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INTRODUCTION

Stroke is the second leading cause of death and third 
leading cause of disability globally [1]. Of those who 
survive stroke, 40% have moderate functional impairment 
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and 15%–30% suffer from severe permanent disability 
[2]. The two most effective therapies for the treatment 
of acute ischemic stroke (AIS) are intravenous alteplase 
and mechanical thrombectomy [3]. Nevertheless, due to 
the narrow time window for thrombolytic therapy, only a 
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very small proportion of AIS patients receive intravenous 
thrombolytic therapy [4], and the majority of AIS patients 
are limited to similar conventional treatments, including 
antiplatelet treatment and neuroprotective agents. 
Therefore, research on the outcomes of AIS patients 
receiving conventional treatments can benefit more 
patients. An accurate prediction of patient outcomes would 
help clinicians understand patients’ conditions at the early 
stage of onset, have better communication with patients 
about the risks and expectations of treatment, and make a 
more individualized treatment plan instead of invariable or 
similar conventional therapy [5]. It is necessary to improve 
stroke treatment by the timely identification of patients 
with AIS who have an increased risk of adverse outcomes.

Previous studies have identified some factors associated 
with stroke outcome [6-8]. The first are clinical factors, 
such as the National Institute of Health Stroke Scale (NIHSS) 
score, hypertension, smoking, age, and sex. The second 
category includes radiological factors, such as the apparent 
diffusion coefficient (ADC) value and lesion volume on 
diffusion-weighted imaging (DWI). Among these factors, 
NIHSS score and DWI lesion volume were reported the 
most as the former reflects stroke severity, and DWI is the 
most sensitive technology for the early detection of stroke. 
Nevertheless, studies on radiological factors have been 
relatively less explored using radiomics [7-9]. The term 
radiomics, which has gained increasing attention in recent 
years, refers to the process of transforming medical images 
into high-dimensional, mineable data via high-throughput 
extraction of quantitative features, followed by subsequent 
data analysis to provide decision support [10]. By capturing 
high-dimensional features, such as texture, advanced shape 
modeling from target images, and providing additional 
potential features, radiomics can establish a link between 
clinical and radiological data [11]. Radiomics has been 
used as an emerging methodology to study tumor grading 
and typing, tumor heterogeneity, and survival of glioma 
patients, with excellent results [12,13]. Recently, radiomics 
features of MR images have been shown to have potential 
for the prediction of stroke outcomes [14,15].

The purpose of this study was to develop a prediction 
model incorporating clinical factors and radiomics features 
from DWI and ADC maps and to establish a nomogram as a 
graphic tool for predicting AIS outcomes. 

MATERIALS AND METHODS

Patients and Data Acquisition
This retrospective study was approved by the Institutional 

Review Board (IRB No. TJ-C20111213), and the requirement 
for written informed consent was waived. A total of 836 
patients with AIS from Tongji Hospital between January 
2013 and September 2019 were screened for inclusion 
in the study. The inclusion criteria were as follows: 1) 
hospitalization within 24 hours from symptom onset and 
treatment with conventional therapy, 2) acquisition of 
the NIHSS score at the time of admission, and 3) DWI 
examination within 3 days of onset. The exclusion criteria 
were as follows: 1) treatment with intravenous alteplase or 
mechanical thrombectomy therapy (n = 39), 2) hemorrhagic 
transformation (n = 61), 3) cerebellar infarction (n = 83), 
4) malignancy (n = 41), 5) severe MRI artifacts (n = 22), 
and 6) lost to follow-up (n = 68). Therefore, 522 patients 
with the required clinical, radiological, and prognostic data 
were enrolled in our study. Patients were randomly divided 
into training (n = 311) and validation (n = 211) cohorts.

Baseline clinical data, including age, sex, stroke history, 
hypertension, hyperlipidemia, diabetes, smoking, atrial 
fibrillation, cardiovascular disease, onset-to-MRI time, 
baseline NIHSS score (NIHSSbaseline), baseline modified 
Rankin Scale score (mRSbaseline), and Trial of ORG 10172 in 
Acute Stroke Treatment (TOAST) classification, were derived 
from the medical records. The AIS locations were classified 
by a neuroradiologist (7 years of experience) who was 
blinded to the patients’ clinical information according to 
the feeding artery of the infarction on DWI. 

The mRS score of patients 6 months after hospital 
discharge was evaluated through a structured telephone 
interview by a neurologist (5 years of experience) who was 
blinded to all clinical and image data. The prognosis was 
dichotomized into good (mRS ≤ 2) and poor (mRS > 2).

The 1.5T/3T MRI scanners (GE Healthcare and Siemens) 
were used to acquire DWI images in all patients. For the 3T 
MRI scanner (GE Healthcare), the parameters were as follows: 
repetition time (TR) = 3000 ms, echo time (TE) = 65.7 ms, 
slice thickness = 5.0 mm, b value = 0 and 1000 s/mm2. For 
the 3T MRI scanner (Siemens), TR = 6400 ms, TE = 98.0 ms, 
slice thickness = 5.5 mm, b value = 0, and 1000 s/mm2. For 
the 1.5T MRI scanner (GE Healthcare), TR = 3789 ms, TE = 
84.5 ms, slice thickness = 6.0 mm, b value = 0, and 1000 
s/mm2. All DWI data were imported into the GE ADW 4.6 
workstation to calculate ADC maps.
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Lesion Segmentation and Radiomics Feature Extraction 
The workflow of the radiomics analysis included lesion 

segmentation, feature extraction, feature selection, and 
model construction (Fig. 1). To calculate inter-observer 
agreement of the feature extraction, the lesion was 
manually segmented along a high signal on DWI slice by 
slice in an open-source software (ITK SNAP 3.6.0; http://
www.itksnap.org) by two neuroradiologists (7 years of 
experience in neuroimaging) who were blinded to the 

patients’ clinical information. An interclass correlation 
coefficient (ICC) higher than 0.75 was considered credible 
[16]. The lesion region of interest (ROI) of the DWI was 
directly applied as a template to the corresponding ADC 
maps. A total of 1310 features were extracted from the ROIs 
of DWIs and ADC maps using PyRadiomics (3.0.1), according 
to the instructions of the Image Biomarker Standardization 
Initiative [17]. These features included first-order, shape-
based (including volume), textural, wavelet filtering, 

Segmentation Feature extraction Feature selection Model construction

Fig. 1. Workflow of radiomics analysis. ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging, ICC = interclass correlation 
coefficient, LASSO = least absolute shrinkage and selection operator, mRMR = minimum redundancy maximum relevance, ROC = receiver operating 
characteristic

http://www.itksnap.org
http://www.itksnap.org
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Laplacian of Gaussian, square, square root, logarithm, 
exponential, gradient, and local binary pattern features. A 
correlation matrix heatmap was used to reveal the patients’ 
radiomics features and their associations with stroke 
outcomes.

Feature Selection and Radiomics Model Building 
For feature selection, the relevance and redundancy of 

the features from the training data were calculated using 
the Spearman’s correlation coefficient. After eliminating 
redundant features with a Spearman’s correlation coefficient 
≥ 0.8 [18], the minimum redundancy maximum relevance 
algorithm was applied to select features by considering 
not only their contributions to prediction but also the 
dependency among these features [19]. Then, the least 
absolute shrinkage and selection operator (LASSO) logistic 
regression, which is a shrinkage method that can conduct 
active selection from a large and potentially multicollinear 
set of variables in regression, was applied to select the 
most effective predictive features using a ten-fold cross-
validation [20]. The radiomics score was generated using 
a linear combination of the final sifted features weighted 
by the LASSO algorithm, and a radiomics model was then 
established.

Development of the Clinical and Clinical-Radiomics 
Prediction Models 

Univariable logistic regression analysis was implemented 
to explore clinical factors for predicting AIS outcomes in 
the training cohort, and these significant variables were 
entered into multivariable logistic regression analysis using 
a backward stepdown selection procedure with a p < 0.05, 
as the retention criteria to determine the independent 
clinical predictors of AIS outcomes. The results were 
presented as odds ratios with 95% confidence intervals 
(CIs), and a multivariable clinical prediction model was 
constructed. 

Then, a multivariable logistic regression analysis 
incorporating independent clinical factors and radiomics 
scores was implemented to establish the final combined 
clinical-radiomics prediction model using the backward 
step-down selection procedure. p < 0.05 was considered 
statistically significant. A clinical-radiomics nomogram was 
developed in this study. 

Statistical Analysis
To check the equality of patient demographic data 

between cohorts, normally distributed data were analyzed 
using an independent t test, and non-normally distributed 
data expressed as median (interquartile range) were 
examined using the Mann–Whitney U test. Categorical 
variables were analyzed using the chi-squared test. 

The predictive performance of the radiomics, clinical, 
and clinical-radiomics models was evaluated using receiver 
operating characteristic (ROC) curves. The area under the 
ROC curve (AUC) and balanced sensitivity and specificity 
at the cutoff yielding the largest Youden index value were 
calculated. The performance of the three models was tested 
in the training and validation cohorts. The Delong test was 
used to compare the AUC between the models.

The calibration curve and Hosmer–Lemeshow test were 
used to assess the calibration performance of the clinical-
radiomics nomogram [21]. Decision curve analysis (DCA) 
was implemented to determine the clinical utility of the 
clinical-radiomics nomogram by quantifying the net benefits 
at different threshold probabilities [22].

Statistical analyses were performed using SPSS 
(version 26.0; IBM Corp.) and R software (version 3.6.3, 
R Foundation for Statistical Computing). Statistical 
significance was defined as a two-sided p value < 0.05. 

RESULTS

Patient Characteristics
The baseline characteristics of the patients in the 

training and validation cohorts are shown in Table 1. There 
were no statistically significant differences between the 
two cohorts. Patients with poor outcomes accounted for 
28.30% (88/311) and 28.44% (60/211) of the training and 
validation cohorts, respectively. 

Establishment and Performance of the Radiomics Model
Logistic analysis showed that seven radiomic features 

in DWI and ADC maps were independently associated with 
AIS outcomes (Supplementary Fig. 1). The exponential gray 
level non-uniformity (GLN) extracted from DWI and wavelet-
low, high, and high-pass filtered image (LHH) cluster 
prominence from ADC maps weighted the most in the 
radiomics model. The inter-observer reproducibility of the 
feature extraction was excellent, with inter-observer ICCs 
ranging from 0.772 to 0.998 for DWI and 0.760 to 0.992 
for ADC. Supplementary Figure 2 shows the DWI, ADC maps, 
and radiomics features of the two patients with similar 
clinical factors but different outcomes, highlighting the 
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significance of radiomics in predicting AIS outcomes.
The radiomics model showed an AUC of 0.767 (95% CI 

0.709–0.825) with balanced sensitivity and specificity of 
0.750 and 0.659, respectively, in the training cohort. In 
the validation cohort, it yielded an AUC of 0.784 (95% CI 
0.712–0.855) with a sensitivity and specificity of 0.750 and 
0.695, respectively (Table 2, Fig. 2).

Establishment and Performance of the Clinical Model
Multivariable logistic regression analysis showed that 

age, sex, stroke history, diabetes, mRSbaseline, and NIHSSbaseline 
were independent clinical predictors of AIS outcomes (p < 
0.05) (Supplementary Table 1). The clinical model exhibited 
an AUC of 0.823 (95% CI 0.775–0.871) with balanced 
sensitivity and specificity of 0.705 and 0.789, respectively, 
in the training cohort and an AUC of 0.844 (95% CI 0.788–

Table 1. Baseline Characteristics of Patients in the Training and Validation Cohorts
Characteristic Training Cohort (n = 311) Validation Cohort (n = 211) P

Age, year 58.24 ± 11.6 59.97 ± 11.23 0.092
Sex 0.749

Male 226 (72.7) 156 (73.9)
Female 85 (27.3) 55 (26.1)

Stroke history 56 (18.0) 25 (11.9) 0.057
Hypertension 180 (57.9) 120 (56.9) 0.820
Hyperlipemia 44 (14.2) 36 (17.1) 0.364
Diabetes 56 (18.0) 46 (21.8) 0.283
Smoke 150 (48.2) 107 (50.7) 0.578
Atrial fibrillation 13 (4.2) 7 (3.3) 0.614
Cardiovascular 37 (11.9) 29 (13.7) 0.533
Onset-to-MRI time 0.502

< 24 hours 19 (6.1) 10 (4.7)
24–72 hours 292 (93.9) 201 (95.3)

Location of AIS 0.537
Penetrating artery 134 (43.1) 103 (48.8)
Cor-MCA 89 (28.6) 57 (27.0)
Cor-ACA 17 (5.5) 11 (5.2)
Cor-PCA 26 (8.4) 19 (9.0)
Multi-arteries 45 (14.5) 21 (10.0)

mRSbaseline 0.432
≤ 2 49 (15.8) 28 (13.3)
> 2 262 (84.2) 183 (86.7)

NIHSSbaseline 5 (3–7) 4 (2–7) 0.373
TOAST 0.191

Large-artery atherosclerosis 165 (53.1) 97 (46.0)
Cardioembolism 32 (10.3) 20 (9.5)
Small-artery occlusion 56 (18.0) 59 (28.0)
Other determined etiology 12 (3.9) 4 (1.9)
Undetermined etiology 46 (14.8) 31 (14.7)

Field strength of scanners 0.568
1.5T 169 (54.3) 120 (56.9)
3T 142 (45.7) 91 (43.1)

Outcome 0.972
Good 223 (71.7) 151 (71.6)
Poor 88 (28.3) 60 (28.4)

Data are presented as number of patients (%) except for mean ± standard deviation for age and median (interquartile range) for 
NIHSSbaseline. AIS = acute ischemic stroke, Cor-ACA = cortical branches of anterior cerebral artery, Cor-MCA = cortical branches of middle 
cerebral artery, Cor-PCA = cortical branches of posterior cerebral artery, mRSbaseline = baseline modified Rankin Scale score, NIHSSbaseline = 
baseline National Institutes of Health Stroke Scale score, TOAST = Trial of ORG 10172 in acute stroke treatment
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0.900) with a sensitivity and specificity of 0.717 and 0.788, 
respectively, in the validation cohort (Table 2, Fig. 2).

Establishment and Performance of the Combined 
Clinical-Radiomics Model

Independent clinical predictors, including sex, stroke 
history, diabetes, age, mRSbaseline, and NIHSSbaseline were 
combined with the radiomics score by multivariable logistic 
regression to create a final clinical-radiomics prediction 
model. It exhibited an AUC of 0.868 (95% CI 0.825–0.910) 
and balanced sensitivity and specificity of 0.739 and 0.861, 
respectively, in the training cohort. In the validation 
cohort, it showed an AUC of 0.890 (95% CI 0.844–0.936) 
and sensitivity and specificity of 0.817 and 0.841, 
respectively (Table 2, Fig. 2). 

The clinical-radiomics prediction model showed greater 
predictive performance than the clinical model in the 
training (vs. an AUC of 0.823, p = 0.004) and validation 
(vs. an AUC of 0.844, p = 0.004) cohorts. It also showed 
a greater performance than the radiomics model in both 

the training (vs. AUC of 0.767, p < 0.001) and validation 
cohorts (vs. AUC of 0.784, p = 0.002). 

A nomogram was constructed based on this model (Fig. 
3A). For each factor, we can obtain a point according to 
the patient’s clinical and radiomics information, and the 
total point corresponds to the risk of a poor outcome. 
Calibration curves and Hosmer–Lemeshow test (Fig. 3B) 
showed that the predicted probabilities of the nomogram 
were closely aligned with stroke outcome estimates in the 
training (p = 0.402) and validation cohorts (p = 0.764). 
DCA demonstrated that if the threshold probability in the 
clinical decision was greater than 0.06, using the nomogram 
to predict AIS outcomes provided a greater benefit than the 
clinical model (Fig. 3C). 

DISCUSSION

In this study, we established and compared the predictive 
performance of three models for AIS outcomes using a 
relatively large dataset. The prediction model incorporating 

Fig. 2. ROC curves of the radiomics model, clinical model, and clinical-radiomics model in the training (A) and validation (B) 
cohorts. ROC = receiver operating characteristic
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Table 2. Predictive Performance of Three Models in the Training and Validation Cohorts

Model
Training Cohort (n = 311) Validation Cohort (n = 211)

AUC (95% CI) Sensitivity* Specificity* AUC (95% CI) Sensitivity* Specificity*
Radiomics model 0.767 (0.709–0.825) 0.750 0.659 0.784 (0.712–0.855) 0.750 0.695
Clinical model 0.823 (0.775–0.871) 0.705 0.789 0.844 (0.788–0.900) 0.717 0.788
Clinical-radiomics model 0.868 (0.825–0.910) 0.739 0.861 0.890 (0.844–0.936) 0.817 0.841

*Balanced sensitivity and specificity at the cutoff yielding the largest Youden index value. AUC = area under the receiver operating 
characteristic curve, CI = confidence interval
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clinical factors and radiomics scores achieved satisfactory 
prediction of AIS outcomes and outperformed the individual 
clinical and radiomics models in discriminatory ability. 
Based on the combined clinical-radiomics prediction model, 
we developed a novel nomogram for clinicians and used DCA 
to demonstrate its clinical validity.

It has been shown that interventions are not necessarily 

effective in all stroke patients [23]. There is an increasing 
demand to formulate individualized treatments for different 
stroke patients, especially for those who cannot receive 
thrombolytic therapy. Accurate and prompt risk prediction 
by the nomogram allows optimal management and treatment 
strategies for patients with AIS, and patients with poor 
outcomes could be treated more aggressively and urged 

Fig. 3. The clinical-radiomics nomogram for predicting acute ischemic stroke outcomes. 
A. The developed nomogram based on the clinical-radiomics prediction model to predict the risk of poor stroke outcome. Diabetes: 0, no 
diabetes; 1, diabetes. Sex: 0, female; 1, male. Stroke history: 0, no stroke history; 1, stroke history; mRSbaseline: 0, ≤ 2; 1, > 2. B. Calibration 
curves for the nomogram in the training and validation cohorts. The green dashed line represents the ideal prediction and the red dashed line 
represents the predictive ability of the nomogram. The closer the dashed red line fit to the dashed green line, the greater the prediction accuracy 
of the nomogram. C. Decision curve analysis for the nomogram. The black line represents the net benefit of assuming no stroke patients have 
poor outcomes. The purple line is the net benefit of assuming all stroke patients have poor outcome. The orange line, green line, and blue 
line represent the expected net benefit of predicting stroke outcome using the clinical-radiomics model, clinical model, and radiomics model 
respectively. mRSbaseline = baseline modified Rankin Scale score, NIHSSbaseline = baseline National Institutes of Health Stroke Scale score 
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to undergo more intensive rehabilitation. Patients with a 
predicted good outcome will cooperate with treatment with 
a more positive attitude, and overtreatment can be avoided.

The use of radiomics for stroke prognosis is promising. 
Qiu et al. [24] used it to anticipate patient recanalization 
and demonstrated that its performance was better than that 
of conventional thrombus imaging features, such as length, 
volume, and permeability. Cui et al. [25] fused radiomics 
features from six MR modalities with clinical factors to 
predict stroke outcomes. The time lag between onset and 
MRI scans was not clear in their study. The final AUC was 
> 0.8, but the total sample size was only 70, which is far 
smaller than the sample size of our study. Tang et al. [26] 
constructed an R score with radiomics features extracted 
from perfusion maps and DWI and found that the clinical-
radiomics nomogram combining radiomics score, clinical 
information, and treatment options reached an AUC of 
0.886 and 0.777 in predicting favorable outcomes at 7 
days and 3 months, respectively, after onset. Nevertheless, 
there was no significant difference between the AUC of 
the clinical nomogram and clinical-radiomics nomogram, 
and the absence of long-term clinical assessment in the 
training dataset reduced the evidence level. Wang et al. 
[27] developed a clinical-radiomics nomogram including 
age, NIHSS score at 24 hours post-admission, hemorrhage, 
and radiomics score (just from DWI) to predict the 3-month 
outcome of AIS patients; the final AUC was 0.80 and 0.73 
in the training and validation cohorts. The nomogram in 
our study incorporated more clinical factors such as sex, 
stroke history, and diabetes; additionally, we calculated 
the corresponding ADC maps based on DWI and extracted 
more radiomics features. The clinical-radiomics model in our 
study achieved an AUC of 0.868 and 0.890 in the training 
and validation cohorts, respectively, demonstrating its 
excellent predictive value. 

Among the 14 radiomics features selected, GLN and 
wavelet feature cluster prominence were the best predictors; 
the former measures the similarity of gray-level intensity 
values in the image; a lower GLN value correlates with a 
greater similarity, and the latter implies asymmetry about 
the mean. Both represent the heterogeneity of the infarcts. 
Therefore, higher values indicate higher signal heterogeneity 
of the infarcted lesion, the possibility of lesion progression 
or complications induced by other pathological changes, 
and a worse outcome. 

Regarding clinical factors, multivariable logistic 
regression analysis showed that age, sex, stroke history, 

diabetes, NIHSSbaseline and mRSbaseline were independent 
predictors of AIS outcome. Age, NIHSSbaseline, and mRSbaseline 
comprised a larger proportion of the nomogram than the 
other clinical features. The immunity of elderly patients 
is reduced, and various complications are prone to occur; 
the latter two reflect the severity of stroke. Several studies 
have demonstrated that these factors are more stable and 
effective predictors [28,29]. Diabetes leads to a multiorgan 
pathology, and hyperglycemia negatively affects fragile 
cerebral circulation during ischemia. It is associated with 
death and recurrence after stroke [30]. Stroke history is also 
related to adverse events in patients with stroke [31]. In 
our study, the number of women was much lower than that 
of men, which may be attributed to the protective effect 
of estrogen, which can decrease cerebrovascular tone and 
increase cerebral blood flow [32]. Nevertheless, consistent 
with the result of a previous study [33], women are more 
likely to get poor outcomes, attributed to an older age 
of onset, more severe stroke, less social support, a higher 
incidence of post-stroke depression, and immunosuppression 
after stroke [34].

Despite these interesting findings, our study had some 
limitations. First, there may have been a selection bias, as 
patients who were lost to follow-up were excluded. Second, 
this was a single-center study, and a prospective validation 
cohort from other hospitals is needed in future studies. 
Third, all radiomics features were extracted only from the 
lesion ROIs of DWIs and ADC maps, and the predictive 
performance of the nomogram may be better if more MRI 
sequences are used to extract features. Finally, genomic 
features were not considered in this study, based on the 
premise that genetically determined risk of depression has 
been shown to adversely affect stroke outcomes [35].

In conclusion, the clinical-radiomics model incorporating 
clinical factors and radiomics scores more accurately 
predicted the outcomes of AIS patients 6 months after 
hospital discharge than individual clinical or radiomics 
models. This could assist clinicians in formulating 
corresponding treatment plans at the early stage of onset, 
which may significantly improve the ultimate outcome of 
stroke patients. 
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