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1Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany, 2NEXUS Personalized Health Technologies, ETH

Zurich, Zurich 8093, Switzerland, 3Translational Bioinformatics and 4Center for Personalized Medicine, University Hospital Tübingen,
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Abstract

Motivation: Next-generation sequencing has become routine in oncology and opens up new avenues of therapies,
particularly in personalized oncology setting. An increasing number of cases also implies a need for a more robust,
automated and reproducible processing of long lists of variants for cancer diagnosis and therapy. While solutions
for the large-scale analysis of somatic variants have been implemented, existing solutions often have issues with re-
producibility, scalability and interoperability.

Results: Clinical Variant Annotation Pipeline (ClinVAP) is an automated pipeline which annotates, filters and priori-
tizes somatic single nucleotide variants provided in variant call format. It augments the variant information with
documented or predicted clinical effect. These annotated variants are prioritized based on driver gene status and
druggability. ClinVAP is available as a fully containerized, self-contained pipeline maximizing reproducibility and
scalability allowing the analysis of larger scale data. The resulting JSON-based report is suited for automated down-
stream processing, but ClinVAP can also automatically render the information into a user-defined template to yield a
human-readable report.

Availability and implementation: ClinVAP is available at https://github.com/PersonalizedOncology/ClinVAP.

Contact: oliver.kohlbacher@uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the genetic profile of a patient’s tumor to assess
clinical actionability is a key to establish personalized targeted
therapies. Large volumes of genomic data from cancer patients
have become available due to the ever-decreasing costs of sequenc-
ing. Strategies need to be developed to gain insights from the data
that can be used to support treatment decisions for individual
patients. Identification of somatic variants that render a tumor ei-
ther susceptible or resistant to treatment as well as detection of
the genes driving a specific cancer can be essential for therapeutic
decision making. Although there are publicly available databases
to annotate genetic variants with respect to their actionability,
it is time-consuming to query these resources manually.
Furthermore, sending patient-related information to web services
for therapeutic variant annotation undermines privacy preserva-
tion which hinders the use of services such as PharmGKB

(Whirl-Carrillo et al., 2012). On the other hand, local instances of
clinical annotation (Wendl et al., 2011) and reporting (Perera-Bel
et al., 2018) pipelines can be difficult to use. Common problems
are complex command line interfaces, the necessity to modify the
source code, the requirement of non-standard variant file formats,
or the lack of structured output.

Here, we introduce our Clinical Variant Annotation Pipeline
(ClinVAP) which annotates somatic single nucleotide variants
given as standard VCF file with their driver gene type and rele-
vant drug information. This information is prioritized based on
actionability and severity of gene disruption. To this end, we
supply the user with affected driver genes and direct as well as
indirect drug targets by cross-referencing the observed
variants with evidence from several public repositories. The
resulting report provided as JSON, Microsoft Word, or PDF
file can be helpful to discussion otherwise overlooked thera-
peutic options.
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2 Materials and methods

2.1 Data integration
A clinical annotation knowledge base implemented as MongoDB
database forms the annotation source of the pipeline. It was built
based on the full set of genes contained in the HGNC and UniProt
databases. Information on drug targets as well as genes initiating
tumorigenesis was collated within the database. The knowledge
base is queried by the reporting application for each mutated gene
found by Ensembl Variant Effect Predictor (VEP).

Annotation of driver genes. A catalog of 1998 driver genes was
assembled from the databases and from the literature
(Supplementary Material SA, Section 2.1). A confidence score was
calculated for each driver gene by counting the number of consid-
ered sources that include the corresponding gene, in order to present
a simple assessment of its significance as a driver in the literature.

Mechanistic drug-target relations. Genes were further annotated
with drug target data compiled from databases, and from manually
curated dataset of molecular drug targets (Supplementary Material
SA, Section 2.1). Analogously to the cancer driver data, a confidence
score was generated that represents the number of sources support-
ing the drug-gene association.

2.2 Reporting application
We devised a fully automated and containerized pipeline which
takes a VCF file version 4.0þ as input that by default should contain
the somatic variants of a tumor sample and creates a clinical report.
The multi-step process builds on Ensembl VEP for variant annota-
tion, queries the knowledge base and processes the resulting anno-
tated file in an R application to render the results into a machine-
and/or human-readable report.

Variant Effect Prediction. The first step of the pipeline is to an-
notate the variants using Ensembl VEP v93 in offline mode
(McLaren et al., 2016). The annotations are conducted based on
user provided genome assembly version, i.e. GRCh37, GRCh38.
Functional effects of variants on the canonical transcripts are pre-
dicted using SIFT and Polyphen (Adzhubei et al., 2010; Kumar
et al., 2009).

Variant Annotation. In this step, the descriptive and interpretive
information on variants such as genomic position, variant effect, are
retrieved from the VEP-annotated VCF file by the R-based reporting
application. Among the different annotation blocks of the alterna-
tively spliced variants, the ones that are selected per variant by VEP
are used in the next steps. Variants that did not pass quality control
in the variant calling pipeline used to produce the input VCF as well
as variants that were predicted by VEP as non-coding or low-effect
were excluded. Furthermore, the variants predicted as ‘tolerated’ or
‘tolerated low confidence’ by SIFT and ‘benign’ by PolyPhen were
removed. Using HGNC identifiers of the remaining variants, the
knowledge base is queried to provide information about driver genes
and affected drug targets. Clinical evidence summaries from the
CIViC database is further incorporated to report the variants with a
direct impact on actionability (Griffith et al., 2017). CIViC’s scoring
schema is adopted in the application to provide a quick overview
over the confidence of the provided association.

Report Generation. The variants that (i) occur in a known cancer
driver gene, (ii) have been observed previously in the context of
altered treatment response, or (iii) fall in the coding region of the
mechanistic target gene of a cancer therapeutic, are distributed into
four categories and saved as a JSON file (see tables in
Supplementary Material SC). If desired, the JSON report can be ren-
dered into a user-provided template (in Microsoft DOCX format) to
obtain a human-readable document (Supplementary Material SB).

2.3 Deployment and benchmarking
ClinVAP is available as self-contained Docker and Singularity
images (Supplementary Material SA, Section 3) (Kurtzer et al.,

2017; Merkel, 2014). Containerized execution of the pipeline
ensures easier versioning, full reproducibility of results and conveni-
ent execution on large-scale datasets. In order to test the robustness

and performance of ClinVAP, we processed 500 VCF files from 430
donors including simple somatic mutations from ICGC cancer proj-

ects (ICGC, 2010). Average runtime was on approximately 7 min
per file and current hardware. The median number of driver genes
per report was five, with individual donors having up to 200 driver

genes. We identified therapeutic suggestions for 65.2% of the cases,
where the CIViC evidence level is restricted to either A, B, or C. In

an additional 28.8% of cases, predicted effects of variants were
annotated, but no conclusive therapeutic option was identified.
Only in 6% of the cases ClinVAP could not provide any helpful in-

formation at all.

3 Conclusion

We introduce a fully automated, fast and robust annotation pipeline
designed to equip Molecular Tumor Boards with evidence-based pa-
tient reports. ClinVAP reports reveal the molecular driving forces in

cancer formation along with actionable therapeutic targets from the
respective tumor’s set of somatic variants. The container technolo-

gies Docker and Singularity allow for easy deployment and reprodu-
cibility. The pipeline is run locally and does not require any patient
data to be analyzed by external web sites. Therefore, use of

ClinVAP is conform with standard privacy and data security
regulations.
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