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ABSTRACT
Background Availability of checkpoint inhibitors has 
created a paradigm shift in the management of patients 
with solid tumors. Despite this, most patients do not 
respond to immunotherapy, and there is considerable 
interest in developing combination therapies to improve 
response rates and outcomes. B7- H3 (CD276) is a member 
of the B7 family of cell surface molecules and provides an 
alternative immune checkpoint molecule to therapeutically 
target alone or in combination with programmed cell 
death- 1 (PD- 1)–targeted therapies. Enoblituzumab, 
an investigational anti- B7- H3 humanized monoclonal 
antibody, incorporates an immunoglobulin G1 fragment 
crystallizable (Fc) domain that enhances Fcγ receptor- 
mediated antibody- dependent cellular cytotoxicity. 
Coordinated engagement of innate and adaptive immunity 
by targeting distinct members of the B7 family (B7- H3 and 
PD- 1) is hypothesized to provide greater antitumor activity 
than either agent alone.
Methods In this phase I/II study, patients received 
intravenous enoblituzumab (3–15 mg/kg) weekly 
plus intravenous pembrolizumab (2 mg/kg) every 3 
weeks during dose- escalation and cohort expansion. 
Expansion cohorts included non–small cell lung cancer 
(NSCLC; checkpoint inhibitor [CPI]–naïve and post- CPI, 
programmed death- ligand 1 [PD- L1] <1%), head and neck 
squamous cell carcinoma (HNSCC; CPI- naïve), urothelial 
cancer (post- CPI), and melanoma (post- CPI). Disease 
was assessed using Response Evaluation Criteria in Solid 
Tumors version 1.1 after 6 weeks and every 9 weeks 
thereafter. Safety and pharmacokinetic data were provided 
for all enrolled patients; efficacy data focused on HNSCC 
and NSCLC cohorts.
Results Overall, 133 patients were enrolled and 
received ≥1 dose of study treatment. The maximum 
tolerated dose of enoblituzumab with pembrolizumab at 

2 mg/kg was not reached. Intravenous enoblituzumab 
(15 mg/kg) every 3 weeks plus pembrolizumab (2 mg/kg) 
every 3 weeks was recommended for phase II evaluation. 

Key messages

What is already known on this topic
 ► Enoblituzumab, an anti- B7- H3 monoclonal antibody 
is well tolerated and associated with encouraging 
tumor shrinkage in patients with non–small cell lung 
cancer (NSCLC), head and neck squamous cell car-
cinoma (HNSCC), melanoma, and bladder cancer on 
a phase I trial.

 ► We hypothesized that combination therapy of 
enoblituzumab and pembrolizumab would result 
in coordinated engagement of innate and adaptive 
arms of the immune system to maximize tumor  
regression in select solid tumors.

What this study adds
 ► The results of this phase I/II study demonstrate 
that dual immunotherapy with the combination of 
enoblituzumab and pembrolizumab have an accept-
able safety profile and robust activity in patients with 
checkpoint inhibitor- naïve metastatic NSCLC (36% 
overall response rate [ORR]) and recurrent/meta-
static HNSCC (33% ORR).

How this study might affect research, 
practice, or policy

 ► Further studies are required to confirm these prelim-
inary results and to eventually compare efficacy and 
toxicity outcomes of this dual immunotherapy with 
other currently approved immunotherapy- based 
combinations in patients with advanced CPI- naïve 
NSCLC and HNSCC.

http://bmjopen.bmj.com/
http://dx.doi.org/10.1136/jitc-2021-004424
http://dx.doi.org/10.1136/jitc-2021-004424
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2021-004424&domain=pdf&date_stamp=2022-04-12
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Treatment- related adverse events occurred in 116 patients (87.2%) 
and were grade ≥3 in 28.6%. One treatment- related death occurred 
(pneumonitis). Objective responses occurred in 6 of 18 (33.3% [95% CI 
13.3 to 59.0]) patients with CPI- naïve HNSCC and in 5 of 14 (35.7% [95% 
CI 12.8 to 64.9]) patients with CPI- naïve NSCLC.
Conclusions Checkpoint targeting with enoblituzumab and 
pembrolizumab demonstrated acceptable safety and antitumor activity in 
patients with CPI- naïve HNSCC and NSCLC.
Trial registration number NCT02475213.

INTRODUCTION
The availability and approval of immune checkpoint 
inhibitors (CPIs), particularly antibodies blocking the 
programmed cell death (PD)- 1 pathway, have changed 
the treatment paradigm for multiple advanced solid 
malignancies, including melanoma, non–small cell lung 
cancer (NSCLC), head and neck squamous cell carcinoma 
(HNSCC), and bladder cancer. While only 20%–40% of 
patients derive benefit from immunotherapy,1 however, 
and there remains considerable interest in developing 
combination therapies to improve response rates and 
outcomes. Combination chemotherapy with PD- 1 inhibi-
tion has emerged as a promising approach for patients 
with NSCLC, gastric, and, to a lesser extent, HNSCC.2–6 
However, similar benefit from combining chemotherapy 
with immunotherapy has not been demonstrated in 
other malignancies.6 The toxicity profile observed from 
the combination of chemotherapy and immunotherapy 
underscores the continued need for safer combination 
regimens with improved tolerability. Dual checkpoint 
blockade with PD- 1 and cytotoxic T- lymphocyte antigen 
(CTLA)- 4 inhibition is another approach that has been 
evaluated in NSCLC, RCC, and melanoma. This approved 
combination is associated with improved response rates 
compared with CPI monotherapy, but there is a high 
rate of treatment- related adverse events (TRAEs, 96% all 
grades and 55% grade 3/4) and immune- related adverse 
events (irAEs, 88% all grades and 40% grade 3/4).7

B7- H3 (CD276) is a member of the B7 family of cell 
surface molecules that also includes CTLA- 4 ligands B7- 1 
(CD80) and B7- 2 (CD86) and programmed death- ligands, 
PD- L1 (B7- H1) and PD- L2 (B7DC). B7- H3 provides an 
alternative immune checkpoint molecule to therapeuti-
cally target alone or in combination with PD- 1- targeted 
therapies.8–10 B7- H3 expression has been demonstrated 
on antigen- presenting cells (APC), but it is limited or 
absent in most normal tissue.11 In contrast, high B7- H3 
expression is observed on solid tumors, with expression 
detectable on malignant epithelial cells, the tumor vascu-
lature, and subsets of infiltrating immune cells. While 
the receptor for B7- H3 is unknown, numerous immuno-
modulatory roles, predominantly inhibitory, have been 
described for B7- H3.11 12 In addition to its role in immune 
modulation, B7- H3 also promotes pro- tumorigenic func-
tions such as tumor migration, invasion, metastases, resis-
tance, and metabolism.11 12

B7- H3 has been shown to inhibit T- cell activation and 
cytokine production,13 14 and B7- H3 expression on tumor 

cells is generally thought to convey protection from 
immune attack by natural killer (NK) and cytotoxic T 
cells. Consistent with its potential role in mediating tumor 
immune evasion, B7- H3 expression is associated with 
adverse clinical outcomes, including poor survival across 
multiple cancer types including NSCLC and HNSCC.15 16 
In murine tumor models, the combination of anti- B7- H3 
and PD- 1 pathway- targeting monoclonal antibodies 
(mAbs) provides greater antitumor control than that 
achieved by either agent alone, suggesting independent 
pathways of tumor immune evasion.9 10 The observation 
that therapeutic response to anti- PD- 1 therapy is rela-
tively limited in patients with NSCLC expressing B7- H3 
compared with the higher response rate observed in 
those who are B7- H3 negative provides further support to 
evaluate combined targeting of B7- H3 and PD- 1.9

The broad surface expression of B7- H3 on many 
malignant neoplasms, such as hepatocellular carci-
noma, pancreatic cancer, prostate cancer, osteosarcoma, 
breast cancer, colorectal cancer, and ovarian cancer, and 
minimal expression on normal tissues provide a useful 
therapeutic window.17 Enoblituzumab (MGA271) is a 
humanized, fragment crystallizable (Fc)- optimized anti- 
B7- H3 mAb, with an Fc region engineered for increased 
affinity to the activating Fcγ receptor (FcγR)IIIA (CD16A) 
and decreased affinity for the inhibitory FcγRIIB (CD32B) 
to potentially enhance Fc- mediated activities including 
antibody- dependent cell- mediated cytotoxicity (ADCC).18 
A phase I clinical trial of 179 patients demonstrated that 
enoblituzumab monotherapy was well tolerated, with 
no dose- limiting toxicity (DLT) and no maximum toler-
ated dose (MTD) defined at a dose of up to 15 mg/kg 
weekly. Disease stabilization (>12 weeks) and tumor 
shrinkage (2%–69%) were seen across several tumor 
types, including melanoma, prostate cancer, bladder 
cancer, breast cancer, clear cell renal carcinoma, NSCLC, 
and HNSCC.19 In addition, a phase II neoadjuvant pros-
tate cancer trial (NCT02923180) demonstrated that CD8 
T- cell density in prostatectomy samples was significantly 
higher in enoblituzumab- treated patients compared with 
age- matched and stage- matched untreated prostatectomy 
controls.20

We hypothesized that combination therapy with 
enoblituzumab and pembrolizumab would improve 
tumor control by targeting two independent checkpoint 
pathways resulting in coordinated engagement of innate 
and adaptive arms of the immune system to maximize 
tumor regression. We conducted a phase I/II study of 
enoblituzumab in combination with pembrolizumab in 
patients with advanced solid tumors.

METHODS
Cell culture
Peripheral blood mononuclear cells (PBMCs) were sepa-
rated by Ficoll (GE Healthcare) density gradient centrif-
ugation from healthy donor whole blood (StemExpress, 
Maryland). SAS (human tongue squamous carcinoma 
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cell line) was obtained from Accegen (New Jersey) and 
maintained in the laboratory. Cells were cultured in 
RPMI 1640 medium with L- glutamine (Thermo Fisher 
Scientific) supplemented with 10% fetal bovine serum 
(Thermo Fisher Scientific), 10 mM HEPES buffer (Sigma- 
Aldrich), and penicillin- streptomycin (Thermo Fisher 
Scientific). Recombinant human IL- 2 (rhIL- 2, Pepro-
tech) was supplemented as indicated.

Antibody-dependent cellular cytotoxicity
PBMCs (3×105/well) were cocultured with SAS target 
cells at a 30:1 ratio in the presence of serial titration of 
enoblituzumab or control mAb in a 96- well plate. Culture 
supernatant was collected at 24 hours for the measure-
ment of cytotoxicity using CytoTox cytotoxicity assay kit 
(Promega).

In vitro PBMC activation
Coculture of PBMCs and SAS target cells  
(effector:target=20:1) was stimulated with enoblituzumab 
(0.05, 0.5, 5 µg/mL) alone or in combination with anti- 
PD- 1 (0.2 µg/mL) in culture medium supplemented with 
20 µg/mL of interleukin- 2 in a 96- well plate. Culture 
supernatant and cells were collected at different time 
points for cytokine ELISA and FACS analysis, respectively. 
At day 6 of culture, cells were restimulated with phorbol 
myristate acetate/ionomycin using Cell Activation Cock-
tail (BioLegend) overnight to assess the capacity of 
immune cells to produce interferon gamma (IFN-γ). 
Golgistop (BD Biosciences) was added to the culture 
overnight before the intracellular IFN-γ measurement.

Flow cytometry
The following antibodies were used: antihuman CD3- 
FITC or V500, CD4 PerCP- Cy5.5, CD8 FITC or V450, 
CD56 PE or BV510, IFN-γ APC, PD- L1 APC, and mIgG1 
APC isotype control (all from BD Biosciences). Cell 
surface staining was performed by incubating cells with 

mAbs for 30 min at 4°C in FACS staining buffer (BD 
Biosciences) followed by 2 times washing with phosphate- 
buffered saline. For intracellular staining, surface stained 
cells were fixed and permeabilized using fixation/
permeabilization buffer (Thermo Fisher Scientific) and 
stained with anti- IFN-γ mAb according to the manufac-
turer’s instructions. Samples were resuspended in FACS 
buffer and acquired using a LSRFortessa flow cytometer 
(BD Biosciences) with FACSDiva software and analyzed 
using FlowJo software (FlowJo). For FACS data analysis, 
doublets were excluded using forward scatter height and 
width properties and dead cells were excluded by FVD780 
(Thermo Fisher Scientific) positive staining.

IFN-γ ELISA
The level of IFN-γ in culture supernatant was measured 
by ELISA (R&D Systems) following the manufacturer’s 
instruction.

Study design and patient population
This multicenter, phase I/II, open- label, dose- escalation, 
and cohort expansion study investigated the safety, phar-
macokinetics (PK), pharmacodynamics, immunogenicity, 
and antitumor activity of enoblituzumab in combina-
tion with pembrolizumab in patients with advanced 
solid tumors. This study enrolled patients with multiple 
tumor types in a dose- escalation phase to determine the 
MTD or maximum administered dose (MAD) of the 
combination, followed by a cohort expansion phase in 
patients with melanoma, NSCLC, HNSCC, and urothelial 
cancer (figure 1). The cohorts of patients with HNSCC 
and NSCLC included patients who had received prior 
anti- PD- 1–containing or anti- PD- L1–containing therapy 
and patients who had never received prior anti- PD- 
1–containing or anti- PD- L1–containing therapy. Safety 
and PK data are summarized for all enrolled patients; 

Figure 1 Trial design. HNSCC, head and neck squamous cell carcinoma; NSCLC, non–small cell lung cancer; PD- 1, 
programmed cell death- 1; PD- L1, programmed death- ligand 1.
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preliminary efficacy data focus on patients with HNSCC 
and NSCLC owing to limited responses in other tumor 
types.

Patients were required to be ≥18 years of age with histo-
logically proven, locally advanced or metastatic disease 
that was measurable per Response Evaluation Criteria 
in Solid Tumors (RECIST) version 1.1. Patients had to 
have good Eastern Cooperative Oncology Group perfor-
mance status (0 or 1) and acceptable end- organ func-
tion. Disease- specific prior therapy requirements for dose 
escalation required that patients had disease progres-
sion during or following at least one and up to five prior 
therapeutic regimens. Dose escalation proceeded using 
a conventional 3+3+3 approach,21 and the MTD was 
defined as the dose level at which <33% of patients expe-
rienced a DLT during cycle 1. If none of the first three 
patients treated at a given dose level experienced a drug- 
related DLT, three additional patients were to be treated 
with the higher dose level. If one of the first three patients 
treated at a given dose level experienced a drug- related 
DLT, three additional patients were to be treated at the 
same dose level. If one of these additional three patients 
(corresponding to two of the six patients enrolled in the 
cohort) experienced a drug- related DLT, three addi-
tional patients were to be treated at the same dose level 
(for a total of nine patients). If none of these additional 
three patients (corresponding to one of the six patients 
enrolled in the cohort) experienced a drug- related DLT, 
three additional patients were to be treated with the 
higher dose level. The MTD for MGA271 in combination 
with pembrolizumab was considered to be exceeded if two 
or more patients out of the first three patients treated at 
a given dose level, or at least three of six patients treated 
at a given dose level, or at least three out of nine patients 
treated at a given dose level experienced a drug- related 
DLT, and all subsequent patients were to be treated at 
the next lower dose level. In the dose- escalation phase, 
three to nine patients were to be enrolled in each dose 
cohort. Per protocol, during the dose- expansion phase, 
up to 16 patients each were to be enrolled into melanoma 
and urothelial expansion cohorts, respectively, up to 40 
patients were to be enrolled into the NSCLC cohorts, and 
up to 40 patients were to be enrolled into the HNSCC 
cohorts.

Patients with HNSCC were enrolled in two separate 
cohorts (up to 20 patients each) based on prior receipt 
of anti- PD- 1/PD- L1 therapy. In each of the two HNSCC 
cohorts, at least 10 patients were required to be human 
papilloma virus (HPV)- positive, and patients in both 
cohorts were required to have experienced disease 
progression after receiving first- line platinum- based 
systemic therapy. Patients with NSCLC had to have 
disease progression after receiving first- line histology- 
specific platinum doublet therapy. Patients with NSCLC 
with known activating driver mutations in EGFR or ALK 
had to have disease progression after the appropriate 
targeted therapy. All patients in the HNSCC expansion 
cohort had PD- L1 tumor expression levels assessed by 

immunohistochemistry, either on archival or new tissue 
biopsy samples, but determination of PD- L1 expres-
sion was not required prior to enrollment. Patients with 
NSCLC were enrolled in two separate cohorts (up to 20 
patients each) depending on prior receipt of anti- PD- 1/
PD- L1 therapy. PD- 1/PD- L1–naïve patients were required 
to have a PD- L1 tumor positivity score <1% (Dako 22C3 
antibody), assessed prior to enrollment.

Prospective determination of B7- H3 expression was 
not required for enrollment in the expansion phase; 
however, formalin- fixed paraffin- embedded tissue 
samples or unstained slides were obtained and B7- H3 
expression determined by immunohistochemistry 
staining using a sponsor- developed assay (Covance, Los 
Angeles, California, USA). B7- H3 positivity was defined 
as ≥2+ membrane staining (with or without cytoplasmic 
staining) in ≥10% of cancer cells and/or extensive 
staining (2+ and/or 3+) in ≥25% of associated tumor 
vasculature (figure 2).

Treatment and assessments
Enoblituzumab was administered intravenously over 
2 hours once weekly at prospectively planned doses 
of 3 mg/kg, 10 mg/kg, and 15 mg/kg (MAD in the 
phase I monotherapy trial) in the dose- escalation 
phase. During the cohort expansion phase, enoblitu-
zumab was administered at the MTD established from 
the dose- escalation phase of the study in 6- week cycles 
during cycle 1, and 9- week cycles thereafter. Pembroli-
zumab was administered intravenously at a dose of 2 
mg/kg over 30 min every 3 weeks, which was the stan-
dard dose at the time of study conception. Treatment 
with the combination could be continued for up to 
12 cycles (2 years) or until disease progression, an 
adverse event (AE) or concurrent illness necessitating 

Figure 2 B7- H3 staining. (A) HNSCC PR 2+/3+ membrane/
epithelial staining, specifically HNSCC anti- PD- 1/PD- 
L1–naïve patient #17; (B) NSCLC PR 3+ membrane staining, 
specifically NSCLC anti- PD- 1/PD- L1–naïve, PD- L1 TPS <1% 
patient #12. Arrows indicate endothelial staining; arrowheads 
indicate membrane staining. B7- H3 positivity was defined 
as ≥2+ membrane staining (with or without cytoplasmic 
staining) in ≥10% of cancer cells and/or extensive staining 
(2+ and/or 3+) in ≥25% of associated tumor vasculature. 
HNSCC, head and neck squamous cell carcinoma; NSCLC, 
non–small cell lung cancer; PD- 1, programmed cell death- 1; 
PD- L1, programmed death- ligand 1; PR, partial response; 
TPS, tumor positivity score.
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discontinuation, withdrawal of consent, protocol non- 
adherence, or pregnancy.

Safety was monitored from the time of first administra-
tion of either study drug through the end- of- treatment 
visit or 28 days after the last dose of either drug. AEs 
were graded according to the National Cancer Institute 
Common Terminology Criteria for Adverse Events version 
4.03. irAEs were recorded, and management guidelines 
were outlined in the protocol, requiring treatment inter-
ruption or discontinuation based on grade and duration 

of the event. Blood samples were collected for determina-
tion of immunogenicity (anti- enoblituzumab antibodies) 
and enoblituzumab PK at specified time points for each 
cycle.

Concentrations of enoblituzumab in human serum 
were measured using ELISA with a lower limit of quanti-
fication of 62.5 ng/mL. Individual patient PK parameters 
were derived by non- compartmental analysis using the 
WinNonlin PK analysis program (Phoenix 64 WinNonlin, 
version 8.0, Certara, Princeton, New Jersey). PK analyses 
after the first dose (cycle 1/day 1 [C1/D1]) and after 
multiple dosing (C2/D1), dose proportionality assess-
ment, and the relationship between total body clearance, 
volume of distribution at steady state, and serum terminal 
elimination half- life (t1/2) and dose were conducted.

Response was assessed by CT or MRI at the end of 
cycle 1 (week 6) and every 9 weeks thereafter, with a 
confirmatory scan at a minimum of 4 weeks after the 
first documentation of a complete response (CR) or 
partial response (PR). Overall response rate (ORR) and 
best overall response were determined by conventional 
RECIST version 1.1 and protocol- defined immune- 
related response criteria adapted from principles of 
immune- related response criteria published in 200922; 
patient management was based on these protocol- defined 
immune- related response criteria. Duration of response 
(DOR) was calculated from the time of initial response 
(CR or PR) documentation (in patients with a subse-
quent confirmation of objective response) to the time 
of progressive disease or death, whichever occurred first. 
Patients were followed for survival up to 96 weeks after 
the last dose of either drug.

The evaluation of response using immune- related 
response criteria was based on the following definitions.

Immune-related complete response
Disappearance of all target lesions. Any pathological 
lymph nodes (whether target or non- target) must have 
reduction in short axis to <10 mm.

Immune-related partial response
At least a 30% decrease in the sum of diameters of target 
lesions, taking as reference the baseline sum diameters.

Immune-related progressive disease
At least a 20% increase in the sum of diameters of target 
lesions, taking as reference the smallest sum on study (this 
includes the baseline sum if that is the smallest on study). 
In addition to the relative increase of 20%, the sum must 
also demonstrate an absolute increase of at least 5 mm.

Unlike conventional RECIST criteria, the appearance 
of new measurable lesions does not automatically denote 
disease progression under immune- related response 
criteria. Rather, the dimensions of new measurable 
lesions are added to the overall sum of tumor diameters 
for determination of objective response status. Patients 
will not be considered as having progression unless the 
new overall sum of diameters has increased by ≥20% from 

Table 1 Baseline characteristics

Characteristic
Total
(N=133)*

Age, years, median (range) 65 (21–88)

Race, n (%)

  White 118 (88.7)

  Black 9 (6.8)

  Other 4 (3.0)

  Asian 1 (0.8)

  American Indian/Alaskan native 1 (0.8)

ECOG performance status, n (%)

  0 41 (30.8)

  1 91 (68.4)

  2 1 (0.8)

No. of prior therapies, median (range)

  All patients (N=133) 2 (0–6)

  NSCLC anti- PD- 1/PD- L1–naïve† (n=14) 1 (0–5)

  NSCLC prior anti- PD- 1/PD- L1† (n=21) 2 (0–4)

  HNSCC anti- PD- 1/PD- L1–naïve† (n=18) 1 (0–3)

  HNSCC prior anti- PD- 1/PD- L1† (n=19) 3 (0–5)

  Urothelial cancer† (n=17) 2 (0–4)

  Cutaneous melanoma† (n=13) 3 (0–6)

NSCLC PD- 1/PD- L1–naïve cohort, n 14

  Histological subtype, n (%)‡

   Squamous 7 (50)

   Non- squamous 7 (50)

  Prior TKI, n (%)‡ 1 (7)

*Of the 133 patients enrolled and treated, 12 were in the escalation 
phase and 121 in the expansion phase. Overall, there were 16 patients 
treated in the NSCLC anti- PD- 1/PD- L1–naïve cohort, 25 in the NSCLC 
prior anti- PD- 1/PD- L1 cohort, 21 in the HNSCC anti- PD- 1/PD- L1–
naïve cohort, 24 in the HNSCC prior anti- PD- 1/PD- L1 cohort, 21 in the 
urothelial cancer cohort, 14 in the cutaneous melanoma cohort, and 
12 patients with other tumor types.
†Response- evaluable patients. There was a total of 19 patients not 
evaluable for response, with 2 in the NSCLC anti- PD- 1/PD- L1–naïve 
cohort, 4 in the NSCLC prior anti- PD- 1/PD- L1 cohort, 3 in the HNSCC 
anti- PD- 1/PD- L1–naïve cohort, 5 in the HNSCC prior anti- PD- 1/PD- 
L1 cohort, 4 in the urothelial cancer cohort, and 1 in the cutaneous 
melanoma cohort.
‡Percentages are calculated over 14 total NSCLC PD- 1/PD- L1–naïve 
patients.
ECOG, Eastern Cooperative Oncology Group; HNSCC, head and neck 
squamous cell carcinoma; NSCLC, non–small cell lung cancer; PD- 1, 
programmed cell death- 1; PD- L1, programmed death- ligand 1; TKI, 
tyrosine kinase inhibitor.
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the smallest sum of tumor diameters achieved while on 
study.

Immune-related stable disease
Neither sufficient shrinkage to qualify for partial response 
nor sufficient increase to qualify for progressive disease, 
taking as reference the smallest sum of diameters while 
on study.

End points
The primary study objective was determination of the 
MTD or MAD. Efficacy end points included ORR; 
progression- free survival (PFS; time from the date of 
first dose until date of documented disease progression 
or death); overall survival (OS; time from first dose until 
death); and DOR (time from initial response to progres-
sion or death).

Statistical analyses
Two general populations were used for statistical anal-
ysis: the safety population and the response- evaluable 
population. The safety population comprised all patients 
who received at least one dose of either enoblituzumab 
or pembrolizumab. The response- evaluable population 
comprised all patients who received both enoblituzumab 
and pembrolizumab and had at least one postinfu-
sion radiographic tumor assessment; only confirmed 
responses were reported. Patients who received at least 
one dose of enoblituzumab were included in PK analyses. 
Two- sided exact CIs were constructed around the ORR. 
Kaplan- Meier methodology was used to estimate DOR 

and PFS over time, median DOR and PFS, 3- month and 
6- month PFS, and median and 6- month OS. Responders 
who completed the study without documented disease 
progression were censored at the date of their last assess-
ment for progression. The method by Brookmeyer and 
Crowley23 was used to construct 95% CIs around PFS esti-
mates of the median and other quartiles for each expan-
sion cohort.

RESULTS
Enoblituzumab and anti-PD-1 combinatorial biology
The ability of enoblituzumab to modulate immune 
responses, including NK cell- mediated ADCC, was 
assessed in vitro in combination with PD- 1 blockade. 
Consistent with enhanced CD16 engagement, 
enoblituzumab- mediated ADCC activity (online supple-
mental figure S1A) was associated with increased inter-
feron (IFN)-γ expression and upregulation of PD- L1 on 
NK cells (online supplemental figure S1B). Treatment 
with an anti- PD- 1 mAb increased secreted levels of IFN-γ 
triggered by enoblituzumab (online supplemental figure 
S1C), enhancing the potential of both NK cells and CD8 
T cells to produce IFN-γ following enoblituzumab expo-
sure (online supplemental figure S1C,D). Furthermore, 
the ADCC potential of effector cells primed by enoblitu-
zumab was enhanced on combination with anti- PD- 1 
mAb (online supplemental figure S1E). These observa-
tions indicate that simultaneous blockade of the PD- 1/
PD- L1 axis can sustain FcR- mediated immune responses 

Table 2 Summary statistics of pharmacokinetic parameters of enoblituzumab after 2- hour intravenous infusion doses of  
3–15 mg/kg weekly

Parameter Unit Statistic

Weekly enoblituzumab dose

3 mg/kg 10 mg/kg 15 mg/kg

First dose, C1/D1

  Cmax µg/mL GM (%CV) (n) 84 (34) (5) 238 (14) (2) 420 (40) (99)

  tmax hour Median (min–max) (n) 3 (2–5) (5) 2.5 (2–3) (2) 3 (2–48) (99)

  AUCτ
µg•hour/mL GM (%CV) (n) 6254 (35) (4) 21 918 (15) (2) 36 889 (36) (90)

  AUC0–inf µg•hour/mL GM (%CV) (n) 10 321 (46) (4) 36 941 (10) (2) 64 111 (39) (88)

  CL mL/hour/kg Mean (SD) (n) 0.314 (0.156) (4) 0.271 (0.028) (2) 0.250 (0.087) (88)

  Vss mL/kg Mean (SD) (n) 51.9 (14.1) (4) 49.7 (8.8) (2) 46.9 (15.2) (88)

  t1/2 hour Mean (SD) (n) 128.2 (21.2) (4) 130.7 (9.1) (2) 141.7 (45.6) (88)

Multiple dose, C2/D1

  Cmax µg/mL GM (%CV) (n) 167 (28) (4) — 797 (26) (62)

  tmax hour Median (min–max) (n) 3 (2–8) (4) — 3 (2–24) (62)

  AUCτ
µg•hour/mL GM (%CV) (n) 19 981 (40) (4) — 93 590 (31) (51)

  CL mL/hour/kg Mean (SD) (n) 0.160 (0.072) (4) — 0.168 (0.054) (51)

  Vss mL/kg Mean (SD) (n) 59.1 (11.9) (4) — 62.1 (21.9) (46)

  t1/2 hour Mean (SD) (n) 283.7 (95.1) (4) — 275.6 (124.9) (46)

  AI AUCτ
  GM (%CV) (n) 3.20 (9) (4) — 2.48 (48) (48)

AI, accumulation index; AUC0–inf, area under the serum concentration–time curve from time zero extrapolated to infinity; AUCτ, area under the 
concentration–time curve over the dosing interval; C, cycle; CL, clearance; Cmax, maximum observed serum concentration; CV, coefficient of variation; 
D, dose; GM, geometric mean; t1/2, half- life; tmax, time of maximum concentration; Vss, volume of distribution at steady state.

https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
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triggered by enoblituzumab, providing mechanistic ratio-
nale for the combination approach.

Clinical trial enrollment
Enoblituzumab was administered at doses of 3 mg/kg 
(n=6), 10 mg/kg (n=3), and 15 mg/kg (n=3) intrave-
nously once weekly in the dose- escalation phase. During 
the cohort expansion phase, enoblituzumab was admin-
istered at 15 mg/kg intravenously once weekly (n=121). 
Within this report, safety and PK data are provided for 
all enrolled patients; preliminary efficacy data focus on 
37 patients enrolled in the HNSCC cohorts evaluable for 
response and 35 patients enrolled in the NSCLC cohorts 
evaluable for response (data cut- off: March 14, 2019). 
Preliminary response data including the melanoma and 
urothelial cancer cohorts are also presented along with 
those of the NSCLC and HNSCC cohorts.

Baseline patient characteristics
A total of 133 patients were enrolled and included in 
the safety population. Patients had a median age of 65 
years (range, 21–88), with 69.2% male and 88.7% White 
(table 1).

Pharmacokinetics
Serum concentration–time data for enoblituzumab were 
available for 130 patients (n=6, 3, and 121 in the 3, 10, 
and 15 mg/kg dose groups, respectively), of whom 106 
(n=5, 2, and 99, respectively) were evaluable after the first 
dose (C1/D1) and 66 (n=4, 0, and 62, respectively) were 
evaluable for PK analysis after multiple dosing (C2/D1). 
The PK parameters and profiles are presented in table 2 
and figure 3, respectively.

Maximum observed concentration of enoblituzumab at 
C1/D1 (slope, 1.008; 90% CI 0.829 to 1.187) increased in a 
dose- proportional manner (figure 3A). Systemic exposure 
in terms of the area under the serum concentration–time 
curve from time zero extrapolated to infinity (slope, 
1.141; 90% CI 0.943 to 1.338) increased in a slightly more 
than dose- proportional manner over the dose range of  
3–15 mg/kg of enoblituzumab. Clearance, volume of 
distribution at steady state, and t1/2 were not dose related, 
suggesting that enoblituzumab exhibits linear PK after 
the first dose. Following multiple- dose administration, 
t1/2 was approximately 12 days, suggesting that enoblitu-
zumab reaches steady state after five half- lives (60 days 
[approximately 9 weeks]). However, trough serum 
concentrations over eight cycles for the 15 mg/kg dose 
continued to increase and approached a plateau by week 
33 (figure 3B). This observation implies that the t1/2 of 
enoblituzumab would be longer for the 15 mg/kg dose 
after multiple dosing once every week.

Safety
TRAEs occurred in 116 of 133 (87.2%) patients, most of 
which (71.0%) were grade 1 and 2. The most common 
events were infusion- related reactions (IRRs) (n=72; 
54.1%), followed by fatigue (n=37; 27.8%) (table 3). 
Grade ≥3 TRAEs occurred in 28.6% of patients (n=38), 

primarily as IRRs (n=9; 6.8%) and increased lipase (n=8; 
6.0%). Two patients experienced treatment- related cyto-
kine release syndrome (CRS); one of these patients was 
hospitalized for a serious grade 3 TRAE of CRS and 
received vancomycin and tocilizumab to manage CRS, 
recovered, and ultimately discontinued the study. Overall, 
TRAEs led to discontinuation in 9.8% of patients (n=13). 
One treatment- related death due to immunotherapy- 
induced pneumonitis was reported in a patient with 
HNSCC. Prior therapy for this male patient included 
radiation with concurrent cetuximab, methotrexate, pacl-
itaxel in combination with carboplatin, and nivolumab. 
The patient had three metastatic sites: tonsils, medias-
tinum, and lung. The patient died 30 days after the last 
dose of enoblituzumab.

The most frequently occurring irAE was rash (n=15; 
11.3%), followed by thyroid events (eg, hypothyroid, 
elevated thyroid- stimulating hormone; n=10; 7.5%) and 
arthralgia (n=9; 6.8%), and most events were grade 1 or 2 
(table 4). No MTD was defined; thus, the MAD of 15 mg/
kg of enoblituzumab was administered weekly during 
cohort expansion.

Antitumor activity
Head and neck squamous cell carcinoma
Of the 21 patients with HNSCC who were anti- PD- 1/
PD- L1–naïve, 18 were evaluable for response, with an 
ORR of 33.3% (95% CI 13.3 to 59.0; n=6). Of the 18 

Figure 3 Pharmacokinetics of enoblituzumab after 2- 
hour intravenous infusions of 3–15 mg/kg QW. (A) Serum 
concentration–time profiles (semi- log scale). (B) Serum trough 
concentrations. Symbols and error bars represent arithmetic 
means and SDs, respectively. The duration of time between 
C1 and C2 was 6 weeks. C, cycle; D, day; QW, once weekly.
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response- evaluable patients, 5.6% (n=1) had a CR and 
27.8% (n=5) had a PR; stable disease (SD) was observed 
in an additional 5 patients (27.8%) with a median 

duration of SD not reached (95% CI 2.1 months to not 
reached) (table 5). All patients with HNSCC who showed 
an objective response were B7- H3–positive (figure 2A, 

Table 3 TRAEs observed in ≥5% of patients

TRAE, n (%)

By dose groups
(N=133)

By severity
(N=133)

3 mg/kg
(n=6)

10 mg/kg
(n=3)

15 mg/kg
(n=124) All grades Grade 1/2 Grade ≥3

IRRs 2 (33.3) 1 (33.3) 69 (55.6) 72 (54.1) 63 (47.4) 9 (6.8)

Fatigue 2 (33.3) 1 (33.3) 34 (27.4) 37 (27.8) 34 (25.6) 3 (2.3)

Rash 1 (16.7) 1 (33.3) 13 (10.5) 15 (11.3) 13 (9.8) 2 (1.5)

Nausea 0 0 13 (10.5) 13 (9.8) 13 (9.8) 0

Fever 0 1 (33.3) 11 (8.9) 12 (9.0) 12 (9.0) 0

Lipase increased 0 0 11 (8.9) 11 (8.3) 3 (2.3) 8 (6.0)

Arthralgia 1 (16.7) 0 9 (7.3) 10 (7.5) 10 (7.5) 0

Diarrhea 0 0 9 (7.3) 9 (6.8) 8 (6.0) 1 (0.8)

Decreased appetite 0 0 9 (7.3) 9 (6.8) 7 (5.3) 2 (1.5)

Hypothyroidism 0 0 8 (6.5) 8 (6.0) 8 (6.0) 0

Pneumonitis 1 (16.7) 0 7 (5.6) 8 (6.0) 5 (3.8) 3 (2.3)

Anemia 0 0 7 (5.6) 7 (5.3) 6 (4.5) 1 (0.8)

Pruritus 0 0 7 (5.6) 7 (5.3) 7 (5.3) 0

Lymphocyte count decreased 0 0 7 (5.6) 7 (5.3) 1 (0.8) 6 (4.5)

Chills 1 (16.7) 0 6 (4.8) 7 (5.3) 7 (5.3) 0

Total patients with ≥1 event 5 (83.3) 3 (100) 108 (87.1) 116 (87.2) 78 (58.6) 38 (28.6)

IRR, infusion- related reaction; TRAE, treatment- related adverse event.

Table 4 Immune- related AEs

Immune- related AE, n (%)

All patients
(n=133)

PD- 1–naïve patients
(n=46)

All grades Grade 1/2 Grade ≥3 All grades Grade 1/2 Grade ≥3

Rash 15 (11.3) 13 (9.8) 2 (1.5) 7 (15.2) 6 (13.0) 1 (2.2)

Thyroid 10 (7.5) 10 (7.5) 0 5 (10.9) 5 (10.9) 0

Arthralgia 9 (6.8) 9 (6.8) 0 3 (6.5) 3 (6.5) 0

Diarrhea 8 (6.0) 7 (5.3) 1 (0.8) 4 (8.7) 4 (8.7) 0

Hepatic 8 (6.0) 8 (6.0) 0 0 0 0

Pneumonitis 8 (6.0) 5 (3.8) 3 (2.3) 3 (6.5) 2 (4.3) 1 (2.2)

Anemia 7 (5.3) 6 (4.5) 1 (0.8) 0 0 0

Lymphopenia 7 (5.3) 1 (0.8) 6 (4.5) 3 (6.5) 1 (2.2) 2 (4.3)

Colitis 3 (2.3) 3 (2.3) 0 1 (2.2) 1 (2.2) 0

Adrenal insufficiency 2 (1.5) 1 (0.8) 1 (0.8) 2 (4.3) 1 (2.2) 1 (2.2)

Myalgia 2 (1.5) 2 (1.5) 0 1 (2.2) 1 (2.2) 0

Myocarditis 2 (1.5) 1 (0.8) 1 (0.8) 0 0 0

Pancreatitis 1 (0.8) 1 (0.8) 0 0 0 0

Thrombocytopenia 1 (0.8) 1 (0.8) 0 0 0 0

Total 83 (62.4) 68 (51.1) 15 (11.3) 29 (63.0) 24 (52.2) 5 (10.9)

Immune- related AEs were defined as AEs determined by the investigator to be treatment related and that have been traditionally classified as 
immune- related AEs in the context of immuno- oncology agents.
No MTD was defined; thus, the MAD of 15 mg/kg of enoblituzumab was administered weekly during cohort expansion.
AE, adverse event; MAD, maximum administered dose; MTD, maximum tolerated dose; PD- 1, programmed cell death- 1; TRAE, treatment- related 
adverse event.
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—representative image; figure 4). The median DOR 
was not reached (95% CI 10.7 months to not reached). 
The 6- month PFS rate was 42.1%, with a median PFS of 
3.48 months (range, 0.03–27.1). Ten of 18 patients with 
HNSCC were HPV- positive, with objective responses in 
4 of 10 (40.0%) patients, 3 of whom were PD- L1–posi-
tive (PD- L1 status unknown (n=1); online supplemental 
table S1). Among the HPV- negative patients, the ORR 
was 25.0% (n=2/8); one responder was PD- L1–positive 
and one patient’s PD- L1 status was unknown. Of the 24 
patients with HNSCC previously treated with anti- PD- 1/
PD- L1 agents, 19 were evaluable for response and, among 
these, there were no responses, although 9 (47%) patients 
experienced disease stabilization, with a median duration 
of disease control of 3.55 months (range, 2.00–8.05). The 
range of B7- H3 expression level appeared comparable 
for both naïve and anti- PD- 1/PD- L1 agent experienced 
across HPV- positive and HPV- negative patients (online 
supplemental table S1 and figure S2). Antitumor activity 
in patients with HNSCC is shown in figures 4A–D and 5A.

Non–small cell lung cancer
Of the 16 anti- PD- 1/PD- L1–naïve patients with NSCLC, 
14 were evaluable for response, with an ORR of 35.7% 
(95% CI 12.8 to 64.9; n=5/14), all of which were PRs; 
SD was observed in an additional eight patients (57.1%; 
table 5). The median DOR was 8.3 months (95% CI 
2.1 to 8.6), and the 6- month PFS rate was 43.3%, with 
a median PFS of 4.83 months (range, 2.60–12.22). Of 
the 25 patients with NSCLC previously treated with anti- 
PD- 1/PD- L1 agents, 21 were evaluable for response and, 

among these, 2 (9.5%) achieved a PR and 11 (52.4%) had 
SD, with a median DOR of 3.45 months and a 6- month 
PFS rate of 13.9%. Among five anti- PD- 1/PD- L1–naïve 
patients, four showed an objective response and B7- H3 
positivity and one was non- evaluable, while both patients 
with prior PD- 1 failure who showed objective responses 
were also B7- H3–positive (figure 2B, —representative 
image; figure 4). The range of B7- H3 expression was 
comparable in both PD- 1/PD- L1–naïve and prior PD- 1 
failure patient cohorts (online supplemental table S1 and 
figure S2). Antitumor activity in patients with NSCLC is 
shown in figures 4E–H and 5B and prior cancer therapy 
of the two patients with PR is shown in table 6.

Urothelial cancer and cutaneous melanoma cohorts
Limited responses were noted in the other cohorts, with 
one of the 17 patients with urothelial cancer evaluable 
for response had a PR (ORR of 5.9%; table 5) and one of 
the 13 patients with cutaneous melanoma evaluable for 
response had a PR (ORR of 7.7%; table 5).

DISCUSSION
In this phase I/II, open- label, dose- escalation, and cohort 
expansion study involving 133 patients, enoblituzumab in 
combination with pembrolizumab was well tolerated in 
patients with advanced solid tumors, and the combina-
tion was feasible and demonstrated an acceptable safety 
profile. Most TRAEs were grade 1–2. IRRs were common 
(54.1%); their mechanism is likely related to the drug 
molecule itself in that these reactions were usually 

Table 5 Summary of confirmed BOR by RECIST version 1.1

Parameter

HNSCC
PD- 1/PD- L1–naïve
(n=18)

HNSCC prior
PD- 1/PD- L1
(n=19)

NSCLC
PD- 1/PD- L1–naïve
(n=14)

NSCLC prior
PD- 1/PD- L1
(n=21)

Urothelial cancer
(n=17)

Cutaneous 
melanoma
(n=13)

CR 1 (5.6) 0 0 0 0 0

PR 5 (27.8) 0 5 (35.7) 2 (9.5) 1 (5.9) 1 (7.7)

ORR 6 (33.3) 0 5 (35.7) 2 (9.5) 1 (5.9) 1 (7.7)

SD 5 (27.8) 9 (47.4) 8 (57.1) 11 (52.4) 8 (47.1) 5 (38.5)

Clinical benefit rate* 11 (61.1) 9 (47.4) 13 (92.9) 13 (61.9) 9 (52.9) 6 (46.2)

Progressive disease 7 (38.9) 10 (52.6) 1 (7.1) 8 (38.1) 8 (47.1) 6 (46.2)

NE 0 0 0 0 0 1 (7.7)†

PFS, months

  Median (95% CI) 3.48 (1.35 to NR) 1.45 (1.35 to 3.55) 4.83 (2.60 to 12.22) 3.45 (1.41 to 3.98) 2.18 (1.28 to 5.52) 2.07 (1.31 to 9.82)

  Range 0.03–27.1+ 0.03–8.05 0.03–12.22 0.03–7.66 0–18.66 0.03–11.96

  6- month rate 42.1% 7.5% 43.3% 13.9% 14.0% 25.0%

OS, months

  Median (95% CI) 17.38 (9.17 to NR) 6.93 (3.12 to 9.69) 12.32 (5.65 to NR) 7.13 (3.06 to 14.85) 5.72 (3.09 to 11.1) 14.19 (4.76 to NR)

  Range 0.4–29.4+ 0.8–15.5 2.4–17.8+ 0.03–24.4 0.92–20.4 1.97–18.9+

  6- month rate 79.9% 60.9% 80.0% 58.5% 47.6% 78.6%

Data are shown as n (%) unless otherwise noted.
*Clinical benefit rate=CR+PR+SD.
†One patient with cutaneous melanoma has a response as NE.
BOR, best overall response; CR, complete response; HNSCC, head and neck squamous cell carcinoma; NE, not evaluable; NR, not reached; NSCLC, non–small cell 
lung cancer; ORR, overall response rate; OS, overall survival; PD- 1, programmed cell death- 1; PD- L1, programmed death- ligand 1; PFS, progression- free survival; 
PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
https://dx.doi.org/10.1136/jitc-2021-004424
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Figure 4 Antitumor activity and DOR in target lesions of response- evaluable patients with HNSCC or NSCLC. The best 
percent change in target lesion tumor burden from baseline in patients with (A) HNSCC anti- PD- 1/PD- L1–naïve, (C) HNSCC 
post anti- PD- 1/PD- L1, (E) NSCLC anti- PD- 1/PD- L1–naïve, PD- L1 TPS <1%, and (G) NSCLC post anti- PD- 1/PD- L1. The tumor 
burden (assessed as the longest linear dimension) over time in patients with (B) HNSCC anti- PD- 1/PD- L1–naïve, (D) HNSCC 
post anti- PD- 1/PD- L1, (F) NSCLC anti- PD- 1/PD- L1–naïve, PD- L1 TPS <1%, and (H) NSCLC post anti- PD- 1/PD- L1. B7- H3 
expression status at baseline for each patient is indicated (P: B7- H3 positive; N: B7- H3 negative; U: B7- H3 expression status 
unknown). *Unless noted, patients are in the expansion or dose- escalation cohort at 15 mg/kg enoblituzumab plus 2 mg/
kg pembrolizumab. All patients received at least one dose and had at least one postbaseline tumor evaluation. †Treatment 
ongoing. ‡These patients received 10 mg/kg enoblituzumab+2 mg/kg pembrolizumab. §These patients received 3 mg/kg 
enoblituzumab plus 2 mg/kg pembrolizumab. HNSCC, head and neck squamous cell carcinoma; HPV, human papilloma virus; 
NSCLC, non–small cell lung cancer; PD- 1, programmed cell death- 1; PD- L1, programmed death- ligand 1; TPS, tumor positivity 
score.
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observed with the first infusion only, quickly resolved, and 
did not reoccur in subsequent cycles. Grade ≥3 IRRs were 
seen in nine patients (6.8%), leading to discontinuation 
in two patients. Thirteen patients (9.8%) discontinued 
therapy because of TRAEs, including pneumonitis (n=4, 
including one fatal event), IRRs (n=2), myocarditis (n=2), 
CRS (n=1), colitis (n=2), adrenal insufficiency (n=1), and 
pancreatitis (n=1). The most frequently occurring irAE 
was rash (n=15; 11.3%), most events were grade 1 or 2.

Interestingly, this dual checkpoint- targeted therapy 
was not associated with an increase in TRAEs or irAEs 
compared with what is expected for checkpoint- targeted 
monotherapy, unlike what is observed with combination 
checkpoint blockade therapies with PD- 1 and CTLA- 4 
inhibition in NSCLC and melanoma.24 A pooled inci-
dence of irAEs from combination immune checkpoint 

therapy25 compared with this trial showed an incidence 
of 32.7% vs 6.8% for all- grade diarrhea, 31.4% vs 5.3% for 
pruritus, and 27.1% vs 11.3% for rash, respectively. Our 
preliminary findings suggest that combination therapy 
with B7- H3 and PD- 1 inhibition is feasible with minimal 
additive toxicity beyond what would be expected with 
PD- 1 monotherapy.

Availability of CPIs has led to a paradigm change in the 
management of patients with solid tumors. The greatest 
impact has been observed in patients with HNSCC and 
NSCLC, where immunotherapy- based regimens are 
routinely used in the frontline management of meta-
static disease. For HNSCC, we now have evidence from 
the KEYNOTE- 048 trial to support the use of pembroli-
zumab in combination with platinum- based therapy, and 
pembrolizumab alone for PD- L1 expressing tumors.6 

Figure 5 Overall survival Kaplan- Meier curves for patients with HNSCC or NSCLC (safety population). HNSCC, head and neck 
squamous cell carcinoma; NSCLC, non–small cell lung cancer; PD- 1, programmed cell death- 1; PD- L1, programmed death- 
ligand 1.

Table 6 Prior cancer therapy of the two patients with NSCLC previously treated with anti- PD- 1/PD- L1 agents who responded 
after treatment with enoblituzumab+pembrolizumab

Patient # Prior regimen
Line of 
therapy

Duration of treatment
(first to last dose)

Number 
of cycles 
administered Best response

Reason for 
discontinuation

1 Chemotherapy       

Carboplatin/
Gemcitabine

1L 120 days
(=4 months)

6 Progressive disease Progression/
Recurrence

Gemcitabine Maintenance 33 days
(=1 month, 2 days)

1 Progressive disease Progression/
Recurrence

Carboplatin/Pemetrexed 2L 92 days
(=3 months, 3 days)

4 Progressive disease Progression/
Recurrence

CPI       

Nivolumab 3L 570 days
(=1 year, 10 months)

40 Stable disease Progression/
Recurrence

2 Chemotherapy       

Carboplatin/Paclitaxel 1L 50 days
(=1 month, 22 days)

2 Stable disease Progression/
Recurrence

CPI       

Atezolizumab 2L 64 days
(=2 months, 3 days)

4 Progressive disease Progression/
Recurrence

CPI, checkpoint inhibitor; 1L, first line; 2L, second line; 3L, third line; NSCLC, non–small cell lung cancer; PD- 1, programmed cell 
death- 1; PD- L1, programmed death- ligand 1.
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While both approaches are preferred over chemotherapy, 
pembrolizumab plus chemotherapy might be preferred 
for patients with significant symptom burden and those 
with a need for objective response. However, this benefit 
in tumor reduction must be balanced against the incre-
mental toxicities associated with the addition of chemo-
therapy to pembrolizumab.

In this trial, unlike KEYNOTE- 048, the majority of 
patients with CPI- naïve HNSCC had disease progression 
after platinum- based chemotherapy. It is therefore note-
worthy that combination of enoblituzumab and pembroli-
zumab resulted in an ORR of 33.3%. This response is 
numerically higher than previous clinical trial experi-
ence with anti- PD- L1 monotherapy regardless of prior 
platinum exposure for recurrent/metastatic disease.6 26 
In addition, prolonged SD was seen in most CPI- naïve 
patients, with an overall clinical benefit rate (CR+PR+SD) 
of 61.1%.

Similar to HNSCC, there continues to be tremendous 
interest in improving outcomes in NSCLC and moving 
beyond PD- 1/PD- L1 monotherapy. Combination chemo- 
immunotherapy is now approved, and routinely used in 
the first- line setting. There is ongoing interest in devel-
oping a ‘chemotherapy- free’ approach that would be 
equivalent to and perhaps superior to contemporary 
chemo- immunotherapy regimens. Thus, regimens evalu-
ating combination immunotherapy have been evaluated 
in clinical trials of NSCLC, and most recently, the US 
Food and Drug Administration granted approval for use 
of frontline treatment for nivolumab and ipilimumab in 
PD- L1–expressing NSCLC.27 This combination led to an 
improvement in OS compared with chemotherapy; it is 
important to highlight, however, that grade 3–4 TRAEs 
occurred in 32.8% of patients treated with nivolumab plus 
ipilimumab and eight treatment- related deaths occurred 
in the combination immunotherapy arm, reinforcing the 
need for safer therapies.27 In this study, we observed an 
ORR of 35.7% in patients with CPI- naïve NSCLC with 
combination enoblituzumab and pembrolizumab.

Although not powered for efficacy, our results demon-
strate that dual immunotherapy with the combination 
of enoblituzumab and pembrolizumab is quite active 
in patients with CPI- naïve HNSCC and NSCLC. While 
ORR is not the only indicator of utility of a therapeutic 
regimen, the findings from this trial provide a provoca-
tive signal that needs to be explored further, especially 
as we evaluate combination immunotherapy regimens 
to enhance efficacy while mitigating toxicity. A phase II 
trial of enoblituzumab plus the investigational anti- PD- 1 
retifanlimab or the investigational anti- PD- 1 and anti- 
lymphocyte- activation gene 3 tebotelimab in HNSCC 
(NCT04634825) is currently underway.28

The observed lack of efficacy in CPI- pretreated patients 
is not surprising as this subset probably includes patients 
with more aggressive tumor biology or patients who have 
developed acquired resistance to PD- 1 inhibition. Our 
study was not designed to understand the biologic basis of 
immunotherapy resistance but rather to evaluate if there 

was a signal of efficacy in pretreated disease cohorts. 
This study does have a number of limitations. This was 
a small, non- randomized study, that enrolled a relatively 
small number of patients in disease- specific cohorts. 
Furthermore, the use of biomarkers for patient selection 
remains an open question. At this time, it is not clear how 
to best select patients for enoblituzumab therapy: B7- H3 
expression was detected widely across enrolled patients 
including those demonstrating therapeutic response. 
In addition, patients on this trial benefited from combi-
nation therapy irrespective of PD- L1 expression levels. 
Moreover, since the study was focused on establishing 
safety and evidence of therapeutic benefit of enoblitu-
zumab, evaluation of antipembrolizumab antibodies 
and pembrolizumab PK was not included in the clinical 
protocol of the study. Further study is required to confirm 
the preliminary favorable toxicity profile and to eventu-
ally compare efficacy and toxicity outcomes to approved 
immunotherapy combinations in patients with advanced 
CPI- naïve NSCLC and HNSCC.
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