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experimental verification of the
prognostic and biological
significance mediated by fatty
acid metabolism related genes
for hepatocellular carcinoma
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Background: Liver cancer is among the leading causes of death related to

cancer around the world. The most frequent type of human liver cancer is

hepatocellular carcinoma (HCC). Fatty acid (FA) metabolism is an emerging

hallmark that plays a promoting role in numerous malignancies. This study

aimed to discover a FA metabolism-related risk signature and formulate a

better model for HCC patients’ prognosis prediction.

Methods: We collected mRNA expression data and clinical parameters of

patients with HCC using the TCGA databases, and the differential FA

metabolism-related genes were explored. To create a risk prognostic model,

we carried out the consensus clustering as well as univariate and multivariate

Cox regression analyses. 16 genes were used to establish a prognostic model,

which was then validated in the ICGC dataset. The accuracy of the model was

performed using receiver operating characteristic (ROC) analyses, decision

curve analysis (DCA) and nomogram. The immune cell infiltration level of risk

genes was evaluated with single-sample GSEA (ssGSEA) algorithm. To reflect

the response to immunotherapy, immunophenoscore (IPS) was obtained from

TCGA-LIHC. Then, the expression of the candidate risk genes (p < 0.05) was

validated by qRT-PCR, Western blotting and single-cell transcriptomics.

Cellular function assays were performed to revealed the biological function

of HAVCR1.
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Results: According to the TCGA-LIHC cohort analysis, the majority of the FA

metabolism-related genes were expressed differentially in the HCC and normal

tissues. The prognosis of patients with high-risk scores was observed to be

worse. Multivariate COX regression analysis confirmed that the model can be

employed as an independent prognosis factor for HCC patients. Furthermore,

ssGSEA analysis revealed a link between the model and the levels of immune

cell infiltration. Our model scoring mechanism also provides a high predictive

value in HCC patients receiving anti-PDL1 immunotherapy. One of the FA

metabolism-related genes, HAVCR1, displays a significant differential

expression between normal and HCC cell lines. Hepatocellular carcinoma

cells (Huh7, and HepG2) proliferation, motility, and invasion were all

remarkably inhibited by HAVCR1 siRNA.

Conclusion: Our study identified a novel FA metabolism-related prognostic

model, revealing a better potential treatment and prevention strategy for HCC.
KEYWORDS

fatty acid metabolism, hepatocellular carcinoma, prognosis model, tumor
microenvironment, immunotherapy, HAVCR1
Introduction

Hepatocellular carcinoma (HCC) is the most widely known

malignancy, resulting in significant human mortalities (1). The

5-year overall survival (OS) of patients with HCC has decreased

by 20% globally and by 12% in Asian countries (2). Patients with

advanced metastatic and/or recurrent HCCs have failed to gain

benefit over the long term from standard HCC treatments such

as surgical resection and liver transplantation (3). Therefore, it is

crucial to explore novel molecularly-targeted therapies and new

prognostic factors for HCC patients (4–6). Very, recently,

multiple personalized molecular subtypes of HCC have been

reported. Fu et al. constructed a novel predictive model for the

prognosis of patients with HCC based on pyroptosis-related

genes by categorizing HCC patients into two subgroups from the

TCGA dataset (7). However, the accuracy of prognosis for HCC

patients is still poor. Hence, more efficient prognostic factors

must be explored.
atty acid; TCGA, The

al Cancer Genome

PPI, protein-protein

nt score; GO, Gene

Genomes; OS, overall

CA, decision curve

A, gene-set variation

E, Tumor Immune

protein 1; PD-L1,
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Metabolic abnormalities are a typical characteristic of cancer

(8). Cancer cells have unique metabolic characteristics that

distinguish them from normal cells. When carcinogenic signals

are blocked, cancer cells may be able to survive in the adverse

microenvironments by metabolic reprogramming (9).

Increasing evidence supports the critical involvement of

metabolic reprogramming in tumor onset and progression

(10–12). FA metabolism disorder has become a typical cancer

cell characteristic (13). Many cellular biological processes

require FAs, including membrane formation, signaling

molecule release, and energy storage. FAs are essential for

cancer formation and progression, according to several studies

(14, 15). Wang et al. demonstrated that abnormal activation of

various oncogenic signaling cascades promotes HCC

development by regulating the lipid-metabolizing enzyme

expression and/or activity, as well as FA metabolism

reprogramming (16). Although FA metabolism has been

associated with HCC oncogenesis, its correlation with the

progression and clinical prognosis of HCC is yet unknown.

Thus, the identification of novel and valuable characteristic

molecular models linked to FA metabolism may shed light on

the anti-HCC strategy.

The objective of this research was to develop a novel

prognostic model according to DEGs linked to FA metabolism

and to explore its relationship with clinicopathological

parameters and OS in HCC. In addition, the correlation

between the tumor immune microenvironment (TIME) and

model genes was explored. The potential of our model in

guidance of anti-PD-1 immunotherapy was also investigated.
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TABLE 1 30 FA metabolism-related genes.

SREBF1
ELOVL5
SPTLC3
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Furthermore, the hub gene HAVCR1 was selected for further

functional validation of HCC cells in vitro based on its

expression level. Collectively, our study provides new insight

into the relationship between FA metabolism and HCC.

ACSL1
FABP5
FASN
AMACR
SPOP
DGAT1
ABHD5
PDHA1
ELOVL3
ACOX1
OXSM
ACAA2
ADH5
ACACB
CPT2
SLC17A2
CPT1C
ACADL
HADH
ELOVL6
Materials and methods

Data acquisition

The RNA-seq data (FPKM format), including 374 HCC and 50

normal tissues, along with clinical data, were provided by the TCGA

database. The LIRI-JP cohort data set, containing transcriptomics

data from 231 HCC patients, was retrieved from the ICGC

database. cBioPortal shows genetic alterations in 16-risk-gene

(17). The HPA database is composed of numerous sections that

integrate several omics technologies for researchers (18–20). IHC

images showed the difference in HAVCR1 protein expression

between HCC tissues and normal tissues.

ADH6
SIRT1
ACADM
ACSL6
FABP4
SCD
CD36
Analysis of differential expression of
genes related to FA metabolism

Table 1 lists 30 FAmetabolism-related genes that were retrieved

for the study. Differentially expressed genes (DEGs) in HCC were

identified by using the “Limma” package of R (p <0.05) according to

the screening criteria.

We utilized the STRING database to create a protein-protein

interaction network (PPI) regarding DEGs, and Cytoscape helped

us visualize the interactive network data. The mutual regulatory

relationship between DEGs was demonstrated by R (version 4.1.2).
Consensus clustering and functional
enrichment analysis

We employed the R package “Consensus ClusterPlus”, for

consensus clustering, and the mRNA expression data of 30 genes,

which were highly correlated with FA metabolism, were classified

into several molecular subtypes via the K-means clustering (21).

1,000 iterations were carried out to make sure the classification was

accurate. DEGs were screened for further analysis based on the

samples from the prior cluster analysis (|log2FC| >1, adjusted p

<0.05). R package “GOplot” and “ggplot2” were used to perform

GO and KEGG analyses between the two groups (22).
Construction and validation of FA
metabolism-related prognostic model

Initially, we used the univariate cox analysis for DEGs to

identify and screen out the genes that were associated with
Frontiers in Oncology 03
prognosis in HCC patients (p < 1*10-6). These genes were then

subjected to multivariate Cox analysis to identify 16 genes linked

to prognosis, and the prognostic risk assessment construction

formula is as stated below:

Risk score = coefficient1 * expression of gene1 +… +

coefficientN * expression of geneN

As per the median risk scores, patients were subsequently

classified into two groups. The OS of HCC patients in both

groups was assessed through KM analysis using the “Survival”

and “SurvMiner” R packages. The “Rtsne” package was used to

perform PCA analysis on 16 prognostic genes to reduce the

dimension of complex data. For identification and comparison of

potential prognostic factors, the univariate Cox analysis was used,

while a multivariate Cox analysis was performed to test whether the

risk score was an independent prognostic factor. The accuracy

evaluation of the prognostic model was done by ROC curves using

the R packages “SurvivalROC” and “timeROC”. Using the “rms”

and “survival” packages, a predictive nomogram was developed

according to the risk score and clinicopathological parameters (23).

Using the “ggDCA” package, the DCA model intuitively described

the relationship between risk score and other parameters.
GSEA and GSVA

GSEA was employed in our study to investigate potential

signaling pathways between the two groups to show a possible
frontiersin.org
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molecular mechanism underlying the prognostic difference. The

Type and Replacement were set to “phenotype” and “1000”,

respectively. “c2.cp.kegg.v6.2.-symbols” was downloaded to

perform GSVA, which converts gene alterations into signaling

pathway changes. To investigate potential changes in biological

function and then annotate different risk genes, the GSVA

algorithm and the “clusterProfiler” R package were employed.
Evaluation of tumor immune
microenvironment

Initially, expression data (ESTIMATE) was utilized to quantify

the ratio of stromal cells to immune cells in malignancies, which was

then used to estimate the TIME in HCC samples indirectly (24). The

normalized enrichment score (NES) was then used to calculate the

levels of immune function pathway enrichment. The scores of TIME

cells were evaluated by the ssGSEA algorithm. The CIBERSORT

algorithm was utilized to evaluate the relative proportion of 22

immune cells in the two groups with the aid of R 4.1.2. Finally, with

the help of the “reshape2” and “ggpubr”R package the immune score,

stromal score, and ESTIMATE score were obtained.
Prediction of immunotherapeutic
sensitivity

The tumor immune exclusion score can be used to indicate

how well HCC patients respond to immunotherapy. The

immunophenoscore (IPS), which assesses the tumor

immunogenicity determinants based on machine learning, is a

biomarker for the response to immunotherapy. To reflect the

response of different groups to immunotherapy, IPS were

obtained from TCGA-LIHC.
Single-cell analysis

We used Tumor Immune Single-cell Hub (TISCH) pipline (25)

to characterize LIHC tumor microenvironment at single-cell

resolution (http://tisch.comp-genomics.org/). A total of 1,944,551

cells from 76 datasets across 28 cancer types and 101,195 cells from

3 PBMC datasets are retained in TISCH database. In GSE125449

database, we used TISCH pipeline to annotate the cell types (cell-

type annotations provided by the original studies, marker-based

annotation method employed in MAESTRO using the DEGs

between clusters, InferCNV method). Finally, we annotated eight

different cell clusters, including fibroblasts, endothelial cells,

exhausted CD8 T cells (CD8Tex), Plasma cells, B cells, malignant

cells, Monocytes or Macrophages (Mono/Macro), hepatic

progenitor. Gene expression was compared between different

cells. In addition, due to the HAVCR1 was not annotated in

GSE125449 dataset, we used CellMarker database to search the
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cell location (http://yikedaxue.slwshop.cn/search.php?

quickSearchInfo=HAVCR1#framekuang).
Cell culture

The Institute of Neuroscience, Soochow University,

provided the L-O2 cell line and human hepatocellular

carcinoma cell lines (Huh7, HepG2). In a humidified

atmosphere (37°C with 5% CO2), L-O2 cells were cultured in

RPMI1640 with 20% FBS, whereas Huh7 and HepG2 were

cultured in DMEM with 10% FBS.
Cell transfection

Cells were transfected using CPReagent (Ribo-Bio, Guangzhou,

China). HAVCR1 expression was knocked down using two

different types of siRNAs. The following are the HAVCR1 siRNA

sequences: si-HAVCR1#1: GACGGCCAATACCACTAAA, si-

HAVCR1#2: CGACTGTTCTGACGACAAT. As a negative

control group (si-con), nonspecific siRNA was used. After 48

hours of transfection, the cells were collected. The efficiency

measurement was carried out by qRT-PCR and Western blot.
Cellular function assays

Cell suspension (1000 cells/well) was inoculated in a DMEM

medium containing 10% FBS in 96-well plates. We incubated the

culture plates for 24, 48 and 72 hours at 37°C and 5% CO2. The

CCK8 assay was used to assess cell viability. Optical densities of

CCK8 were measured using a microplate reader at 450 nm. EdU

and phagokinetic track motility assays has been described in detail

in our previous article (26). Transwell chambers (24‐well, 12µm

pore size, BIOFIL, China) were used to detect the migration of

HuH7 and HepG2 after HAVCR1 silencing. The lower chamber

was added with 0.6 mL DMEM with 20% FBS, whereas the upper

chamber was added with around 7 × 104 cells resuspended in Basic

DMEMmedia and incubated overnight at 37°C with 5% CO2. Cells

were fixed with 4% paraformaldehyde and stained with 2.5% crystal

violet 24 hours later. Three microscopic views were selected

randomly and counted by ImageJ. Transwell chambers (24‐

well,12 µm pore size, BIOFIL, China) were also used in a cell

invasion assay. The upper chamber was precoated with 250 µg/mL

Matrigel (BD Bioscience) and was left uncoated for migration.

Subsequent steps are similar to the “Transwell Assay”.
qRT-PCR assay

HCC cells were seeded into 6-well plates at a density of

1×105 cells in each well. To extract total RNA, lysis buffer was
frontiersin.org
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added to the culture. The QuantiTect Reverse Transcription

Kit was then used to reverse transcribe the RNA into cDNA.

qRT-PCR was performed through an SYBR Green PCR kit

(Ribo-Bio, Guangzhou). The 2-DDCt method was used for the

quantification of targeted mRNA. As an internal control, b-
Actin mRNA was tested. Table 2 lists the gene primer

sequences in detail.
Western blotting

In this procedure, 10% SDS–polyacrylamide gel

electrophoresis (SDS-PAGE) was used to separate aliquots of

20 mg of protein from each treatment, which were then

transferred to the polyvinylidene difluoride (PVDF)

membrane (Millipore, Bedford, MA). After a 2-hour blocking

procedure with 10% instant nonfat dry milk (BD, USA),

membranes were incubated with specific antibodies overnight

at 4°C followed by 100 minutes at 20°C with HRP-conjugated

secondary antibodies. The next Western blotting protocols

were reported previously (26). Data quantification was

performed by ImageJ. The primary antibodies include anti-

TTK (1:1000, BOSTER), anti-KIF2C (1:1000, BOSTER), anti-

MMP1 (1:1000, BOSTER), anti-HAVCR1 (1:1000, BOSTER),

anti-b-actin (1:2000, Abcam).
Statistical analysis

All bioinformatics analyses were performed using the R

platform (v.4.1.2). The data were presented as mean ± SD.
TABLE 2 Premier sequences for qRT-PCR analysis.

Premier Sequences (5′–3′)

ANLN-F TGCCAGGCGAGAGAATCTTC

ANLN-R CGCTTAGCATGAGTCATAGACCT

UCK2-F GCCCTTCCTTATAGGCGTCAG

UCK2-R CTTCTGGCGATAGTCCTACTTC

LPCAT1-F CGCCTCACTCGTCCTACTTC

LPCAT1-R TTCCCCAGATCGGGATGTCTC

TTK-F GTGGAGCAGTACCACTAGAAATG

TTK-R CCCAAGTGAACCGGAAAATGA

KIF2C-F CTCAGTTCGGAGGAAATCATGTC

KIF2C-R TGCTCTTCGATAGGATCAGTCA

HAVCR1-F TGGCAGATTCTGTAGGCTGGTT

HAVCR1-R AGAGAACATGAGCCTCTATTCCA

MMP1-F AAAATTACACGCCAGATTTGCC

MMP1-R GGTGTGACATTACTCCAGAGTTG

CBX2-F GCCCAGCACTGGACAGAAC

CBX2-R CACTGTGACGGTGATGAGGTT

ACTB-F TCAAGATCATTGCTCCTCCTGAG

ACTB-R ACATCTGCTGGAAGGTGGACA
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One-way analysis of variance (ANOVA) was used, followed by

Student’s t-test. Statistical significance was defined as a P-value

of less than 0.05 (P < 0.05).
Results

Identification of FA metabolism-related
DEGs between normal and HCC tissues

A flow chart of the overall research is shown in Figure S1. 30

genes were chosen based on their roles in previous studies (27–

33). The majority of FA metabolism-related genes were

identified as DEGs (p < 0.05) using Heatmap analysis

(Figure 1A). The protein-protein interaction (PPI) analysis

was carried out on these DEGs using the Homo sapiens data

set (with a confidence of 0.9) to better comprehend their

interactions. The PPI network retained 23 hub DEGs that had

complicated regulatory correlations (Figure 1B). Moreover, the

correlation of these DEGs was analyzed and presented in

Figure 1C (cutoff >0.4). We preliminarily concluded that the

majority of these FA metabolism-related DEGs affect the

tumorigenesis and tumor progression through mutual

positive regulation.
Clustering, construction of HCC
classification according to genes
associated with FA metabolism

Based on the expression matrix of 30 FA metabolism-related

DEGs, 2 clusters were identified using unsupervised clustering

methods (k=2, Figures 2A–C). There were significant

differences in OS time among them (Figure 2D). Thus,

identifying prognostic genes related to FA metabolism was

crucial. The DEGs between the two subtypes were then

screened and obtained for subsequent analysis (|log2FC| > 1,

p-value < 0.05). DEGs expression profiles and clinicopathologic

parameters were shown on the heatmap. As expected,

the expression of most DEGs, as well as the number of

patients with stage III-IV, were significantly greater in

cluster1 (Figure 2E).
Functional analyses and the tumor
immune microenvironment between FA
metabolism-related subtypes

In the TCGA-LIHC cohort, DEGs between the two subtypes

were analyzed to study the biological role and pathways of FA

metabolism-related genes in more detail. As shown, GO analysis

was divided into several parts: biological process (BP), cellular

component (CC) and molecular function (MF) (Figure 3A).
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Notably, DEGs were also abundantly enriched in numerous

immune responses, including neutrophil activation involved in

immune response, neutrophil degranulation, T cell proliferation,

mononuclear cell proliferation, regulation of leukocyte proliferation,

lymphocyte apoptotic process, B cell apoptotic process, T-helper 1

cell differentiation (Table 3). Further, KEGG enrichment analyses

indicated that the role of the Ribosome, Retinol metabolism, PPAR

signaling pathway, Fatty acid metabolism, Cell cycle were enriched

in both cohorts (Figure 3B). The tumor immunemicroenvironment

(TIME) has profound implications for tumor diagnosis, patient

survival outcomes, and sensitivity to clinical treatment (34). By

analyzing the relationship between DEGs and TIME in the two

subtypes, the potential immune mechanism of FA metabolism

affecting the tumorigenesis of HCC was revealed. Results showed

that both the subtypes were significantly associated with the
Frontiers in Oncology 06
immune scores. Extraordinarily, the patients with higher

infiltration levels of immunosuppressive cells such as activated B

cell, activated CD4 T cell, Mast cell and MDSC were more prone to

cluster1 (Figure 3C). These findings confirmed that the expression

of FA metabolism-related DEGs is associated with the prognosis

and the TIME in HCC patients.
Establishment of a prognostic risk model
in TCGA-LIHC cohort

The prognostic value of risk characteristics of FA

metabolism was explored considering the complex

regulation. To identify prognostic genes in the TCGA-LIHC,

researchers used a univariate Cox regression analysis, which
A

CB

FIGURE 1

Identification of FA Metabolism-Related DEGs between Normal and HCC Tissues. The landscape of FA metabolism-related genes of HCC
patients from TCGA database. (A) Heatmap showed DEG expression in two different tissues. (B) PPI network of the interactions. (C) The
correlation network of these genes (*p < 0.05, **p < 0.01, ***p < 0.001).
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revealed that all genes were high-risk genes for HCC prognosis

(Figure 4A). Multivariate Cox regression was used on the

TCGA-LIHC cohort to further narrow down the potential

gene range for developing a prognostic model. Genes

including ANLN, UCK2, LPCAT1, TTK, CCNB1, KIF2C,

HAVCR1, MMP1, PIGU, CENPA, CENPO, CDCA8, CBX2,

KIAA1841, KIF18A, and CEP55, with their coefficients were

subsequently maintained (Figure 4B). After exploring the

prognosis of 16-gene, we used cBioPortal to analyze its

mutation in HCC. As displayed in Figure 4C, all of these

genes had great genetic variations, of which amplification was

the most common variation characteristic. In addition, there

was a significant positive correlation between these 16 genes

(Figure 4D). As per the median risk score, we separated the
Frontiers in Oncology 07
patients into high- and low-risk groups, these two groups could

be well-separated according to the PCA and t-SNE analysis

(Figures 4E, F). According to the KM analysis, the association

between high-risk score patients and poor prognosis was

significant (Figure 4G). Furthermore, the number of

mortalities showed an increasing trend with increasing risk

scores (Figure 4H). The receiver operating characteristic

(ROC) curve, also known as the sensitivity curve, was

constructed to evaluate the model’s accuracy and feasibility

in predicting patients’ survival (35), suggesting that the model

exhibited a great predictive capability (AUC=0.811). Besides,

the ROC curve also indicated the effectiveness of the FA

metabolism-related signature in predicting the 1-, 3-, and 5-

year survival rates in patients with HCC (Figure 4I).
A

E

CB

D

FIGURE 2

Clustering, Construction of HCC Classification According to Genes associated with FA Metabolism. (A) Patients were classified into two subtypes
according to the consensus clustering matrix. (B, C) Consensus clustering model. (D) The KM analysis of the OS in the two subtypes. (E)
Heatmap showed the correlation between the subtypes and clinicopathologic parameters (*p < 0.05, **p < 0.01, ***p < 0.001).
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Association between risk genes and
clinicopathologic parameters

Next, the association between the model and clinical

parameters in HCC patients was explored. We discovered that

these risk genes were substantially expressed in the high-risk

group, as shown by the heatmap that shows risk gene

expression profiles and clinicopathologic parameters. Moreover,

there were significant differences between tumor stage and grade
Frontiers in Oncology 08
(Figure S2A). Notably, patients having higher risk scores may be

in higher stages, whether AJCC stage or T stage (Figure S2B).

Then, we divided the patients into several subgroups based on

different clinical parameters such as gender (female vs male), age

(> 65 vs ≤ 65), AJCC stage (I-II vs III-IV), and T stage (T1 vs T2-

4). The KM analysis revealed that the high-risk patients had a

lowered survival rate in all conditions (Figures S2C–F). Overall,

the model constructed is highly correlated with clinicopathologic

parameters and can guide the prognosis of HCC patients.
A

C

B

FIGURE 3

Functional Analyses and the Tumor Immune Microenvironment Between FA metabolism-related Subtypes. Potential biological pathways and
tumor microenvironment affected by DEGs. GO (A) and KEGG (B) enrichment of DEGs. (C) Comparison of the ssGSEA scores between two
subtypes (*p < 0.05, **p < 0.01, ***p < 0.001).
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TABLE 3 Immunologic signature associated biological processes enriched in DEGs groups.

Gene set name Size Zscore P.adjust Qvalue

GO- neutrophil activation involved in immune response 82 -5.08 0.008 0.007

GO- neutrophil degranulation 81 -5.222 0.01 0.009

GO- T cell proliferation 37 -4.768 0.012 0.01

GO- mononuclear cell proliferation 50 -5.94 0.014 0.012

GO- regulation of leukocyte proliferation 41 -5.154 0.025 0.021

GO- lymphocyte apoptotic process 17 -3.638 0.028 0.023

GO- B cell apoptotic process 8 -2.828 0.048 0.041

GO- T-helper 1 cell differentiation 7 -1.89 0.046 0.039

Zhu et al. 10.3389/fonc.2022.972744
Independent prognostic value of
the model

The efficiency of the model was tested in the TCGA-LIHC

cohort. Based on univariate COX analysis, a high-risk score was

shown to be correlated with poor prognosis significantly (p <

0.001, HR = 1.194, 95% CI: 1.139 - 1.251). The other variable

associated with a worse prognosis was a stage (Figure 5A).

According to multivariate Cox analysis, a higher risk score was

revealed to be independently associated with poorer survival,

supporting its potential for being an independent prognostic

factor for HCC (p < 0.001, HR = 1.217, 95% CI: 1.166 - 1.217)

(Figure 5B). Notably, DCA, a novel method that is used to assess

clinical predictive models, diagnostic tests, and molecular

markers (36), showed that our risk model achieves greater net

benefit than any one single independent clinical parameter

(Figure 5C). Additionally, the nomogram (C-index > 0.7)

based on the clinical parameters and risk scores could

effectively predict the probability of the1-, 2-, and 3- years

OS (Figure 5D). Calibration curve results verified high

agreement between nomogram predictions and actual

observations (Figure 5E).
Validation of the risk signature in ICGC-
LIRI cohort

To further verify the model’s predictive accuracy, 231 HCC

cases were extracted from the ICGC database to establish a test

cohort. In the LIRI-JP cohort, 16 risk genes were all up-

regulated, as shown in Figure S3A. Then, using these risk

genes to separate the LIRI-JP cohort into two groups, we

observed that patients in the high-risk group had higher

mortality and shorter survival periods (Figure S3B). Based on

the KM analysis, the OS of patients belonging to the low-risk

group was higher (Figure S3C) 1-, 3-, and 5-year AUC values

were 0.619, 0.595, and 0.950, respectively (Figure S3D), and the

PCA plot validated that the high- and low-risk groups could be

separated (Figure S3E). The association of high- and low-risk
Frontiers in Oncology 09
scores and OS in HCC patients was further validated in various

clinical parameter subgroups. Based on the KM analysis,

patients with high-risk scores had a lower survival rate when

they were female, over 65, in stages I-II, and had primary

malignancy (Figure S3F). All these suggest the reliability of

the model.
The potential molecular mechanism of
the model

GSEA was applied to analyze the transcript message of HCC

patients. Interestingly, the activity of metabolic pathways such as

cytochrome P450 drug metabolism, FA metabolism, and retinol

metabolism, were shown to be enriched in the low-risk group,

according to KEGG enrichment analysis (Figure S4A). Cell cycle,

DNA replication, ECM receptor interaction, neuroactive ligand-

receptor interaction, and oocyte meiosis were enriched in the

high-risk group (Figure S4B). Then, we performed GSVA

enrichment to further explore potential signaling pathways. As

shown in Figure S4C, these model genes were significantly

enriched in most signaling oncogenic pathways and were

positively correlated, including WNT, VEGF, Notch, and

mTOR signaling pathways. In some pathways, such as PPAR

and ADIPOCYTOKINE signaling pathways, these genes show

consistent negative correlations. In addition, immune-related

pathways, such as T cell receptor signaling pathway, B cell

receptor signaling pathway were also enriched. These results

provided a novel strategy for our subsequent research to find

potential therapeutic targets.
TME infiltration and immunotherapy

Based on our findings above, we suggested this prognostic

model is closely correlated with immune infiltration. Using ssGSEA,

we systematically evaluated 13 types of immune function pathways

to further assess the immune status-related association between the

two groups. The risk score was highly associated with Type II IFN

Response, Type I IFNResponse,MHC class I, and Cytolytic activity,
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according to Heatmap analysis results (Figure 6A). The distribution

of immune cells calculated by XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, and CIBERSORT was also explored.

HCC patients belonging to the high-risk group had higher

proportions of immune cells including B Cell, T Cell,

Macrophage, and so on (Figure 6B). The correlation between

these 16 risk genes and immune cells was also performed by the

CIBERSORT algorithm and presented in Figure 6C. The stromal

score, immune score, and estimate score were then generated using
Frontiers in Oncology 10
the ESTIMATE algorithm. Furthermore, low-risk group patients

had a higher stromal score (p < 0.05), immune score (p < 0.001) and

estimate score (p < 0.001) (Figure 6D). Immunotherapy is a new

type of therapy for a variety of cancers, including HCC. Regarding

the response to immunotherapy in these two groups of HCC

patients, we found a higher Exclusion score in the high-risk

group, indicating a worse effect on receiving immunotherapy in

the high-risk group (Figure 6E). Anti-PD-1/PD-L1 therapies have

emerged as an effective treatment option, especially in HCC (37).
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FIGURE 4

Establishment of A Prognostic Risk Model in TCGA-LIHC Cohort. Construction of a FA metabolism-related model in TCGA. (A) Univariate Cox
regression analysis to find FA metabolism-related prognostic genes. (B) Multivariate Cox regression analysis to identify genes linked to the
prognosis of FA metabolism. (C) The distribution of 16-gene genomic alterations in the TCGA-LIHC dataset. (D) Spearman correlation analysis of
16 genes. PCA analysis (E) and t-SNE analysis (F) based on risk scores. (G) The KM analysis of the OS based on risk scores. (H) Survival status
distribution of these two groups. (I) ROC curve showing the accuracy of risk scores on the clinical parameters and year survival rate (*p < 0.05,
**p < 0.01, ***p < 0.001).
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Significant differences in immunotherapy scoring mechanisms were

revealed in all four immunotherapy regimens; a lower risk score

suggests a greater anti- PD-1/L1 therapeutic efficacy (Figure 6F). FA

metabolism-related prognostic model was associated with anti-PD-

1/L1 immunotherapy, as expected, and can potentially predict

immunotherapy response.
Differential expression of independent
prognostic genes and validation

Subsequently, eight candidate genes including ANLN, UCK2,

LPCAT1, TTK, KIF2C, HAVCR1, MMP1, and CBX2 were
Frontiers in Oncology 11
selected based on multivariate Cox regression analyses (p <

0.05). Notably, the correlation between these genes was

significantly positive (Figure 7A). We further explored the

expression of these prognostic genes in 50 pairs of samples from

the TCGA-LIGC cohort, and the results revealed that significant

elevation of the mRNA expression levels of these genes in HCC

tissue (Figure 7B). In addition, the ROC curve displays a favorable

predictive value of these independent genes over 1, 3, and 5 years

(Figure 7C). To verify mRNA expression in HCC, we performed

qRT-PCR in human liver epithelial (LO2) and two HCC cell lines

(Huh7, HepG2) (Figure 7D). To test TTK, KIF2C, HAVCR1, and

MMP1 protein expressions, Western blotting assays were then

performed and the results confirmed the up-regulation of all these
A

C

B

D

E

FIGURE 5

Independent Prognostic Value of The Model. Univariate Cox (A) and Multivariate Cox (B) analysis to assess the independence of the model. (C)
DCA was performed to present the net benefit of risk score compared to clinical parameters. (D) Nomogram survival prediction of HCC patients
with risk score. (E) Calibration plot of the nomogram (*p < 0.05, **p < 0.01, ***p < 0.001).
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proteins in HCC cell lines (Figure 7E). Extraordinarily, we found

dramatically increased HAVCR1 mRNA and protein expression

in HCC cell lines. The protein levels of HAVCR1 were validated

by the HPA database (Figure 7F).
Single cell analysis

In GSE125449 database, we used TISCH pipeline to annotate

the cell types (cell-type annotations provided by the original
Frontiers in Oncology 12
studies, marker-based annotation method employed in

MAESTRO using the DEGs between clusters, InferCNV

method). Finally, we annotated eight different cell clusters

(Figure S5A), including fibroblasts, endothelial cells, exhausted

CD8 T cells (CD8Tex), plasma cells, B cells, malignant cells,

monocytes or macrophages (mono/macro), hepatic progenitor.

Subsequently, we explored the expression of our risk genes in

different cell types. Unfortunately, the HAVCR1 was not

annotated in this dataset. Hence, we used CellMarker database

to search the cellular location, and we found HAVCR1 was
A

C
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D

E

F

FIGURE 6

TME Infiltration and Immunotherapy. (A) Heatmap of the distribution of 13 types of immune function pathways between two groups. (B)
Immune cell infiltration analysis based on different algorithms. (C) Correlation between immune-related cells and 16 genes. (D) TME score,
including Stromal score, Immune score and Estimates score. (E) Exclusion score calculated by TIDE algorithm. (F) Immunotherapy score
between two groups (po, positive; neg, negative) (*p < 0.05, **p < 0.01, ***p < 0.001).
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mainly expressed in normal liver cells. Moreover, the TISCH

results showed that most of the genes were not significantly

expressed in B cells, and only LPCAT1 and CBX2 were

significantly expressed in B cells (Figure S5B). Among them,
Frontiers in Oncology 13
the ANLN, UCK2, KIF2A were more evenly distributed in cell

types other than B cells. TTK was significantly expressed in

CD8Tex cells, hepatic progenitor, malignant, and mono/macro

cells. Finally, MMP1 was only significantly expressed in
A
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FIGURE 7

Differential Expression of Independent Prognostic Genes and Validation. (A) Spearman correlation analysis of eight candidate genes in the
TCGA-LIHC cohort. (B) Eight risk genes expression in paired tissues from TCGA database. (C) The ROC curve of independent risk genes in
TCGA-LIHC cohort. (D) The mRNA levels of quantified using qRT-PCR analysis in human liver cell line and two HCC cell lines. (E) The protein
expression of TTK, KIF2C, HAVCR1, and MMP1. (F) Immunohistochemistry of the HAVCR1 from the HPA database (*p < 0.05, **p < 0.01, ***p <
0.001).
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TABLE 4 Association of HAVCR1 expression with clinicopathological parameters in TCGA-LIHC.

Characteristic Low expression of HAVCR1 High expression of HAVCR1 p

n 187 187

Age, n (%) 0.643

<=60 86 (23.1%) 91 (24.4%)

>60 101 (27.1%) 95 (25.5%)

Gender, n (%) 0.185

Female 54 (14.4%) 67 (17.9%)

Male 133 (35.6%) 120 (32.1%)

Pathologic stage, n (%) 0.436

Stage I 89 (25.4%) 84 (24%)

Stage II 44 (12.6%) 43 (12.3%)

Stage III 38 (10.9%) 47 (13.4%)

Stage IV 1 (0.3%) 4 (1.1%)

AFP(ng/ml), n (%) < 0.001***

<=400 122 (43.6%) 93 (33.2%)

>400 19 (6.8%) 46 (16.4%)

Histologic grade, n (%) 0.003**

G1 38 (10.3%) 17 (4.6%)

G2 90 (24.4%) 88 (23.8%)

G3 52 (14.1%) 72 (19.5%)

G4 3 (0.8%) 9 (2.4%)

Age, median (IQR) 61 (52.5, 69) 61 (51, 68) 0.290
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endothelial cells, fibroblasts, hepatic progenitor and malignant

cells. Taken together, our data showed risk genes were not only

expressed in malignant cells, and different genes had

expression heterogeneity.
HAVCR1 silencing inhibits HCC cell
proliferation, motility, and invasion

Considering the model was strongly associated with the

HCC, the independent prognostic genes may have a greater

impact on the biological function of HCC cells. We selected

HAVCR1 with the largest expression difference to further

verify our hypothesis. The relationship between HAVCR1

expression and prognosis of HCC was validated in ICGG

database (Figure S6). Moreover, HAVCR1 expression was

positively correlated with histologic grade (Table 4).

HAVCR1 siRNA was transduced to Huh7 cells and HepG2

cells. Robust decrease of HAVCR1 mRNA and protein levels by

HAVCR1 siRNA was confirmed by qRT-PCR and Western

Blotting assay (Figures 8A, B). CCK-8 assay results showed a

significant reduction in viability by HAVCR1 siRNA in HuH7

and HepG2 cells (Figure 8C). Huh7 and HepG2 cell

proliferation was largely inhibited by decreased EdU-positive

nuclei ratio after siRNA-mediated knockdown of HAVCR1

(Figure 8D). In addition, the phagokinetic track motility assay

results confirmed that cell motility was significantly inhibited
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by siRNA (Figure 8E). Moreover, using the “Transwell” assay,

it was shown that HCC cell migration was attenuated

(Figure 8F). A significant decrease in the HCC cell invasion

was also shown by “Matrigel Transwell” assays (Figure 8G).

These findings implied that HAVCR1 siRNA can inhibit the

biological function in HCC, but the detailed mechanism needs

to be further illuminated.
Discussion

Recently, the HCC incidence has been rising (38). Despite

the advances in cancer prevention, early screening, and current

treatment options, the prognosis for HCC is extremely poor

(39). The current diagnostic options are not sensitive and

accurate enough (40). Thus, it is extremely necessary to

explore novel and efficient markers of diagnosis and prognosis

for improving the OS of HCC patients (41). Increasing studies

have shown that metabolic dysregulation is one of the main

characteristics of malignant tumor cells, leading to growth,

angiogenesis, proliferation, and invasion (42–44). FA

metabolism, as an important part of energy metabolism, is

involved in multiple biological processes for promoting

tumorigenesis and progression (13). FA metabolism has been

shown to play a key role in the onset and progression of HCC

(39). Most research focused only on a single regulatory factor of

FA metabolism in HCC (10, 29, 45), however, integrated models
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of multiple important genes involved in FA metabolism are

needed. He et al. had explored FA metabolism-related risk genes

in HCC by constructing a prognostic model but failed to further

explore the role of these genes in the onset and progression of

HCC (46). Identification of key molecular markers associated

with FA metabolism and clarification of their roles in the

progression of HCC is necessary.

Our present study first systematically investigated 30 genes

highly associated with FA metabolism in patients with HCC and

revealed that 14 genes among them were significantly upregulated,

while 10 genes were downregulated. Most of these genes were

positively correlated. Then, we identified two clusters based on

these FA metabolism-related genes by performing consensus
Frontiers in Oncology 15
clustering, these two clusters showed significant survival

differences. DEGs were then compared between the two clusters,

with the results revealing enrichment of DEGs in immune

processes. Currently, the investigation of FA metabolism-related

genes in the TIME in HCC is insufficient. Our study showed that

patients with few immunosuppressive cells favored cluster 2

compared to those with more immunosuppressive cells. High

infiltration of immunosuppressive cells suggested the tumor

microenvironment was inhibited, leading to the poor prognosis

of HCC. As the consensus clustering was based on 30 FA

metabolism-related genes expression, we inferred that FA

metabolism was closely related to the prognosis and TIME of

HCC patients.
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FIGURE 8

HAVCR1 Silencing Inhibits HCC Cell Proliferation, Migration, and Invasion. Established human HCC cell lines (HuH7 and HepG2) (A–F), bearing
the HAVCR1 siRNA (“si-HAVCR1#1” and “si-HAVCR1#2”). qRT-PCR (A) and Western blotting (B) were employed for assessing the HAVCR1 mRNA
and protein expression after si-HAVCR transfection. CCK-8 (C) and EdU assay (D) were used to test the proliferation of HuH7 and HepG2 cells.
Phagokinetic track motility assay (E) was used measure the motility of cells. Cell migration and invasion were measured by “Transwell” (F) and
“Matrigel Transwell” assays (G) (*p < 0.05, **p < 0.01, ***p < 0.001).
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DEGs were analyzed using univariate and multivariate Cox

regression analyses to develop a 16-gene risk model to further

investigate the prognostic significance of FA metabolism in

HCC. The model possessed great predictive accuracy and could

guide the prognosis among the patients with different clinical

parameters. These results were validated in the ICGC external

validation dataset. GSEA enrichment was performed to further

explore potential molecular mechanism of the model, several

pathways (e.g., Cell cycle, DNA replication, ECM receptor

interaction, and so on) involving the tumorigenesis were

enriched in the high-risk group. It is widely recognized that

abnormal cell cycle and DNA replication was considered a

biomarker of HCC (47, 48). GSVA enrichment showed

the model genes were significantly enriched in most

signaling oncogenic pathways and were positively correlated,

suggesting these risk genes play the oncogenic role in

HCC. All these findings provide ideas for our future

mechanism research.

Robust evidence has shown an intimate relationship between

FA metabolism and tumor immunity (49, 50). The immune

infiltration status of 22 immune cells was analyzed by the

ssGSEA algorithm, revealing that several immune cells,

including B Cell, T Cell, and macrophage were associated with

the risk score significantly. Subsequently, the risk score was

highly associated with Type I and II IFN Response. The

activation of IFN-I on liver cells controls glucose homeostasis

and lipid metabolism which supports cell proliferation and

tumorigenesis (51). Interestingly, the correlation between IRF-

1, IRF-2, and PD-L1 was significantly positive. Overexpression

of IRF-2 could down-regulate PD-L1 promoter activity and

protein levels which was induced by IFN-g (52). Anti-PD-1/

PD-L1 therapy has improved outcomes in a range of advanced

malignancies, including HCC, since its discovery. It is worth

noting that although immunotherapy has many advantages in

anti-cancer treatment, its efficacy shows strong individual

variability (53). Our findings revealed a significant correlation

between risk score and immunotherapy efficacy. A low-risk

score indicates a better therapeutic effect of anti-PD-1/PD-L1

therapies. The prognostic model could effectively predict the

suitability of HCC patients for anti-PD1/PDL1 immunotherapy,

further supporting that FA metabolism is indispensable in

shaping individual TIME characterizations.

Next, we chose eight risk genes including ANLN, UCK2,

LPCAT1, TTK, KIF2C, HAVCR1, MMP1, and CBX2 based on

multivariate Cox regression analyses above (p < 0.05). These

eight genes RNA-seq paired sample data obtained from TCGA,

showed higher mRNA levels in the HCC tissues compared to the

normal tissues, and the ROC curve of these independent genes

indicated a favorable predictive value over 1, 3, and 5 years.

Later, qRT-PCR and Western blotting assays showed that

mRNA and protein expression of TTK, KIF2C, HAVCR1, and

MMP1 mRNA between tumors and normal tissues are

significantly different. Threonine and tyrosine protein kinase
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(TTK), which is also known as monopolar spindle 1 (Mps1), acts

as an oncogenic gene in a variety of cancers (54, 55). Previous

studies indicate that KIF2C promotes the growth, invasion, and

metastasis of HCC by mediating the Ras/MAPK signaling

pathway (56). MMP1, which is an interstitial collagenase, has

been implicated in the proliferation and metastasis in a variety of

malignancies (57–59). HAVCR1 also known as T-cell

immunoglobulin mucin domains (TIM)-1, is overexpressed in

renal cell carcinoma (60), human colorectal cancer (61), and

gastric adenocarcinomas (62), promoting the occurrence and

progression of tumors. Mori ever reported HAVCR1 could

mediate FA uptake to promote progress of kidney disease (63).

Here, we focused on the HAVCR1, which shows the most

significant difference in expression between normal liver cells

and HCC cell lines. Functional experiments found that siRNA-

induced HAVCR1 silencing robustly inhibited HCC cell growth,

proliferation, migration, and invasion, suggesting that HAVCR1

could play an oncogenic role in HCC, however, the detailed

underlying molecular mechanisms need to be further elucidated.

There are some unique superiorities in our research.

Specifically, our study systematically evaluated the expression

and prognostic value of FA metabolism-related genes in HCC. A

better prognostic model consisting of 16 genes was established

and further validated in the ICGC dataset. We found that HCC

patients with high-risk scores had significantly poor prognoses

and were highly correlated with clinicopathologic parameters.

Notably, our model predicts patient survival with higher

accuracy than previous models. The model genes were

significantly enriched in most signaling oncogenic pathways

and were significantly associated with tumor immunity and

can predict the efficacy of immunotherapy. In addition, we

studied the effect of HAVCR1 on the biological functions of

HCC cells, finding that HAVCR1 silencing inhibits HCC cell

growth, proliferation, and motility.

Exploring the prognostic value of FA metabolism-related

genes also lays a foundation for our future mechanism research.

Nevertheless, there are some limitations of our study that must

be considered. Firstly, all analyses were performed using TCGA

and ICGC databases, and more clinical patient data is needed to

confirm its accuracy. Secondly, further experiments are required

to investigate the correlation between our prognostic model and

the tumor microenvironment. Finally, we only have

preliminarily explored the effects of HAVCR1 on HCC cell

functions by siRNA silencing, more genetic modifications need

to be performed to further confirm the role of HAVCR1 on HCC

cells, and the underlying molecular mechanisms need to be

further elucidated.
Conclusion

We constructed a FAmetabolism-related prognostic model of

genes that possessed predictive accuracy based on the data of the
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LIHC cohort available in the TCGA database. The prognostic

model was also significantly associated with tumor immunity and

can predict the efficacy of anti-PD-1 immunotherapy. HAVCR1, a

gene highly related to FA metabolism, has been proven to

promote the growth, proliferation, migration, and invasion of

HCC cells. The FA metabolism-related signatures could provide

further possibilities to predict the progression and prognosis. Our

study provides a novel idea for future research on personalized

treatment strategies for HCC patients.
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SUPPLEMENTARY FIGURE 1

Overall design of the study.

SUPPLEMENTARY FIGURE 2

Association Between Risk Genes and Clinicopathologic Parameters. (A)
Heatmap indicating the links between clinicopathological parameters and

different risk groups. PCA analysis. (B) Risk scores are classified by cluster,
gender, stage and T stage. KM analysis of the OS based on gender (C), age
(D), Stage (E), T stage (F) (*p < 0.05, **p < 0.01, ***p < 0.001).

SUPPLEMENTARY FIGURE 3

Validation of The Risk Signature in ICGC-LIRI Cohort. (A) The volcano plot
shows 16 risk genes in the ICGC-LIRI cohort. (B) Survival status

distribution in ICGC-LIRI cohort. (C) KM analysis of the OS based on risk

scores in the ICGC-LIRI cohort. The ROC curve (D) and PCA analysis (E) in
the ICGC-LIRI cohort. (F) KM analyses based on different clinical

parameters (*p < 0.05, **p < 0.01, ***p < 0.001).

SUPPLEMENTARY FIGURE 4

The Potential Molecular Mechanism of the Model. GSEA in low-risk
groups (A) and high-risk groups (B). (C) GVSA of 16 risk genes (*p <

0.05, **p < 0.01, ***p < 0.001).

SUPPLEMENTARY FIGURE 5

Single cell analysis of different genes expression.

SUPPLEMENTARY FIGURE 6

KM analysis comparing the high and low expression of HAVCR1 in HCC in

the ICGC-LIRI cohort.
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