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Abstract

Probenecid has been used for decades in the treatment of gout but recently has also been

found to improve outcomes in patients with heart failure via stimulation of the transient

receptor potential vanilloid 2 (TRPV2) channel in cardiomyocytes. This study tested the use

of probenecid on a novel mouse model of peripartum cardiomyopathy (PPCM) as a potential

treatment option. A human mutation of the human heat shock protein 20 (Hsp20-S10F) in

mice has been recently shown to result in cardiomyopathy, when exposed to pregnancies.

Treatment with either probenecid or control sucrose water was initiated after the first preg-

nancy in both wild type and Hsp20-S10F mice. Serial echocardiography was performed dur-

ing subsequent pregnancies and hearts were collected after the third pregnancies for

staining and molecular analysis. Hsp20-S10F mice treated with probenecid had decreased

mortality, hypertrophy, TRPV2 expression and molecular parameters of heart failure. Pro-

benecid treatment also decreased apoptosis as evidenced by an increase in the level of Bcl-

2/Bax. Probenecid improved survival in a novel mouse model of PPCM and may be an

appropriate therapy for humans with PPCM as it has a proven safety and tolerability in

patients with heart failure.

Introduction

Peripartum cardiomyopathy (PPCM) is a potentially life-threatening disease in which the car-

diac function of the mother drops significantly between the last month of pregnancy and the

first months postpartum [1]. Though as there is no specific test to confirm the disease, it
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remains a diagnosis of exclusion in women presenting with an idiopathic cardiomyopathy

“towards the end of pregnancy or in the months following delivery, abortion or miscarriage,

without other causes for heart failure, and with a left ventricular (LV) ejection fraction (EF) <

45%” as per the latest position statement from the European Society of Cardiology [2]. It often

presents with development of dilated cardiomyopathy (DCM) and can present with variable

degrees of signs and symptoms of decreased cardiac function and increased natriuretic pep-

tides consistent with heart failure with reduced ejection fraction (HFrEF), though in contrast

to DCM the prognosis for PPCM is likely better as long as subsequent pregnancies are avoided

[1,3–5]. The disease has significant implications for the patient’s quality of life as subsequent

pregnancies are strongly linked to deteriorating cardiac function and are contraindicated [6].

PPCM is diagnosed in 1 in 2000 to 4000 live births in the United States [7,8] and more fre-

quently in other parts of the world such as Nigeria and Haiti, likely due to cultural and genetic

risk factors [9,10]. Both of these findings possibly underestimate the actual incidence of

PPCM, as some of its findings may be confused with normal physiologic changes of pregnancy

[10]. Even with current medical therapy, the outcome for patients with PPCM is still subopti-

mal [11].

Like other forms of HFrEF, PPCM is usually treated with renin-angiotensin inhibitors,

beta-blockers, diuretics, and nitrates [10], as there is no disease-specific therapy available for

PPCM, with the possible exception of bromocriptine [12]. The relatively few advancements in

treatment of PPCM can be partially explained by the paucity of appropriate animal models to

study this disease [13].

While studying a naturally-occurring polymorphism in the Hsp20 gene (S10F), we recently

discovered that this mutation not only diminished the cardioprotective effects of Hsp20 in a

transgenic mouse model, but mutant female mice also developed DCM during the course of 2

to 4 pregnancies that resulted in the death of 70% after three pregnancies and 100% after the

fourth [14]. It is well known that Hsp20 is a small heat shock protein that exhibits cardiopro-

tective effects via inhibition of several signaling cascades that result in hypertrophy, apoptosis,

and myocardial ischemia [15–18]. Levels of total and phosphorylated Hsp20 are known to

increase in patients with dilated and ischemic cardiomyopathy [19] and mutations of the pro-

tein have been found in DCM patients in various populations [20–22].

This Hsp20-S10F mouse model of PPCM demonstrated increasingly severe signs of DCM

after multiple pregnancies, consistent with the classic presentation of PPCM. In addition to

the decreased survival, there was an increase in LV end systolic and diastolic volume and a

decreased EF. Molecular effects included an increase in atrial naturietic peptide (ANP), beta

natriuretic peptide (BNP), and Caspase-3 activity. Thus, it was proposed that the mouse con-

taining the Hsp20 S10F mutation would make a valid and potentially clinically relevant model

of PPCM to study various therapeutic options [14].

As the Hsp20 S10F mutation is also associated with impaired calcium handling and

increased apoptosis by impeding Hsp20’s interaction with the proapoptotic protein Bax [14],

we hypothesized that transient receptor potential vanilloid 2 (TRPV2) stimulation may play a

protective role in the development of PPCM in this mouse model. The TRPV2 channel is a

stretch and agonist-activated calcium channel [23]. Our laboratory has previously described

that stimulation of TRPV2 with an agonist, probenecid, results in positive inotropic effects

through an increase in cytosolic calcium via calcium-induced calcium release. Furthermore,

other studies have also shown that probenecid can increase apoptosis via inhibition of pan-

nexin-1 channels (PANX1) but not through Bax [24,25]. These studies have been conducted in

Jurkat cells and in ex vivo Langendorff rat hearts. Conversely, our own mouse studies have

demonstrated that probenecid does not increase the rate of apoptosis even in the context of
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improved inotropism [26,27]. Therefore, the purpose of this study was to determine if the

TRPV2 agonist probenecid could have an effect on this novel PPCM mouse model [14].

There are important clinical implications of our study, as probenecid has been safely used

in children and adults as an adjunct to treatment with antibiotics and for the prevention of

gout for decades [28] and has been used throughout the first trimester with no reported con-

genital birth defects. It has also been shown to have no adverse effects on fetal development,

making it an attractive and easily translatable treatment for PPCM [29].

In order to test the hypothesis, we treated wild-type and Hsp20-S10F mutant mice with oral

probenecid and measured the cardiac function using echocardiography at various time points

before, during, and after pregnancies and compared the survival of control and treated mice

over the course of three pregnancies.

This study demonstrates that probenecid therapy improved survival in a novel mouse

model of peripartum cardiomyopathy, likely through modulation of calcium handling, though

the exact mechanism of action in this model will be the subject of further study.

Materials and methods

Animals

All animal procedures were performed with the ethical and technical approval of the Institu-

tional Animal Care and Use Committee (IACUC) of the University of Cincinnati and in accor-

dance with the Eighth Edition of the Guide for the Care and Use of Laboratory Animals [30].

All lab members involved in animal research received specialized training from Laboratory

Animals Medical Services, the centralized animal care program at the University of Cincinnati.

Animal data included in this study was obtained over the years 2015 to 2019. In addition, the

following criteria were used as indications for immediate euthanasia: respiratory distress/fail-

ure, aberrant inactivity with obvious discomfort, severe apparent pain and/or recommenda-

tions from vivarium veterinarian staff. If any of these criteria were met, the animal was

immediately euthanized in the interest of minimizing suffering. Euthanasia was performed

using medical- or technical-grade compressed CO2. The displacement rate was 10–30% of the

chamber cage volume/minute regulated by a flow meter. Consistent with the above guidelines,

housing and nesting material were included in cages, and any apparent discomfort was imme-

diately reported with appropriate intervention; analgesics or anesthetics were not utilized dur-

ing this study. Animals were observed by a lab member at least once every 24 hours and by an

animal technician at least once every 12 hours. In total, 3 animals were euthanized due to

severe respiratory distress secondary to heart failure; 15 animals were found dead due to

apparent heart failure; 30 were euthanized for analysis at proposed endpoint of study. The gen-

eration and initial characterization of the Hsp20-S10F mice (FVB/n background) were previ-

ously described [14]. WT and Hsp20-S10F FVB/n littermate female mice aged 10–12 weeks

had echocardiography measurements taken as baseline parameters. After echocardiography,

age matched WT males (FVB/n) were added to individual cages with either an Hsp20-S10F or

WT female. All mice were kept in the same room, with a 12/12 hour light/dark cycle with

unlimited access to food and water. Mid pregnancy (Mid P1 and Mid P2) measurements were

taken between day embryonic day 14 (E14) and 18 (E18). Post pregnancy (Post P1 and Post

P2) measurements were taken 7–10 days after delivery (See Fig 1A).

Echocardiography

All echocardiographic studies were performed as previously described [26]. Briefly, mice were

anesthetized with isoflurane and placed on the heated stage of the Vevo 2100. Parasternal long

axis (PSLAX) and short axis (SAX) images were recorded and then analyzed on a separate
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work station with VevoStrain software (Vevo 2100, v1.6, Visualsonic, Toronto, Canada). From

the M-mode images, left ventricular cavity size for systole and diastole (LV dia;s, LV dia;d, LV

Vol;s and LV Vol;d) were measured. Heart rate (HR), stroke volume (SV), and the echocardio-

graphic calculation for fractional shortening (FS), ejection fraction (EF) and cardiac output

(CO) were obtained using the Vevo software. Treatment and control groups were assessed on

the same day by the same technician in order to minimize variation.

Speckle tracking measurements

Speckle tracking based displacement and strain values were calculated from the SAX view for each

individual wall segment using VevoStrain software (Vevo 2100, Version 1.1.1 B1455, VisualSonics)

as previously described [31]. Briefly, a single blinded reader loaded the B-mode cine loop into

VevoStrain software and ECG measurements taken synchronously with the B-mode cine loop

were used to select three to four cardiac cycles out of the cine loop. An M-mode trace across the

heart of the selected cardiac cycles was visually inspected to qualitatively confirm that ultrasound

imaging of heart contractility matched the ECG data. A frame during diastole was selected, and the

endocardial border was traced by the observer. The epicardial border was automatically selected by

the software and subsequently confirmed by the observer. The VVI software was initiated to com-

pute the radial displacement. Appropriate speckle tracking was verified by manual inspection of

the software-determined movement of the traced borders over three cardiac cycles. B-mode cine

loops were selected to minimize image artifacts and ensure good visualization of the borders.

Probenecid treatment

After the Post P1 measurement, both WT and Hsp20-S10F mice were randomized to probene-

cid-treated sucrose water or untreated sucrose water as control. To avoid subjective bias, mice

Fig 1. Hsp20-S10F study timeline and survival curve. (A) Schematic timeline of the three pregnancies for WT and

Hsp20-S10F mice. (B) Kaplan Meier mouse survival curve for WT control (n = 14/4), WT treated with probenecid

(n = 10/2), Hsp20-S10F control (n = 12/9), and Hsp20-S10F treated with probenecid (n = 12/3).

https://doi.org/10.1371/journal.pone.0230386.g001
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were randomized via numbers assigned at birth; team members were blinded to Post P1 mea-

surements until treatment groups had been assigned. Appropriate sample size was determined

for multiple independent study groups with dichotomous endpoints (survival vs mortality). By

extrapolating expected mortality, a sample size of 12 was determined to provide a power of

85% when alpha value was set to 0.05. 48 mice were used in total with 12 assigned to

Hsp20-S10F treatment group, 12 to Hsp20-S10F control, 14 assigned to WT control, and 10 to

WT treatment; each mouse was treated as a single experimental unit for analysis. Despite our

efforts to maintain similar sample sizes, the mortality associated with the PPCM model caused

the actual sample sizes to be different at the last time point. Probenecid was dissolved in water

containing 5% sucrose at a concentration of 0.5 mg/mL. Both probenecid-treated and sucrose

water were administered via bottles in the animals’ home cage to minimize intrusion and

ensure that all treatment groups were receiving treatment simultaneously. Water was changed

twice a week, and the volume was measured before and after the consumption to determine

the approximate dose. The calculated daily probenecid dose was 108.64±6.26 mg/kg/day. The

primary experimental outcome for this project is mortality rate with secondary outcomes

including cardiac function (including displacement/strain), ANP and TRPV2 mRNA, and

TRPV2, Bcl-2/Bax, and p-Akt/t-Akt protein expression.

Real-time quantitative RT-PCR (qRT-PCR)

Total RNA was isolated (Qiazol method, Qiagen, Venlo, Limburg, Netherlands) and cDNA

synthesized (High Capacity RNA-to-cDNA kit, Applied Biosystems, Carlsbad, CA) per manu-

facturer’s instructions. Expression levels were determined using the following primer pairs:

TRPV2, sense 5’- CTACTGCTCAACATGCTC-3’ and anti-sense 5’- CTCATCCAGGTAT
ACCATCC-3’, atrial natriuretic peptide (ANP), sense 5’- GGGGGTAGGATTGACAGGAT and

anti-sense 5’- CAGAGTGGGAGAGGCAAGAC, and vascular endothelial growth factor A

(VEGF), sense 5’-TTACTGCTGTACCTCCACC and antisense, 5’-ACAGGACGGCTTGAAG
ATG. The primer pairs for GAPDH were sense, 5’-CATGGCCTTCCGTGTTCCTA-3’ and

anti-sense 5’-CCTGCTTCACCACCTTCTTGAT-3’. All PCR experiments were performed as

described[26].

Western blot analysis

Protein was isolated from heart samples (n = 4 for each group), as previously described[32].

Briefly, heart samples were homogenized in the following buffer: 20mM HEPES (pH 8.0),

150mM sodium chloride, 1% sodium deoxycholate, 1% sodium dodecyl sulfate, protease

inhibitor cocktail (P8340; Sigma Aldrich, St. Louis, MO) and phosphatase inhibitor cocktail

(EMD, Merck, Darmstadt, Germany) and centrifuged at 100,000xg for 20 minutes. Protein

concentration and western blot analysis were conducted as previously described [26]. For each

sample, 100μg of protein was loaded on the same 10% gel (Criterion gel, Bio-Rad, Hercules,

CA) for TRPV2 (AB5398, Millipore, Bellerica, MA). Similarly, 50μg of protein of each sample

was loaded on 12% gels (Criterion gel, Bio-Rad, Hercules, CA) for Bax (Cell Signaling Tech-

nologies, 2772), Bcl-2 (Santa Cruz Biotechnolgies, sc-783), p-Akt (Cell Signaling Technologies,

9271) and total-Akt (t-Akt, Cell Signaling Technologies, 9272). The blots were stripped

(Restore Western Blot Stripping Buffer, ThermoScientific, Rockford, IL) and normalized

with GAPDH (sc-25778, Santa Cruz Biotechnologies, Santa Cruz, CA). Proteins bands were

visualized using Western Lightning reagents (PerkinElmer, KY) and the FluorChemE (Pro-

teinSimple, CA). The densitometry of the bands was determined using AlphaEase software

(ProteinSimple formally Alpha Innotech, CA) and normalized to GAPDH for loading control.
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Connective tissue analysis

Hearts were fixed in 4% paraformaldehyde overnight and paraffin embedded by the CCHMC

Department of Pathology Research Core (Cincinnati, Ohio). The paraffin-embedded blocks

were cut into 6μm sections and mounted on slides. Longitudinal heart sections were stained

with Masson’s Trichrome and images from the left ventricle were analyzed using the Image J

software as previously described [31]. The average fibrotic area for each group was determined

and each group was analyzed using student t-test.

Statistical analysis

Statistical analysis was performed with SigmaStat, now incorporated into SigmaPlot v.13.0.

Unit of analysis for each dataset was treatment vs control treatment group with further distinc-

tion between WT or Hsp20-S10F. Data were tested for normality and equal variance. For two-

group comparison of parametric data a Student’s t-test was performed, while statistical signifi-

cance between multiple groups was assessed by analysis of variance (ANOVA) for one-way or

two-way mixed design with repeated measures as appropriate. Where significance was indi-

cated, post-hoc testing was performed using the Holm-Sidak method for comparing individual

means and correcting for family-wise error or the Fisher-LSD method for all pairwise multiple

comparison procedures (SigmaPlot v.13.0, Systat Software, Inc., San Jose, CA). Data are pre-

sented as means ± S.E.M., and differences were regarded as significant at P� 0.05. Percent

survival is plotted on the Kaplan-Meier graph and significance of the trends was determined

using Log-rank (Mantel-Cox) Test.

Results

Baseline data revealed no significant differences between groups

All experimental groups showed no significant difference among primary or secondary experi-

mental outcomes, including cardiac function, survival prior to treatment, or exposure to prior

testing (Table 1).

Probenecid improved survival in Hsp20-S10F mice

Survival of control and treated WT and Hsp20-S10F female mice was compared during the

course of three pregnancies. As shown in Fig 1B, treatment with probenecid greatly increased

the likelihood of survival of Hsp20-S10F mice (75%; n = 9/12) when compared to control

Hsp20-S10F mice (25%; n = 3/12). All Hsp20-S10F mice survived the first pregnancy, though

Table 1. Mouse echocardiographic data from WT control, WT treated with probenecid, Hsp20 S10F control, and Hsp20 S10F treated with probenecid at baseline.

Baseline WT Control WT Treated S10F Control S10F Treated

n = 13 n = 8 n = 8 n = 14

Heart Rate 397.38±15.58 398.38±13.94 384.00±27.74 393.00±14.42

Systolic Diameter 2.56±0.06 2.75±0.08 2.89±0.15 2.87±0.09

Diastolic Diameter 3.87±0.06 3.93±0.08 4.09±0.11 3.96±0.06

LV Systolic Volume 23.94±1.42 28.64±2.1 33.14±4.21 31.95±2.32

Stroke Volume 41.06±1.14 38.90±2.01 41.50±1.49 36.86±0.9

Fractional Shortening 33.99±0.77 30.05±1.18 29.67±1.9 27.81±1.13

Cardiac Output 16.38±0.89 15.7±1.33 15.70±0.84 14.47±0.68

WT, wild type mice; S10F, Hsp20 S10F mice; LV, left ventricle.

https://doi.org/10.1371/journal.pone.0230386.t001
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3/12 control Hsp20-S10F mice died after the second pregnancy and 6/9 of the surviving mice

died immediately following or during the third pregnancy. The likelihood of survival of the

treated Hsp20-S10F mice, 75%, was comparable to those of control (10/14) and treated (8/10)

WT mice (71% and 80% survivability, respectively P = 0.05). We observed that the WT control

mice had a higher than expected mortality rate, which may have been secondary to the stress

induced by frequent adding and removing of males.

Cardiac function was preserved in treated Hsp20-S10F mice

Echocardiographic assessment demonstrated a decrease in systolic function in all groups over

time as measured via EF. Further, the EF was higher in WT control (n = 13) and WT treated

(n = 8) mice compared to Hsp20-S10F control (n = 8) and Hsp20-S10F treated (n = 14) mice

(P = 0.015). There was no difference in EF between the WT control versus WT treated or

Hsp20-S10F control versus Hsp20-S10F treated groups (Fig 2A). As shown in Fig 2B, all four

groups investigated had an increase in LV diastolic volume as measured at each time point

compared to baseline (P<0.001). Treatment with probenecid did not have an effect on the

increase in LV diastolic volume for any group of mice Post P2. LV mass, normalized to body

weight (LV mass/BW) remained unchanged between all the groups until Post P2, where the

Fig 2. Measurement of echocardiography parameters in Hsp20-S10F mice. Echocardiographic measurement of ejection fraction (EF). (A) Longitudinal

echocardiographic study of the EF for WT control (n = 13), WT treated with probenecid (n = 8), Hsp20-S10F control (n = 8), and Hsp20-S10F treated with probenecid

(n = 14). �P = 0.015 for WT mice (control and treated) compared to Hsp20-S10F mice (control and treated). Two-way ANOVA repeat measures. (B) Longitudinal

echocardiographic study of the LV diastolic volume for WT control, WT treated with probenecid, Hsp20-S10F control, and Hsp20-S10F treated with probenecid.
��P<0.001 for all four groups compared to baseline. Two-way ANOVA repeat measures. (C) Longitudinal echocardiographic study of LV mass normalized to body weight

for WT control, WT treated with probenecid, Hsp20-S10F control, and Hsp20-S10F treated with probenecid. †P = 0.049 for Hsp20-S10F control versus WT control, WT

treated and Hsp20-S10F treated mice. Two-way ANOVA repeat measures. (D) Representative B-mode and M-mode echocardiographic images.

https://doi.org/10.1371/journal.pone.0230386.g002
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Hsp20-S10F untreated mice had a significant increase compared to the other 3 groups

(P = 0.049, Fig 2C, with representative images in Fig 2D).

Speckle tracking measurements demonstrated minimal changes in cardiac

function

Speckle tracking derived data demonstrated a trend toward a decrease in radial displacement

in the Hsp20-S10F control group from baseline to Post P2 (0.54±0.03 and 0.45±0.02;

Fig 3. Measurement of advanced echocardiography parameters in Hsp20-S10F mice. Radial displacement determined from speckle tracking derived data.

(A) Radial displacement (mm) measured at baseline and Post P2 for Hsp20-S10F control and treated mice. �P = 0.027 for Hsp20-S10F control mice. Paired

Student’s t-test. (B) Representative radial displacement images for Hsp20-S10F control and treated mice.

https://doi.org/10.1371/journal.pone.0230386.g003

Table 2. Mouse echocardiographic data from WT control, WT treated with probenecid, Hsp20 S10F control, and Hsp20 S10F treated with probenecid at Post P2.

Post-Pregnancy 2 WT Control WT Treated S10F Control S10F Treated

n = 13 n = 8 n = 8 n = 14

Heart Rate 444.77±9.50� 446.13±20.29 427.22±13.85 397.29±17.65

Systolic Diameter 3.43±0.15� 3.24±0.14� 3.88±0.14� 3.62±0.16�

Diastolic Diameter 4.82±0.12� 4.63±0.16� 5.08±0.15� 4.93±0.13�

LV Systolic Volume 50.12±5.29� 43.02±4.68 66.36±5.75� 57.15±6.35�

Stroke Volume 59.85±2.21� 56.62±4.71� 57.88±3.69� 58.65±4.00�

Fractional Shortening 29.29±1.47� 30.00±1.74 23.69±1.14�† 26.79±1.79

Cardiac Output 26.63±1.15� 25.38±2.48� 24.481.33� 23.02±1.53�

WT, wild type mice; S10F, Hsp20 S10F mice; LV, left ventricle

�P<0.05 compared to baseline (Table 1).

†P<0.05 compared to WT control Post P2.

Two-way ANOVA, post-hoc Fisher LSD method for all pairwise multiple comparisons.

https://doi.org/10.1371/journal.pone.0230386.t002
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P = 0.027, n = 9) that was not observed in the treated group (0.54±0.03 and 0.49±0.03;

P = 0.319, n = 14) (Fig 3A with representative images in Fig 3B). Probenecid did not have a sig-

nificant effect on the radial displacement of the WT control (0.53±0.19 and 0.57±0.038,

n = 11) and WT treated (0.52±0.86 and 0.58±0.39, n = 7) mice from baseline to Post P2,

respectively.

Fig 4. Molecular analysis of mRNA and protein. qRT-PCR and western blot analysis of WT control, WT treated with

probenecid, Hsp20-S10F control, and Hsp20-S10F treated with probenecid (n = 4/group) mice. (A) ANP mRNA

expression normalized to WT control. �P<0.002 for Hsp20-S10F control compared to all other groups. (B) VEGF

mRNA expression normalized to WT control. �P = 0.026 for Hsp20-S10F treated compared to Hsp20-S10F control.

(C) TRPV2 mRNA expression normalized to WT control. �P = 0.035 for Hsp20-S10F treated compared to Hsp20-S10F

control. (D) Protein expression of TRPV2 normalized to GAPDH. �P = 0.039 for Hsp20-S10F treated compared to

Hsp20 S10F control, ��P = 0.035 for Hsp20-S10F treated compared to WT treated. Two-way ANOVA, post-hoc Fisher

LSD method for all pairwise multiple comparison procedures.

https://doi.org/10.1371/journal.pone.0230386.g004

Fig 5. Determination of apoptotic proteins. Western blot analysis of WT control, WT treated with probenecid,

Hsp20 S10F control, and Hsp20 S10F treated with probenecid (n = 4/group) mice. (A) Quantitative Bcl-2/Bax ratio

after normalization to GAPDH. �P = 0.039 for WT control compared to Hsp20-S10F control. (B) Quantitative p-Akt/

t-Akt ratio after normalization to GAPDH (�P<0.05). Two-way ANOVA, post-hoc Fisher LSD method for all pairwise

multiple comparison procedures.

https://doi.org/10.1371/journal.pone.0230386.g005
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Probenecid treatment blunted the cardiac dysfunction of treated

Hsp20-S10F mice in comparison to the dysfunction found in the

Hsp20-S10F control mice

There was no significant difference between the groups at baseline. Almost every echocardio-

graphic parameter measured changed from baseline (Table 1) to Post P2 (Table 2). Treatment

with probenecid mitigated some of the effects of pregnancy in both the control and

Hsp20-S10F mice, though not significantly. The Hsp20-S10F treated mice, while still having a

decrease in cardiac function compared to the WT control and WT treated mice, had improved

function as compared to the Hsp20-S10F control mice, as evidenced by a decreased heart rate,

and decreased systolic volume. Table 2 lists the full comparison of the echocardiographic data

from baseline to Post 2. Statistical comparisons were made between the WT control and

Hsp20-S10F control mice, as well as between WT treated and Hsp20-S10F treated mice. The

only significant change, with the exception of EF, diastolic volume and LV mass/BW (as

described above and in Fig 2) was the decrease in FS in the Hsp20-S10F control as compared

to WT control (P = 0.043).

mRNA expression of ANP was increased in the Hsp20-S10F control mouse

and blunted with probenecid treatment

The Hsp20-S10F control mice demonstrated a marked increase in mRNA expression of ANP

compared to WT control (2.7 fold) and Hsp20-S10F treated (4.8 fold) mice. Importantly, pro-

benecid treatment of the Hsp20-S10F control mice resulted in decreased ANP expression lev-

els, which were comparable to WTs (Fig 4A).

mRNA expression of VEGF was increased in the probenecid treated

HSP20-S10F mouse

The VEGF mRNA expression was not different between the WT control, WT treated and

S10F control mice. The Hsp20-S10F treated mice had an increase in expression compared to

the Hsp20-S10F control (2.1 fold) (Fig 4B).

Fig 6. Histological analysis of mouse heart. Fixed heart tissues from WT control, WT treated with probenecid, Hsp20-S10F control, and

Hsp20-S10F treated with probenecid (n = 4/group) mice stained with Masson’s Trichrome for (A) percentage connective tissue and (B)

representative images of stained slides.

https://doi.org/10.1371/journal.pone.0230386.g006
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mRNA and protein expression of the TRPV2 channel was decreased in the

Hsp20-S10F probenecid treated mouse

The stretch activated TRPV2 channel demonstrated a slight, but not significant, increase in

mRNA expression in the Hsp20-S10F control compared to WT control and WT treated mice.

Treatment with probenecid in the HSP20-S10F mice significantly decreased TRPV2 mRNA

expression relative to the Hsp20-S10F control (P = 0.035; Fig 4C). Similarly, the protein

expression of TRPV2 was decreased in the Hsp20-S10F treated mice compared to Hsp20-S10F

control mice (P = 0.039) and WT treated mice (P = 0.039, Fig 4D).

Differences in markers of apoptosis among the groups

Expression levels of proteins involved in apoptosis were investigated to determine if probene-

cid treatment blunted these pathways. The Hsp20-S10F control mice had a decreased

(P = 0.039) ratio of Bcl-2/Bax as compared to WT control, indicating an increase in this apo-

ptotic pathway (Fig 5A). Levels of p-Akt relative to t-Akt (which also mediates cardiac hyper-

trophy), were significantly decreased in the WT treated compared to the WT control mice

(P = 0.014) and in the Hsp20-S10F treated and compared to the Hsp20-S10F control mice

(P = 0.012, Fig 5B).

Probenecid treatment did not have an effect on connective tissue formation

Masson’s Trichrome stained slides indicated that there was a decrease (that was not statistically

significant) in the amount of fibrosis in the Hsp20-S10F treated group as measured by the per-

cent of connective tissue in comparison to the other three groups Post P2 (Fig 6A with repre-

sentative images in Fig 6B).

Discussion

In this study, we demonstrate for the first time that probenecid treatment improves outcomes

in a mouse model of PPCM, induced via the human Hsp20 S10F mutation. Other mouse mod-

els of PPCM have been previously reported and used to test novel therapeutic options for

patients with this disease. Most notably, the lack of peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PGC-1α) caused a disruption in both cardiac angiogenesis path-

ways, vascular endothelial growth factor (VEGF) and prolactin, leading to PPCM. Treatment

with VEGF proteins and bromocriptine prevented cardiac dilation and left ventricular dys-

function [8,33]. Furthermore, G alpha(q) cardiac overexpression mice that had increased apo-

ptosis and a PPCM phenotype also had improved outcomes and cardiac function when

caspase activity was inhibited [34]. The mouse model used in the current study [14] shares sev-

eral characteristics with these mouse models including the development of cardiac dilation as

well increased apoptosis. Lastly, others have reported that prolactin and angiogenesis associ-

ated molecules such as cathepsin D (cleaves prolactin) and microRNA-146a (downstream

mediator of a prolactin fragment) also mediate the development of PPCM in a cardiac specific

Stat3-/- mouse model [35,36]. The mouse model used in this study also shares several impor-

tant phenotypes with the human presentation of the disease, including otherwise normal func-

tion and survival, when the female mice are not exposed to pregnancy and worsening function

and death when exposed to subsequent pregnancies. Further comparison among models is

limited, as the underlying pathology of PPCM is not well understood.

Probenecid has been previously demonstrated to improve outcomes in an animal model of

ischemic cardiomyopathy [27], in patients with HFrEF [37]. More recently, in a large popula-

tion study of almost 40,000 elderly patients that were treated for gout, probenecid therapy was
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found to be associated with decreased risk of heart failure and heart failure related hospitaliza-

tion (as well as decreased incidence of myocardial infarction and stroke) in comparison to

patients treated with allopurinol [38]. Moreover, probenecid has a long clinical record of safety

in the general population with minimal side effects [39] and case reports of its use throughout

pregnancy have not shown adverse fetal effects [40]. Lastly, the estimated dose administered in

this study was approximately 100 mg/kg/day, which when scaled allometrically is lower than

the standard humane dosage of 1 gram orally twice per day (for a 70 kg. patient) [41]. This

dose is consistent with our prior publication that demonstrated that the 100mg/kg dose was

sufficient for increasing EF in mice [26,27].

In this study, cardiac function was assessed serially in both the WT and the Hsp20-S10F

mutant female mice throughout the pregnancies. In contrast to a previous study in these mice

[14], we attempted to obtain echocardiography during and between pregnancies. This necessi-

tated removing male partners to prevent back-to-back pregnancies. In this respect, our studies

took much longer than the previous 9 weeks (up to 6 months) and therefore, these results

should be compared with caution. In addition, with regards to the mutant mice, we found a

strong survival bias, as the mice with preserved function tended to survive through more preg-

nancies. The current study design, and the use of mice at older time points, probably contrib-

uted to the observed survival bias. As it pertains to cardiac structure, pregnancy has been well

documented in humans to induce physiological hypertrophy and increase left ventricular vol-

ume, though the effect of pregnancy in mice is less clear [42–45]. In our study, we found that

both the WT and the Hsp20-S10F groups develop dilation and subsequently higher stroke vol-

ume and cardiac output after two pregnancies, however in the absence of a non-pregnant con-

trol it is possible that some of the observed effects may be age related and only the untreated

S10F group demonstrated an increase in LV mass. These findings are consistent with not only

cavity dilation, but also with LV remodeling that is commonly observed during the develop-

ment of heart failure [46].

The Hsp20-S10F PPCM model also had significantly increased mRNA levels of ANP, con-

sistent with the development of pathological hypertrophy. Additionally, TRPV2 has been

found by our laboratory, as well as others, to be a stretch activated channel that increases

expression under stress/stretch conditions [47,48]. In this model, we found that TRPV2

expression did not change in WT mice, but was significantly higher in untreated Hsp20-S10F

mice in comparison to the treated which is consistent with the observed LV remodeling in the

untreated mice.

Furthermore, it has been previously demonstrated that Hsp20 promotes angiogenesis via

VEGF (though the effect of the S10F mutation in VEGF expression has yet to be published)

[49]. We found that VEGF was increased in the treated mice, a finding that is congruent with

the current fund of knowledge that impaired VEGF signaling is associated with cardiac dys-

function in mice. However, late pregnancy is a strong anti-angiogenic environment, in part

due to the secretion by the placenta of anti-angiogenic factors like a sFlt1 that bind to and neu-

tralize soluble members of the VEGF family [8]. In contrast, we have found that probenecid

increases VEGF post-pregnancy and while the mechanism in unclear, the outcome in our

model was significantly improved.

Thus, while the precise mechanism of action of probenecid in this mouse model was not

the subject of investigation, it may be the case that TRPV2 activation reduced pathologic

remodeling, possibly through improved calcium cycling in this model with impaired calcium

handling [21] or potentially through increased VEGF production. These findings are still of

course preliminary. Further, the generalizability of the TRPV2 findings to human population

will require further study since even though our data in animals demonstrated increased

TRPV2 expression in response to stress [47], some researchers have reported decreased
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TRPV2 expression in human subjects with heart failure[50], while others have found no differ-

ence [51].

While Hsp20, under physiologic conditions, protects against apoptosis [20], mutations,

such as P20L [20] and S10F [14], abrogate these cardioprotective effects. The untreated

Hsp20-S10F mice in our study had similar decreases in the Bcl-2/Bax and p-Akt/t-Akt ratios.

Interestingly, we found that probenecid therapy had an antiapoptotic effect via increasing the

Bcl-2/Bax pathway ratio. Furthermore, probenecid treatment decreased Akt phosphorylation,

with no change in total Akt expression in both the WT and the Hsp20-S10F mice, decreasing

the overall ratio of p-Akt/t-Akt. However, since the p-Akt/t-Akt ratio was also decreased in the

Hsp20-S10F control mice, there are likely multiple other factors involved in the regulation of

apoptosis in this and other models of cardiomyopathy. Previous studies suggested blockade of

PANX1 channels by probenecid may increase the incidence of apoptosis in vitro and ex vivo

[24,52]. In fact, Vessey et al. found that blockade of PANX1 channels by carbenoxolone leads

to a decrease in phosphorylated Akt and a subsequent increase in apoptosis in an ex vivo

model of ischemic preconditioning, but did not report on changes in Bcl-2/Bax [52]. Similarly,

Poon et al. found that probenecid increases the number of apoptotic bodies in Jurkat cells and

increases the number of apoptotic bodies with reduced cellular complexity in thymocytes [24].

In our current study, it may be inferred that probenecid induced apoptosis in the Hsp20-S10F

mutant treated group by blocking PANX1 channels, though the levels of phosphorylated Akt

were not significantly affected, while Bcl-2/Bax was preserved to control levels.

Lastly, while Fan et al. found that overexpression of Hsp20 reduced interstitial fibrosis [16],

we found that there was no change to the level of fibrosis in any of the hearts, suggesting that

probenecid treatment did not appear to have any positive or negative effects. Furthermore, the

levels of fibrosis were not previously reported in the Hsp20 mutations of P20L or S10F [14,20]

making comparisons between our studies and the previously published studies difficult.

Conclusions and future directions

In summary, our data demonstrate that probenecid improves survival in a novel mouse model

of PPCM by improving contractility and reducing LV remodeling, possibly through regulation

of calcium cycling and less likely through apoptotic signaling pathways. The blunting of

remodeling by probenecid during physiologic pregnancies without adverse effects on survival

will require further study as will the potential clinical implications of our findings. Future clini-

cal studies in patients with PPCM may warrant analysis for mutations in the Hsp20, which

may potentially inform treatment options for those patients (i.e probenecid, bromocriptine, or

maybe both).
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