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Entanglement and quantum 
correlations in the XX spin‑1/2 
honeycomb lattice
Sahar Satoori1,3, Saeed Mahdavifar1,3 & Javad Vahedi2,3*

The ground state phase diagram of the dimerized spin‑1/2 XX honeycomb model in presence of 
a transverse magnetic field (TF) is known. With the absence of the magnetic field, two quantum 
phases, namely, the Néel and the dimerized phases have been identified. Moreover, canted Néel 
and the paramagnetic (PM) phases also emerge by applying the magnetic field. In this paper, 
using two powerful numerical exact techniques, Lanczos exact diagonalization, and Density 
matrix renormalization group (DMRG) methods, we study this model by focusing on the quantum 
correlations, the concurrence, and the quantum discord (QD) among nearest‑neighbor spins. We show 
that the quantum correlations can capture the position of the quantum critical points in the whole 
range of the ground state phase diagram consistent with previous results. Although the concurrence 
and the QD are short‑range, informative about long‑ranged critical correlations. In addition, we 
address a ”magnetic‑entanglement” behavior that starts from an entangled field around the 
saturation field.

The dimerization phenomenon can emerge at zero-temperature behavior of low-dimensional spin-1/2 systems. 
Interactions favor the spin-singlet (or triplet) between pair of spins, and therefore the ground state is a superpo-
sition of dimer states. The quantum dimer systems were initially proposed as a mapping of the lattice Bose gas 
to the quantum  antiferromagnets1.

In the past two decades, searching for spin-1/2 dimerized honeycomb structures has attracted much interest 
from an experimental point of  view2–12. Many materials have been realized as dimerized spin-1/2 honeycomb 
antiferromagnets. For example, Cu2A2O7 is known as a distorted honeycomb  lattice8. A phase transition to 
an antiferromagnetic ordered state at 0.77K is reported for the Verdazyle radical 2− Cl − 3, 6− F2 − V9. In 
addition, no long-range magnetic order is observed down to 0.6K in the specific heat measurements of a poly-
crystalline sample of the spin-1/2 distorted honeycomb lattice antiferromagnetic Cu2A2O7

10. In very recent 
work, it is shown that two antiferromagnetic interactions lead to the formation of a honeycomb lattice in some 
verdazyl-based  complexes12.

Theoretically, the effect of dimerization on the physics of spin-1/2 honeycomb lattices was the subject of many 
studies. In absence of the dimerization, it is known to realize Néel long-range order phase at zero  temperature13–17. 
In the presence of dimerization, transforming the spin system onto a nonlinear sigma model, the ground state 
phase diagram consisting Néel and disordered spin gap phases has been  proposed18. The mentioned quantum 
phase transition is confirmed by numerical quantum Monte  Carlo19 and tensor renormalization-group  method20. 
By presenting the randomness on the exchange interaction in a spin-1/2 honeycomb lattice, a quantum spin liquid 
phase appears in the ground state phase  diagram21,22. By doing triplon analysis and quantum Monte Carlo calcu-
lations, a spin-1/2 Heisenberg model on the honeycomb lattice with three different antiferromagnetic exchange 
interactions is also  studied23. The existence of plateau states are reported in the magnetization process in this 
model. Also, the spin-1/2 dimerized model on a honeycomb lattice with antiferromagnetic and ferromagnetic 
interactions is systematically studied using the continuous-time quantum Monte Carlo  method24–26.

In recent years, powerful approaches based on the concepts borrowed from the quantum information  theory27 
have been developed and intensively used to identify quantum critical points in different complex many-body 
 systems28. In particular, the detailed analysis of various bipartite quantum correlations as the entanglement and 
the QD, has been successfully exploited to tackle many complicated  problems29–53.

Motivated by this, we study the 2D dimerized spin-1/2 XX honeycomb model in the presence of a TF. We 
have used the exact numerical Lanczos and DMRG techniques to probe entanglement features with dimerizatoin 
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parameter parameter. The dimerization parameter is defined as α = J/J ′ (shown on Fig. 1)). Two kinds of pairs 
can be considered: (1) on a bond with coupling J, (2) on a bond with coupling J ′ . Our numerical results show that 
entanglement between pairs of spins on J-bonds, signaled the quantum critical point between the Néel and the 
dimerized phases. By applying the TF, a magnetic entanglement is recognized that starts from a critical entangled 
field around the saturation field. This phenomenon was observed in one-dimensional spin-1/2  systems54–56, and 
to the best of our knowledge has not been reported in a two-dimensional system. In addition, all ground-state 
phases have discussed from the viewpoint of quantum correlations.

The rest of the paper is organized as follows. In the next section, the model is introduced. In “Quantum cor-
relation”, a short review of quantum correlations as the entanglement and the QD are given. “Numerical results” 
presents numerical Lanczos and DMRG results on finite-size clusters. Finally, in “Conclusion”, we summarize 
our conclusion.

Model
In this section, we consider the antiferromagnetic dimerized XX model on the honeycomb lattice. The Hamil-
tonian is defined as

where Si is the spin-12 operator on the i-th site of the lattice. < i, j > and < i, j >′ , with different antiferromagnetic 
interaction exchange couplings J and J ′ respectively, run over all the nearest neighbours (as schematic picture in 
Fig. 1). h denotes the TF. In absence of the TF, h = 0 , a critical dimerization value αc which separates the Néel 
and the dimerizad phases. At region with α < αc , a phase transition into the paramagnetic (PM) phase anticipate 
occurs at the critical saturation field h = hs(α) . However, in the dimerized phase, two quantum phase transitions 
have been  reported20. First, model undergoes a phase transition from the dimerized into the canted Néel phase 
at h = hc1(α) . Second, by more increasing the TF, system goes to the PM phase at h = hs(α).

The theoretical quantum study of such a physical problem requires appropriate handling of very high-rank 
matrices. Although the matrix of the Hamiltonian is sparse, using the standard methods it is not possible to 
solve the problem by direct diagonalization of a very large matrix. In the following, we apply two of the most 
impressive numerical tools, called the numerical Lanczos and DMRG methods for computing ground state of 
the Hamiltonian and then extract quantum correlations on finite size systems. The numerical Lanczos method 
with appropriate implementations has emerged as one of the most applicable computational procedures, mainly 
when the ground state is  desired57.

Although the numerical Lanczos technique allows for the exact analyses of the model’s ground state, the 
disadvantage is, of course, its limitation to small system sizes. To study bigger system sizes, one idea is the matrix-
product state (MPS) based methods, such as density matrix renormalization group (DMRG)58,59. The DMRG 
gives access to the ground state wave-function from which one can compute observable. The DMRG calculations 
in this paper performed using the ITensor C++ library (version 3.1)60. We run sweeps for the entropy to converge 
to at least 10−10 , and a large number of states, up to 1000, was kept so that the truncation error is less than 10−12.

Quantum correlation
Quantum correlations have become central for the characterization and classification of many-body quantum 
systems. Peculiar zero-temperature quantum phases such as spin  liquids61,62,  topological63–65, and many-body 
localized  systems66–68 find their hallmarks in their quantum correlation features. It should be noted that the 
entanglement in many-body systems can be accessible in experiments such as in full-state  tomography69,70 
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Figure 1.  Schematic picture of the honeycomb lattice with different antiferromagnetic interaction coupling J 
and J ′ , as shown in black and red lines, respectively. The left panel shows a cylindrical cluster considered only 
within the numerical DMRG method, with the periodic boundary in the y-direction. The right panel shows 
finite-size flak clusters considered within the numerical Lanczos method, which the twist-periodic boundary is 
considered.
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and ultra-cold atoms to measure Renyi  entropies71,72. Besides, quantum phase transitions are signaled by a 
universal quantum correlation contribution determined solely by the universality class of the quantum phase 
 transitions73–78. Hence, they can be used to detect quantum phase transitions without prior knowledge of the 
nature of the transition.

For a pair of spin-1/2 particles, it has been shown that the concurrence which is essentially equivalent to the 
entanglement of formation, can be taken as a measure of entanglement. The concurrence between two spins at 
sites i and j is determined by the corresponding reduced density matrix ρij,

where non-zero elements of the density matrix are given by

The concurrence is obtained by the following expression:

One should notes that, there are different quantum correlations that are not spotlighted by the entanglement 
measures. These quantum correlations are thoroughly included in the formulation of so-called the QD as a meas-
ure for representing all quantum  correlations79–83. It is defined as the difference between the mutual information, 
I (ρij) , and classical correlations C (ρij):

Mutual information does a measure on the correlation between pair spins Si and Sj and is given by

where �α are eigenvalues of the reduced density matrix, ρij . By definition new variables

the entropy is determined as

On the other hand, by definition

where 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π and k = 0, 1 . The classical correlations, C (ρij) can be obtained by

where

(2)ρij =











X+
ij 0 0 0

0 Y+
ij Z∗

ij 0

0 Zij Y−
ij 0

0 0 0 X−
ij











,

(3)

X+
ij = �(1/2+ Szi )(1/2+ Szj )�,

Y+
ij = �(1/2+ Szi )(1/2− Szj )�,

Y−
ij = �(1/2− Szi )(1/2+ Szj )�,

(4)
X−
ij =�(1/2− Szi )(1/2− Szj )�,

Zij =�S+i S
−
j �.

(5)Cij = 2max {0, |Zij| −
√

X+
ij X

−
ij }.

(6)QDij = I (ρij)− C (ρij).

(7)I (ρij) = S(ρi)+ S(ρj)+

3
∑

α=0

�α log(�α),

(8)

c1 = 2Zij ,

c2 = X+
ij + X−

ij − Y+
ij − Y−

ij ,

c3 = X+
ij − X−

ij ,

(9)S(ρi) = S(ρj) = −

[(

1+ c3

2

)

log

(

1+ c3

2

)

+

(

1− c3

2

)

log

(

1− c3

2

)]

.

(10)

qk1 = (−1)kc1

[

sin(θ) cos(φ)

1+ (−1)kc3 cos(θ)

]

,

qk2 = tan(φ)qk1,

qk3 = (−1)k

[

c2 cos(θ)+ (−1)kc3

1+ (−1)kc3 cos(θ)

]

,

θk =

√

q2k1 + q2k2 + q2k3

(11)C (ρij) = max
{

∏B
i

}

(

S(ρi)−
S(ρ0)+ S(ρ1)

2
− c3 cos(θ)

S(ρ0)− S(ρ1)

2

)

,



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17991  | https://doi.org/10.1038/s41598-022-19945-4

www.nature.com/scientificreports/

Numerical results
Here, we present the numerical results based on the Lanczos and DMRG methods. Twist periodic boundary 
condition (PBC) is applied for honeycomb lattice with finite flake sizes N = 20, 24, 26, 28 in the Lanczos tech-
nique. Moreover, we consider cylinder clusters in the DMRG method with PBC in the y-direction (as shown in 
Fig. 1). Having the ground state of the system, |GS� , then quantum correlations as the concurrence and the QD 
are obtained.

First, we consider the model in the absence of a magnetic field. In Fig. 2, the numerical results of the concur-
rence and the QD between pair of spins on a bond with exchange coupling J (C) and on a bond with exchange 
coupling J ′ (C′) are presented. In the case, α = 0 , the honeycomb system divides into N/2 individual pair spins 
where at zero temperature are in the singlet state (are also called dimers). Pair spins in the singlet state are maxi-
mally entangled. Consistent with this picture, numerical results in Fig. 2a,b show that, at α = 0 , only pair spins 
on bonds with exchange coupling J ′ are maximally entangled and others with exchange coupling J are unen-
tangled. Now by turning J, what we found is interesting, the model still can be effectively treated as dimers (see 
panel Fig. 2a). That is almost true up to a critical point, namely αc , which concurrence remains zero on bonds 
with exchange coupling J. This behavior is in agreement with expectations, based on the general statement that 
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Figure 2.  The concurrence and the QD between pair of spins on bonds with exchange coupling J (a,c) 
and J ′ (b,d). Lanczos results are presented for clusters with N = 20, 24, 28 spins and also DMRG results for 
N = 60, 90 . In panels (e) and (f), concurrence and QD are plotted for a cluster with N = 26 spins. At α = 1 , no 
difference between concurrences (or values of QDs) is observed.
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in the gapped dimer phase, the spontaneous sublattice magnetization appears only at a finite critical value of the 
 dimerization20. As soon as the dimerization parameter increases from αc , where the model goes into the Néel 
phase, pair spins on bonds with exchange coupling J entangled and signature of the mentioned critical point is 
clearly observe in the behavior of C (see panel Fig. 2a). On the other hand, in the limit α −→ ∞ , the honeycomb 
system divides into individual spin-1/2 XX chains. The ground state of an individual chain system is in the 
Lüttinger-liquid phase and it is known that the nearest neighbours are  entangled28,29,42,43. Consistent with this 
picture, our numerical results show that, only pair spins on bonds with exchange coupling J are entangled with 
extrapolated value C ≃ 0.34 . Critical dimerization αc = 0.48± 0.02 and αc = 0.5± 0.02 are found within the 
Lanczos and the DMRG, respectively. The difference could pertain to the finite size effect and different clusters 
used on the two approaches.

In addition to the concurrence, results of the QD are plotted in Fig. 2c,d. In the case, α = 0 , QD exists only 
between pair of spins on dimers. Interestingly, by switching α on, QD as quantum correlations, but not neces-
sarily involve quantum entanglement, developed between spins on bonds with J. As can be seen, QD between 
pair of spins on bonds with exchange coupling J ′ show decreasing behavior in contrast with those on bonds 
with exchange coupling J. Though the finite QD is an indication of a reach ground state for 0 < α < αc , it is not 
showing any signature as passing the quantum critical point. In the limit α −→ ∞ , where model divides into 
individual spin-1/2 XX chains, we found that our numerical results are in agreement with results obtained on 
a spin-1/2 chain  model43.

For the comparison purpose, in Fig. 2e,f concurrence and QD on different bonds are depicted. As is observed, 
at α = 1 where the model becomes uniform, either concurrence or QD on different bonds cross each other. At 
this point, spins at two sublattices are aligned in an opposite direction to minimize the energy. It believes the 
model shows Néel order at zero  temperature13,16.

Within both numerical approaches, the ED and the DMRG, we probe all pairs of spins. Then we introduce a 
mean measurement of the concurrence and QD throughout the lattice as follows,

where N ′ = 3
2N is the number of pair spins in each cluster of the model. Results illustrate in Fig. 3. As can be 

seen, CM first decreases by increasing the dimerization parameter up to the quantum critical point α = αc . As 
already seen, up to the critical point αc , all entanglement contributions to CM come from bonds with exchange 
coupling J ′ (bounds depicted with red color in Fig. 1). For dimerization parameter bigger than αc spins between 
bonds with exchange coupling J begin to entangle, and CM shows almost a different decreasing slope in the region 
α > αc . Thus the quantum critical point may be detected by focusing on the mean value of entanglement between 
pair of spins. However, the mean value of the QD between the nearest-neighbour pair of spins do not show the 
quantum critical point, as shown in Fig. 3b. Indeed, for the present model, by focusing only on the QDM , one 
could not detect the quantum critical point.

Now lets us consider the transverse magnetic field, and probe the entanglement and QD evolution throughout 
the model. To this end, we fix the parameter α such as the model exists (i) at the Néel phase with α > αc , (ii) at 
dimerized phase with α < αc.

Results for the case (i) with α = 0.7 are plotted in Fig. 4. At h = 0 , as identified before, concurrence is shared 
between all nearest-neighbor pair spins. By tuning the magnetic field, C shows almost increasing behaviour until 
the quantum critical region close to the critical point hc where separates the Neel and PM phases (see Fig. 4a). As 
soon as the system enters to the quantum critical region, C decreases monotonically till disappearing at saturation 
filed hs . That is expected at hs(α) ≃ 1.14 , as all of the spins are aligned in the direction of the field. One should 
notes that the jumping at this point resulted of degeneracy of saturation critical point. On the other hand, as 
soon as the TF turns on, C′ decreases and will be disappeared at the saturation TF, hs (see Fig. 4b). No signature 
of the quantum critical region is seen in the behaviour of C′ . It should be noted that the same behaviour as the C 

(13)

CM =
1

N ′

∑

<i,j>

Cij ,

QDM =
1

N ′

∑

<i,j>

QDij ,

α

C
M

0.25 0.5 0.75 1
0

0.15

0.3

0.45

N=20 ED
N=24 ED
N=28 ED
N=60 DMRG
N=90 DMRG

αc

( a )

α

Q
D

M

0.25 0.5 0.75 1
0

0.15

0.3

0.45

N=20 ED
N=24 ED
N=28 ED
N=60 DMRG
N=90 DMRG

αc

( b )

Figure 3.  Mean value of the (a) the concurrence and (b) the QD versus the dimerization parameter. Signature 
of the quantum critical point is clearly seen in the behaviour of the concurrence.
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and C′ is observe for the QD between pair of spins on bonds with exchange coupling J (Fig. 4c) and J ′ (Fig. 4d). 
Observed oscillations of the quantum correlations result from the level crossing between the ground and the 
excited states of the model.

We have done the same numerical experiment when the system exists deep in the dimerized phase with 
α = 0.2 and results are presented in Fig. 5. Within this parameter, the model can be effectively assumed as an 
ensemble of singlet pairs that are weakly interacting. It is known that by applying a TF, system remains in the 
gaped dimerized phase up to the first critical field hc1(α) . With more increasing the field, the system goes to a 
canted Néel phase, and finally, at a saturation field hs(α) becomes polarized.

Interesting behaviour is seen in the results of the concurrence between pair of spins on bonds with exchange 
coupling J (Fig. 5a). Despite these pair of spins are not entangled in the absence of the TF, they still remain 
unentangled in the canted Néel phase, which shows that low excited states of the pure dimerized model in the 
region α < αc are not entangled by considering C. More fascinating, we find the field-induced entanglement 
region, which we call “magnetic entanglement”, by increasing the field. The magnetic field develops entanglement 
between pair of spins on bonds with exchange coupling J at h = hE(α) and then gets profound in the region 
hE(α) < h < hs . The emergence of the magnetic field can be understood as following: the z-component of the 
total spin commutes with the Hamiltonian and the ground state exists in the subspace Szt = 0 for h = 0 and 
excited states are located in subspaces with higher Szt = 1, 2, . . . ,N/2 . When the TF applies, the energy of the 
lowest state in the subspace with Szt = 1 decreases and becomes the ground state of the system at the first critical 
TF, hc1 . With more increasing field, the energy of excited states of the pure dimerized system decreases more 
and becomes the ground state of the system. Therefore, what we are capturing from our numerical experiment 
in presence of the TF, in principle reflects the information of the excited states of the pure dimerized model.

As can be seen from Fig. 5b,d, in absence of TF, pair of spins on bonds with exchange coupling J ′ are quantum 
correlated. These bonds remain entangled or quantum correlated with a constant value up to the first critical 
hc1 ≃ 0.27 . By increasing the field, C′ and QD′ develop a series of plateaus with a decreasing trend and vanish at 
the saturated field hs ≃ 0.67.

Finally as is seen in Fig. 5c, QD between pair of spins on bonds with exchange coupling J, shows an almost 
zero-plateau up to first critical TF and exactly a zero-plateau in the region h > hs . It is observed that as soon as 
the system enters into the canted Néel phase, QD increases up to the vicinity of the saturation field hs . Exactly at 
the saturation TF, QD will be zero and no quantum correlations is observed in the PM region.

Conclusion
We considered a dimerized spin-1/2 XX honeycomb model in the presence of a transverse magnetic field. At zero 
temperature the ground state phase diagram is known. In the absence of the field, there is a critical dimerization 
point αc , which separates the commensurate Néel and incommensurate dimer phases. In presence of the field, 
system becomes polarized at a saturation field, h = hs(α) . By placing the model at dimerized phase and changing 
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results presents for N = 60.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17991  | https://doi.org/10.1038/s41598-022-19945-4

www.nature.com/scientificreports/

the field, model undergoes a quantum phase transition from the dimer into the canted Néel phase at hc1(α) . With 
a more increasing field, spins finally get aligned with the field at the saturation point hs.

Equipped with the knowledge above, we tried to understand the entanglement feature of the model. To 
this end, we borrowed concurrence and quantum discord (QD) observable from the quantum information 
context. We focused on the quantum correlations among the nearest-neighbour pair of spins on finite clus-
ters using the complimentary numerical Lanczos and DMRG techniques. Critical dimerization point, αc , is 
obtained from the concurrence. In presence of the field, we observed the ”magnetic entanglement” region 
between hE(α) < h < hs(α) , which an entanglement creates between paired of unentangled spins when we 
had h = 0 . Exploiting quantum entanglement features to study exotic magnetic phases at zero temperature has 
privileges compared to the Landau theory, as the definition of a proper order parameter is not easy. This work 
could potentially be extended to check the resonating valence bonds (RVB) state or quantum spin liquid (QSL) 
phase in the honeycomb  lattice21,22.

Data availability
The data-sets used and analysed during the current study available from the corresponding author on reason-
able request.
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