression as measured by forced swimming in rats is reduced
with SCN (Tataroğlu et al., 2004), aggravated by BNST lesions
(Schulz and Canbeyli, 2000; Pezuk et al., 2008), while stimulation
of the ventromedial prefrontal cortex reduces depression in
both humans (Koenigs and Grafman, 2009) and rats (Hamani
et al., 2010). Animal studies also indicate that disruption of
the nucleus accumbens results in anhedonia, which is a major
symptom of depression in both humans and animals (Willner,
1990; Russo and Nestler, 2013). Despite such evidence, there
is a paucity of studies that have directly addressed the issue
of PVT involvement in depression. In the only relevant study
so far, Zhu et al. (2011) have shown that co-increase in c-
fos positive neurons in the PVT and the central nucleus of
the amygdala (CE) in rats subsequent to forced swimming rats
may indicate that PVT neurons are engaged in acute depressive
events.

In our study, we have focused on automated connectivity
relation extraction of brain regions in the neuroscience domain.
Hence, our defined patterns and rules might not be generic
enough to be used in other domains such as Protein-Protein and
Gene-Disease interactions. This is considered as a possible future
work. Similarly to previous studies on brain region connectivity
extraction (French et al., 2012, 2015; Richardet et al., 2015),
our patterns and rules operate on sentence-level. Relations that
span multiple sentences are not tackled. French et al. (2012)
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showed that the description of around 27% of the connectivity
relations cross sentence boundaries in the WhiteText corpus.
Addressing the extraction of such relations by utilizing anaphora
resolution techniques is an interesting and useful future direction
for research. Additionally, the current research identifies only
the neuroanatomical connectivity relations of the brain regions
(circuitry). As future work, the chemical connections between
brain regions (neurotransmitters) and the functional connections
(by the attributed cognitive function of the relation) will be our
focus of interest.
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