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Neural progenitor cell expansion is critical for normal brain development and an appropriate
response to injury. During the brain growth spurt, exposures to general anesthetics, which
either block the N -methyl-D-aspartate receptor or enhance the γ-aminobutyric acid receptor
type A can disturb neuronal transduction. This effect can be detrimental to brain develop-
ment. Until now, the effects of anesthetic exposure on neural progenitor cell expansion
in vivo had seldom been reported. Here, minimally invasive micro positron emission tomog-
raphy (microPET) coupled with 3′-deoxy-3′ [18F] fluoro-l-thymidine ([18F]FLT) was utilized to
assess the effects of sevoflurane exposure on neural progenitor cell proliferation. FLT, a
thymidine analog, is taken up by proliferating cells and phosphorylated in the cytoplasm,
leading to its intracellular trapping. Intracellular retention of [18F]FLT, thus, represents an
observable in vivo marker of cell proliferation. Here, postnatal day 7 rats (n=11/group) were
exposed to 2.5% sevoflurane or room air for 9 h. For up to 2 weeks following the exposure,
standard uptake values (SUVs) for [18F]-FLT in the hippocampal formation were significantly
attenuated in the sevoflurane-exposed rats (p < 0.0001), suggesting decreased uptake and
retention of [18F]FLT (decreased proliferation) in these regions. Four weeks following expo-
sure, SUVs for [18F]FLT were comparable in the sevoflurane-exposed rats and in controls.
Co-administration of 7-nitroindazole (30 mg/kg, n=5), a selective inhibitor of neuronal nitric
oxide synthase, significantly attenuated the SUVs for [18F]FLT in both the air-exposed
(p=0.00006) and sevoflurane-exposed rats (p=0.0427) in the first week following the
exposure. These findings suggested that microPET in couple with [18F]FLT as cell prolifer-
ation marker could be used as a non-invasive modality to monitor the sevoflurane-induced
inhibition of neural progenitor cell proliferation in vivo.

Keywords: neural progenitor cell, positron emission tomography, [18F]FLT, sevoflurane, proliferation

INTRODUCTION
Animals exposed neonatally to general anesthetics develop cogni-
tive deficits and behavioral abnormalities later in their lives (1–3).
And accumulating preclinical evidence indicates the toxic effect
of general anesthesia to developing brain (4–12). Therefore, sub-
stantial concerns over the safety of using general anesthetics in
obstetric and pediatric patients have arisen (13–16). The patho-
genesis of anesthetic neurotoxicity to developing central nervous
system (CNS) has been under extensive investigation (4–7, 17–20).

In the developing CNS, the excitatory signal conferred by
γ-aminobutyric acid and glutamate via synaptic transmission
is neural trophic in nature to neurons growth and critical
to orchestrate the neurons to form neuronal circuits (21–23).
The γ-aminobutyric acid type A receptors (GABAARs) and N -
methyl-d-aspartate receptors (NMDARs) are the primary recep-
tors, which mediated the excitatory signal transmission. In anes-
thesia and sedations, the common anesthetics are believed to
act either as the agonist to GABAARs, or as the antagonist to

NMDARs (24–26). Sevoflurane [fluoromethyl 2,2,2-trifluoro-1-
(trifluoromethyl) ethyl ether], for example, a volatile anesthetic
commonly used in anesthesia and sedations in pediatric patients,
is considered to act as an agonist to the GABAARs at anesthesia rel-
evant concentration (27). Lengthy exposure of immature CNS to
anesthetic agents that target on these receptors would conceivably
affect the CNS development adversely.

It has been agreed that the animals during the brain growth
spurt period are most susceptible to the anesthetics, when the for-
mations of synapses are at the peak level (28). Prolonged exposure
of animals in brain growth spurt period to general anesthetics
results in massive neuronal apoptosis in the cerebral cortex (1,
5). In addition, following neonatal exposure to anesthetic, the
number of synapses and dendritic spine density are altered in cere-
bral cortex, including the hippocampal formation (7, 29). And the
attenuating effect of anesthetic exposure on dendritic spine could
extend into the adulthood of the rats, likely to contribute to the
abnormal behavior and cognitive impairment.
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Furthermore, the anesthetic-induced compromised memory
and learning performance may also be associated with the inhi-
bition of neurogenesis in the hippocampus. The proliferation of
neurons and astrocytes from pleural-potent progenitor cells is an
ongoing process after birth. The dentate gyrus (DG) of hippocam-
pal formation and the subventricular zone (SVZ) are the two
discrete brain regions where neurogenesis continued after birth
(30, 31). Therefore, the anesthetic-induced behavioral abnormal-
ities and cognitive deficits found later in the life could be related
to the compromised neurogenesis (9). Data are accumulating that
support the hypothesis that common anesthetics, which activate
the GABAAR exert inhibitory effect on the progenitor cells in
hippocampus (32–38). And the anesthetic-induced insult on neu-
rogenesis is more severe when the exposure was imposed in the
early postnatal period than in the adulthood (9, 32).

In most of the reported in vivo studies on the effect of anesthetic
exposure to neurogenesis, the duration of the anesthetic-induced
inhibition on neurogenesis remained to be investigated. This was
due to the fact that the animals were sacrificed on the time points
of study. In contrast, longitudinal study using non-invasive meth-
ods of examination would allow the evaluation the time course
of anesthetic-induced pathologies and to monitor the effects of
treatment. Therefore, it is justified to search for minimally inva-
sive approaches that could be repeated in the same subjects at
different times. Furthermore, it is necessary to search for and
test the minimally invasive approaches in translational studies
before they could be used in clinical settings to provide evidence
of neurotoxicity directly.

In our studies, micro positron emission tomography
(microPET) is utilized to depict the neuronal apoptosis and
inflammatory alterations following neonatal exposure to anesthet-
ics in vivo (39–41). A minimally invasive imaging modality, PET
coupled with radiolabeled tracer is used to analyze specifically tar-
geted biological event in the subject (42). microPET has the high
sensitivity and high-spatial-resolution required in the imaging of
small animals (43, 44). Coupled with radioactively labeled ligands,
it has been used to assess the binding of the ligand by the tissue
interested quantitatively or semi-quantitatively.

The effect of sevoflurane exposure on the proliferation of
neural progenitor cells has not been evaluated longitudinally with
microPET so far. To measure the cell proliferation of endogenous
origin, in the current study, we propose to use [18F]3′-deoxy-3′-
fluoro-l-thymidine ([18F]FLT) as the cell proliferation tracer (45,
46). FLT is an analog of thymidine and taken up by cells and
phosphorylated by thymidine kinase 1 (TK1), leading to the intra-
cellular trapping within the cells without being incorporated into
the cellular DNA (Figure 1). The activity of TK1 was closely regu-
lated in conjunction with the cell proliferation. Thus, [18F]FLT has
been used as PET radiotracer to assess the DNA synthesis through
salvage pathway in a quantitative measure (47).

In addition, we also seek for a pharmaceutical agent to coun-
teract the effect of sevoflurane on the neural cell expansion.
7-nitroindazole (7-NI) is a selective inhibitor of neural nitric
oxide synthase (nNOS). It was demonstrated to be protective
against the ketamine-induced neuronal death in rat forebrain cul-
ture (48). And inhibition of nitric oxide synthase (NOS) by NOS
inhibitor had been shown to significantly increase the population

FIGURE 1 |The structure of [18F]FLT and its phosphorylation by
thymidine kinase 1 (TK1).

of proliferating cells in SVZ (31). Therefore, in this study, we
assessed the effect of sevoflurane exposure on cell proliferation
following the sevoflurane exposure on postnatal day (PND) 7 with
microPET in conjunction with [18F]FLT over a period of 4 weeks.
Meanwhile, the role of NOS inhibition with 7-NI in neural prog-
enitor cell proliferation was evaluated. It was demonstrated that
non-invasive imaging with microPET using [18F]FLT detected the
inhibition of neural progenitor cell proliferation in the first 2 weeks
following the sevoflurane exposure and revealed the attenuating
effects of 7-NI to neural progenitor cell expansion.

MATERIALS AND METHODS
ANIMALS
The Institutional Animal Care and Use Committee (IACUC) at the
National Center for Toxicological Research (NCTR) approved the
experimental protocol. And all animal procedures were conducted
in full accordance with the public health service (PHS) Policy on
Humane Care and Use of Laboratory Animals.

Male and female Sprague–Dawley neonatal rats born from
the NCTR breeding colony were used. All rat pups were main-
tained with their dam in the animal facility at NCTR (8–10
pups/dam/cage) with room temperature maintained at 22± 2°C.
The animals were provided ad libitum standard rat chow and tap
water under a light/dark cycle of 12/12 h, where the light cycle
began at 6:00 a.m. Rat pups of the same gender were weaned into
one cage (2–3 rats/cage) at 3 weeks of age. A total of 32 rats were
randomly assigned to experimental groups as follows: sevoflurane
treated (n= 11), sevoflurane treated with 7-NI (n= 5); control
(n= 11), and controls treated with 7-NI (n= 5). The animals were
from four litters in total. They have been randomly grouped into
four groups. Each group of neonatal rats was consisted of those
from different litters.

NEONATAL EXPOSURE TO SEVOFLURANE
Neonatal rats weighted around 15–20 g on PND 7 were exposed
to sevoflurane within a clear anesthesia induction chamber (E-Z
Anesthesia®, Palmer, PA, USA). Sevoflurane (Webster Veterinary
Supply, Sterling, MA, USA) along with oxygen was delivered from
a sevoflurane specific vaporizer (Tec 7, Baxter, Dallas, TX, USA)
at the concentration of 2.5% (v/v) into the chamber at a rate of
about 0.5–1 l/min. The induction chamber was warmed from the
bottom using a water heated pad set at 40°C. A charcoal filter can-
ister was used to absorb the extra vaporized anesthetic from the
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chamber. The body temperature and blood oxygen saturation lev-
els of anesthetized animals were monitored every hour via pulse
oximetery (Mouse OX Plus, STARR Life Sciences, Oakmont, PA,
USA). Sevoflurane exposures lasted 9 h, after which the rat pups
were returned to their dams. Control rat pups remained with their
dam and received room air. 7-NI (Sigma-Aldrich) was dissolved
in corn oil and sterile filtered (0.45 µm), was administrated via
i.p. injection at the dosage of 30 mg/kg body weight at 18 and 1 h
prior to and 4 h following the start of the 9 h-exposure to either
sevoflurane or room air. All rats were returned to and kept in the
animal facility for subsequent microPET studies.

PREPARATION OF [18F]FLT
[18F]3′-deoxy-3′-fluoro-l-thymidine was prepared by 3D Imag-
ing LLC (Little Rock, AR, USA) following procedures published
previously (49, 50). Briefly, [18F]fluoride was reacted with 5′-
O-(Benzoyl)-2,3′-anhydrothymidine. Deprotection with sodium
hydroxide afforded crude [18F]FLT. The reaction mixture was
diluted with sodium phosphate and passed through an alumina
cartridge. Final purification was accomplished by reverse phase
HPLC eluted with 10% ethanol in saline. The collected product
was sterile filtered for i.v. administration. Typically, about 7.5 GBq
(200 mCi) of [18F]FLT was produced at the end of the synthesis,
60 min EOB, from 75 GBq (2 Ci) of fluoride. The FLT had specific
activity at 60 min EOB of 1.1–2.2 TBq (30–60 Ci) per micromole.

microPET IMAGE ACQUISITION
All images of the rat brain were acquired quantitatively utilizing a
Focus 220, high-resolution small animal PET scanner (Siemens
Preclinical Solution, Knoxville, TN, USA). The scanner has 96
lutetium oxyortho-silicate (LOS) detectors and provides a transax-
ial resolution of 1.35 mm full-width at half-maximum (FWHM) at
the center of field of view. Data were collected in a 128× 128× 95
matrix with a pixel width of 0.475 mm and a slice thickness of
0.815 mm.

For all microPET scans, animals were induced and maintained
under anesthesia with isoflurane (1.5%) blended with oxygen and
delivered via a homemade face mask. [18F]FLT was administrated
on PNDs 14, 21, and 35 (18.5 MBq/dose, i.p.). microPET scans
were performed for 90 min, beginning 30 min after i.p. injection
of the radiolabeled FLT. A set of three dimensional microPET
images (1 frame every 5 min, 18 frames) was reconstructed over
the 90 min scanning period.

microPET DATA ANALYSIS
Medical image analysis software, ASIPro™(Concorde Microsys-
tems, Inc., Knoxville, TN, USA) was used in the quantitative
analyses of the imaging data. Hippocampus was supposed to be
one of two sites in the brain where neurogenesis continue after
birth. Therefore, bilateral hippocampus regions were selected as
the locations for the regions of interest (ROIs). Three dimensional
ROIs, 5 pixels in diameter were drawn in the coronal plane with ref-
erence to transverse and sagittal planes displayed simultaneously.
The radioactivity following [18F]FLT injection was measured using
the software provided by ASIPro™. [18F]FLT accumulation in the
ROIs was converted into standard uptake values [SUVs= average
concentration of radioactivity in ROI (mCi/ml)/injected dose
(mCi)/body weight (g)].

STATISTICAL ANALYSIS
Statistical analysis system (SAS) for Windows (v9.3) was used in
the data analysis. SigmaPlot for windows (v11.0) was used in
generating graphs. The averaged value of bilateral hippocampal
region SUVs collected from each frame in the scan was used in
the statistical analysis. The average SUVs of groups are presented
as mean± SEM. Since the data in each subject were acquired by
repeated measures, the linear mixed effect model was utilized
in the analysis. The effects of treatments (air versus sevoflurane
exposure), 7-NI co-administration, and time interval between the
exposure and microPET scan (1 week versus 2 or 4 weeks) were
examined in the analysis. Dunnett’s multiplicity adjustment test
was used for comparisons with the control in order to preserve
the overall type I error rate at the nominal 5% level. Statistical
significance was considered when the p-value is <0.05.

RESULTS
ATTENUATED [18F]FLT UPTAKE IN HIPPOCAMPAL REGION FOLLOWING
SEVOFLURANE EXPOSURE AT PND 7 REVEALED BY SERIAL microPET
SCANS
All the neonatal rats survived the 9-h exposure of 2.5% sevoflurane
without disturbed respiration or cyanosis on PND 7. The devel-
oping animals were examined with microPET scans in conjunc-
tion with [18F]FLT administration at 1, 2, and 4 weeks following
the exposure. The statistical analysis on the sevoflurane-exposed
rats and control rats showed that both the sevoflurane exposure
(p= 0.0002) and the timing of microPET scanning (p < 0.0001)
affected the SUVs of hippocampal regions significantly, and the
effect of sevoflurane exposure on SUVs was significantly depen-
dent on that time interval between the exposure and PET scan
(p= 0.0012). In week 1 following the exposure (PND 14), the aver-
age SUV of sevoflurane-exposed rats (0.0115± 0.000176, n= 11)
was significantly (p < 0.0001) lower in comparison with that of
control rats (0.0130± 0.000129, n= 11) (Figure 2A). The sig-
nificantly lower [18F]FLT uptake and retention in sevoflurane-
exposed rats could suggest that the cell proliferation in the hip-
pocampal regions was inhibited in the first week following the
9-h sevoflurane exposure. Subsequently, in week 2 (PND 21),
the difference in SUVs between the sevoflurane-exposed group
(0.00578± 0.000198) and the control group (0.00649± 0.000186)
remained significant (p= 0.0108; Figure 2B). By week 4 (PND 35),
the SUVs in the sevoflurane-exposed rats (0.00286± 0.0000766)
and in the control group (0.00283± 0.000101) were similar
(p= 0.9047; Figure 2C).

ADMINISTRATION OF 7-NI INHIBITED [18F]FLT UPTAKE IN THE
HIPPOCAMPAL REGION
7-Nitroindazole was co-administered to rats exposed either
to sevoflurane or air to test if it could neutralize the effect
of sevoflurane exposure on the neural progenitor cell prolif-
eration. The effects of 7-NI co-administration on the SUVs
were significant (p < 0.0001) as evaluated with the mixed effect
model. In week 1 following the exposure, the [18F]FLT uptake
in the hippocampal regions in rats exposed to air with co-
administrated 7-NI (0.0117± 0.000117, n= 5) was reduced sig-
nificantly compared with those in the rats exposed to air alone
(0.0131± 0.0002, n= 5; p= 0.00006, Dunnett’s test, Figure 3);
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FIGURE 2 | Attenuated [18F]FLT uptake in the hippocampal region was
revealed by serial microPET scans for the first 2 weeks following
sevoflurane exposure on PND 7. On PND 7, the treated rats were
exposed to sevoflurane (2.5%) mixed with oxygen for 9 h (n=11); the
control rats (n=11) were exposed to room air. One (A), 2 (B), and 4
(C) weeks following the exposure, the animals were examined using
microPET (scan time=90 min) following the administration of [18F]FLT
(18.5 MBq/dose) by i.p. injection. Standard uptake values (SUVs) are
presented as means±SEM. The [18F]FLT uptake in the hippocampus of
sevoflurane-exposed rats was significantly attenuated compared with
air-exposed rats in weeks 1 (p < 0.0001) and 2 (p=0.0108) following the
anesthetic exposure. (*p < 0.05, repeated measures linear mixed effect
model). By week 4, the SUVs in the sevoflurane-exposed rats and the
air-exposed rats were no longer significantly different (p=0.9047, repeated
measures linear mixed effect model).

the co-administration of 7-NI in the rats exposed to sevoflu-
rane further attenuated the SUVs of the hippocampal regions in
comparison with those in the rats exposed to sevoflurane alone
(p= 0.0427, Dunnett’s test; Figure 3). In week 2, the SUVs of
the air-exposed group were similar to those of the air-exposed
with 7-NI co-administration (p= 0.8701, Dunnett’s test). In con-
trast, the SUVs of the rats exposed to sevoflurane plus 7-NI

FIGURE 3 | Co-administration of 7-NI induced inhibition upon [18F]FLT
uptake in the hippocampal regions in either air- or sevoflurane-
exposed rats. On PND 7, the rats (n=5) were treated with 7-NI i.p.
(30 mg/kg body weight, dissolved in corn oil) 18 and 1 h prior to and 4 h
following the beginning of 9 h-exposure to either sevoflurane or air. One, 2,
and 4 weeks after exposure the animals were assessed via microPET
30 min after the injection of [18F]FLT i.p. (18.5 MBq/dose). In week 1, the
[18F]FLT uptake of the hippocampus region in rats co-administrated with
7-NI was significantly lower than those in rats exposed to either air
(p= 0.00006) or sevoflurane (p= 0.0427) only. In week 4 after exposure,
the SUV in sevoflurane-exposed plus 7-NI group remained significantly
lower than that of group exposed to sevoflurane only (p=0.0077, Dunnett’s
test). SUVs are presented as means±SEM, asterisks denote significant
differences in [18F]FLT uptake between the rats co-administrated 7-NI and
those exposed to air or sevoflurane alone in weeks 1, 2 or 4 after exposure
(*p < 0.05, repeated measures linear mixed effect model, Dunnett’s test for
multiple comparisons).

co-administration (0.00558± 0.000117) remained significantly
(p= 0.0043) lower than those of the rats exposed to sevoflurane
only (0.00663± 0.000222). In week 4, the SUV in sevoflurane-
exposed plus 7-NI co-administration group (0.00222± 0.000128)
remained significantly (p= 0.0077, Dunnett’s test) lower than that
of the group exposed to sevoflurane only (0.00286± 0.000077),
suggesting that there are more inhibition of [18F]FLT uptake in
the exposure of sevoflurane plus 7-NI than sevoflurane alone.

DISCUSSION
In the present study, the sevoflurane-induced inhibition on neural
progenitor cells proliferation in the hippocampi were evaluated
serially with microPET in conjunction with [18F]FLT over 4 weeks
following the neonatal exposure. At the same time, the effect of
7-NI in modulating the sevoflurane-induced inhibition to neural
progenitor cell proliferation was assessed. In comparison with the
air-exposed rats, we observed that sevoflurane inhibited the uptake
of the [18F]FLT in the hippocampus in the first 2 weeks following
the exposure at PND 7; and inhibitory effect of sevoflurane expo-
sure upon [18F]FLT uptake was absent by the fourth week after the
exposure. The results also revealed that the co-administration of
7-NI did not provide protection against the sevoflurane-induced
inhibition of [18F]FLT uptake in the hippocampus.

Neural progenitor cells retain self-renewal capability and can
proliferate and differentiate into neurons and astrocytes at a rate
that declines with age (51). The implication of neurogenesis in
brain injury repair and functional restoration has been reported
in ischemic stroke, brain traumatic injury, and neurodegenera-
tive disorders (52–56). The enhanced neurogenesis in response
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to the injuries or via modulation by pharmaceutical agents has
been regarded as a promising path of intervention to improve the
prognosis.

It has been known that, at clinical relevant concentrations, anes-
thetic exposure induced apoptotic neurodegeneration and altered
dendritic spine density. More recently, in in vivo studies, the neona-
tal exposure to anesthetic-induced inhibition on neurogenesis
that correlated with the neurocognitive and memory functional
decline in adult animals (9, 33). Furthermore, in vitro models
of exposing cultured neural progenitor cells to general anesthet-
ics have been utilized (35, 57, 58). It has been found that the
exposure to anesthetics, which acted as either NMDAR antagonist
(e.g., ketamine) or GABAAR agonists (e.g., isoflurane, sevoflurane,
and propofol), induced inhibition of the proliferation of neural
progenitor cells without inducing apoptosis or necrosis. In those
studies, 5-bromo-2-deoxyuridine (BrdU) staining has been fre-
quently used to label the newly generated cells by tagging the DNA
for quantitative analysis. BrdU is a synthetic nucleoside that can
be incorporated into the newly synthesized DNA strands during
the synthesis (S) phase in dividing cells, and be detected by spe-
cific antibody. In comparison, [18F]FLT is a thymidine analogs
labeled with radioactive fluorine-18 (half-life time= 109.8 min),
which substituted 3′-hydroxyl group on the ribose (46). Following
the initial steps of thymidine salvage pathway, FLT is transported
into the cells by Na+-dependent active nucleoside transporters
and selectively phosphorylated by TK1 to FLT-monophosphate
or FLT-diphosphate and FLT-triphosphate (59). However, phos-
phorylated FLT cannot be further incorporated into DNA due
to the replacement of 3′-hydroxyl group by fluorine-18, and then
trapped in the cytosol (60). TK1 activity is absent in quiescent cells
but increased in the S-phase in proliferating cells (61). The initial
phosphorylation of FLT by TK1 is the rate-limiting step in regard
of FLT intracellular retention. Therefore, TK1 activity determined
the intracellular retention of [18F]FLT, which provides the basis
of PET [18F]FLT imaging of cell proliferation. Compared with the
BrdU staining, PET in conjunction with [18F]FLT could be per-
formed with minimal invasiveness and could be repeated in the
same subject.

In our study, the [18F]FLT uptake in the hippocampi were semi-
quantitatively measured using the SUV derived from the static PET
images acquired within 90 min. The average SUVs declined gen-
erally in week 4 in comparison with week 1, which may conform
to the general activities of neural progenitor cell proliferation. The
low uptake of [18F]FLT might be related to the limited entry of
FLT through the intact brain–blood barrier and the possibility
that only a fraction of progenitor cells were in the S-phase at the
time of study.

The general anesthetics modulated the neural progenitor cell
proliferation in an age-dependent manner, as shown in previous
studies (9, 32). The anesthetic-induced inhibition to neural prog-
enitor cells proliferation in the hippocampus had been demon-
strated in 7-day-old rats (33), but not in 3- or 12-month-old rats
(62). In our study, the findings about sevoflurane-induced inhibi-
tion on hippocampal [18F]FLT uptake were consistent with those
previous studies where general anesthetics induced attenuation in
the neural progenitor cell proliferation in neonatal rats (9, 32). In

our study, the air-exposed rats have been taken care of by their
dams during the 9-h exposure, while the sevoflurane-exposed rats
were being under anesthesia without care by their dams. The asym-
metry in terms of maternal care between the sevoflurane-exposed
rats and the air-exposed rats might, to some extent, contribute to
the difference in SUVs between them.

The mechanisms underlying general anesthetic-induced devel-
opmental neurotoxicity are recognized to be complex because
multiple pathways are involved and the vulnerabilities of brain
cells in different regions are disparate (35, 38, 63). Both the differ-
entiated neurons and the neural progenitor cells could be affected
by anesthetic exposure, but by different mechanisms. For example,
the findings in one recent study by our group suggested that the
GABAAR-mediated excitatory toxicity was unlikely to be impli-
cated in the propofol-induced neural progenitor cell proliferation
for functional GABAARs were not expressed in the progenitor
cells (64). On the other hand, multiple pathways associated with
neural progenitor cell proliferation could be involved in anesthetic
exposure (35, 38). From the view of bioenergetics, the exposure
to volatile anesthetics would impair the mitochondrial respira-
tion, resulted in the loss of intracellular calcium homeostasis,
production of reactive oxygen species (ROS), and compromise
in adenosine triphosphate (ATP) synthesis (65). In one of our
recent study, it was found that exposure of embryonic neural stem
cells to propofol-induced increase in ROS production, which was
attenuated by acetyl-l-carnitine that facilitates the β-oxidation
of long-chain fatty acids in mitochondria (64). The free radical
nitric oxide, one component of ROS, is produced in the oxida-
tion of l-arginine to l-citrulline catalyzed by NOS. Nitric oxide
(NO) is a short-life diffusible gas that has been suggested to
negatively modulate neurogenesis in an autocrine or paracrine
manner (30, 31). nNOS is the principal isoform expressed in
the CNS. As 7-NI selectively inhibits the nNOS activity, it was
expected that selective inhibition of nNOS by 7-NI and the sub-
sequent attenuation of NO production would enhance the level
of neurogenesis. However, the results showed that, in the set-
ting of anesthetic exposure, selective inhibition of nNOS further
attenuated [18F]FLT uptake in the hippocampi, suggesting, fur-
thermore, inhibition of cell proliferation. In previous studies,
7-NI had been found to be protective against ketamine-induced
neuronal apoptosis in forebrain neuronal culture (48). In the
current study, 7-NI was found to provide no protection against
the sevoflurane-induced inhibition upon neural progenitor cell
proliferation. This would suggest that the disparate pathways
implicated in the anesthetic neurotoxicity in differentiated neu-
rons versus their progenitor cells. And further studies are needed
to investigate the diverse functions of NO in modulation of
neural progenitor cell expansion following anesthetic exposure.
Collectively, the findings in our study suggested that microPET
using radiolabeled tracer as cell proliferation marker, including
[18F]FLT, detected the sevoflurane-induced attenuation of neural
progenitor cell proliferation in vivo. microPET in conjunction
with radiolabeled tracer may represent a non-invasive method to
monitor the general anesthetic-induced neurotoxicity to neural
progenitor cells and effects of treatment with pharmaceutical
agents.
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