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Abnormal lipid accumulation is commonly observed in diabetic cardiomyopathy (DC), which can create a lipotoxic
microenvironment and damage cardiomyocytes. Lipid toxicity is an important pathogenic factor due to abnormal lipid
accumulation in DC. As a lipid droplet (LD) decomposition barrier, Plin5 can protect LDs from lipase decomposition and
regulate lipid metabolism, which is involved in the occurrence and development of cardiovascular diseases. In recent years,
studies have shown that Plin5 expression is involved in the pathogenesis of DC lipid toxicity, such as oxidative stress,
mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and insulin resistance (IR) and has become a key target of DC
research. Therefore, understanding the relationship between Plin5 and DC progression as well as the mechanism of this
process is crucial for developing new therapeutic approaches and exploring new therapeutic targets. This review is aimed at
exploring the latest findings and roles of Plin5 in lipid metabolism and DC-related pathogenesis, to explore possible clinical
intervention approaches.

1. Introduction

Diabetic cardiomyopathy (DC) is characterized by metabolic
changes in the myocardium that promote a chronic dysfunc-
tion of muscle fibers, leading to myocardium remodeling
and heart failure, independently of the presence of coronary
artery diseases or hypertension [1]. The pathophysiology of
DC involves metabolic disorders, myocardial fibrosis,
myocardial cell apoptosis, microangiopathy, oxidative stress,
inflammatory response, and structural and functional
changes in cardiac mitochondria [2–5]. The pathogenesis
and signaling pathways of DC are intricate, making it diffi-
cult to identify effective targets for intervention. Despite
renin-angiotensin-aldosterone system (RAAS) inhibitors
and β-receptor antagonists have been used to combat
cardiomyocyte apoptosis and myocardial fibrosis in DC,
the results are not satisfying. Understanding the pathogene-
sis of DC and finding novel and effective intervention targets
can provide new directions for clinical treatments of DC.

There are two forms of fatty acid (FA) in cells: one is free
fatty acid (FFA), and the other is triglycerides (TGs) and
stored in LDs. Abnormal increase in plasma FFA level is a
specific indicator of diabetes as well as an important causa-
tive factor for DC. Plasma FFAs enter cardiomyocytes in a
concentration-dependent manner and competitively inhibit
glucose uptake, thereby limiting the use of glucose in cardio-
myocytes and increasing the uptake and utilization of FFAs
[6]. Generally, cardiomyocytes absorb excessive FFAs and
are initially oxidized in mitochondria to provide energy for
cardiac contractions. Other unutilized FFAs are stored in
cardiomyocyte LDs such as TG, hydrolyzed to FAs, and
glycerol by adipose triglyceride lipase (ATGL) with
hormone-sensitive lipase (HSL) when needed [7, 8]. How-
ever, when the uptake of FFAs by cardiomyocytes far
exceeds their utilization capacity, excessive mitochondrial
oxidation can induce pathological oxidative stress and
generate plenty of reactive oxygen species (ROS), which in
turn damage mitochondrial structures and functions and
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aggravate impaired utilization of FFAs. Meanwhile, the
accumulation of massive synthesized TG and its metabolic
intermediate diacylglycerol (DG) in the myocardium will
cause myocardial lipid toxicity [9–11]. Excessive accumula-
tion of lipids and lipid intermediates in cardiac myocytes
underlies the cardiac lipotoxic microenvironment. Excessive
lipid accumulation can lead to pathological oxidative stress
in cardiomyocytes, ER stress, mitochondrial dysfunction,
insulin resistance (IR), cell signaling disorder, cardiomyo-
cyte apoptosis, myocardial hypertrophy and fibrosis, coro-
nary microvascular dysfunction, and even cardiac systolic
dysfunction. Experimental and clinical data suggest that
the reduction of toxic lipids improves myocardial metabo-
lism and function [12–16].

Perilipin, located on the surface of LDs, acts as a molec-
ular switch in the regulation of lipid metabolism. Plin5
belongs to the Perilipin family protein (protein acyltransfer-
ase, PAT). Plin5 is also named myocardial lipid droplet pro-
tein (MLDP) because it is highly expressed in the heart
[17–19]. The increase of LDs in cardiomyocytes is the char-
acterization of DC, which is consistent with the expression
of Plin5 [20, 21]. Plin5 can promote the accumulation of
myocardial lipid and alleviate cardiac lipotoxic injury
[22–26]. A large number of experimental data have con-
firmed Plin5 is the key regulator of lipid metabolism [27,
28] and regulates metabolic procedures [29, 30]. Plin5 can
inhibit ER stress, IR, oxidative stress, inflammatory and pro-
tect mitochondrial function, thus achieving a reduction in
the level of cellular autophagy and apoptosis and protecting
cardiomyocytes [31–36]. Evidence supports the direct role of
Plin5 in the regulation of DC metabolic disorders and its
pathogenesis. Therefore, accurate understanding of the regu-
latory mechanisms of Plin5 in DC pathogenesis will help to
identify new targets.

1.1. An Overview of Plin5 Transcriptional Regulation and
Interactions. Plin5 is a protein composed of 463 residues
located on human chromosome 19 [22] that regulates tran-
scription in the nucleus and located in the cytoplasm of
mitochondrial, ER, and LD [17, 22, 37, 38]. Plin5 is mainly
localized on the surface of LDs where it regulates the synthe-
sis and catabolism of LDs through phosphorylation/non-
phosphorylation status to keep the balance of FFAs in the
cytoplasm and in mitochondria, where it participates in FA
oxidation processes to coordinate the level of oxidative stress
and energy supply of the body [39, 40]. Plin5/PGC-1α regu-
lates lipid metabolism in response to extracellular signals to
promote the full utilization of FFAs and avoid the accumu-
lation of lipid intermediate metabolites [41]. Transcription
of Plin5 in the nucleus is regulated by several factors. An
experiment in porcine kidney showed that the transcription
factor CCAAT/enhancer-binding protein α (C/EBPα) binds
to the promoter region of Plin5 and induces its expression
under fasting [42]. It has also been found that Jun protoon-
cogene (Jun), activated transcription factor (ATF)1, ATF3,
and ATF4 can also bind Plin5 promoter and induce its
expression [43]. Among them, PPAR-α plays a major role
in Plin5 transcription in human body. PPAR-α belongs to
the activated receptor family of peroxisome proliferators

(PPAR), which can regulate Plin5 transcription because the
first intron of the gene contains the regulatory element
(PPRE) [22]. PPAR consists of three subfamilies: PPAR-α,
PPAR-β, and PPAR-γ [44], of which PPAR-α is highly
expressed in cardiomyocytes, modulates the expression of
key components of FA absorption, encodes for key proteins
in oxidative signaling pathways through transcription, and
maintains homeostasis in cardiomyocyte metabolism [45].
Plin5 was found to be induced in the liver in a PPAR-α-
dependent manner under fasting conditions [17, 22, 37].
PPAR-α agonists can induce the expression of Plin5 in liver,
skeletal, cardiomyocytes, and white adipose tissue (WAT)
[46]. Plin5 promotes lipolysis, mitochondrial biogenesis,
and oxidative metabolism mainly depending on the SIRT1/
PGC-1α/PPAR-α pathway [47–49]. SIRT1, a member of
the sirtuin family of NAD+-dependent protein deacetylases
[50], is activated in ATGL-catalyzed lipolysis. Deacetylation
can promote PGC-1α activity, which is required for ATGL-
mediated upregulation of PPAR-α/PGC-1α signaling
[51–54]. Recent findings found overexpression of Plin5
increased the expression of SIRT1, PGC-1α, and PGC-1α
target genes [41], suggesting that Plin5 may be positively
correlated with the expression of SIRT1, PGC-1α, and
PGC-1α target genes. Consistent with Plin5 overexpression
data, knockdown of Plin5 resulted in catecholamine stimu-
lated expression of PGC-1α target genes [41]. Though the
apparent regulatory effect of Plin5 on SIRT1, SIRT1 activa-
tion is mediated by cAMP/PKA-dependent phosphorylation
associated with increased cellular NAD+, rather than its
interaction with Plin5 [41, 55, 56].

As shown in Figure 1, Plin5 binds to ATGL and reduces
the FAs generated by the lipolysis process, hence reducing
the amount of FFAs in cells. ER-related proteins (such as
DAPT, DGAPT, Lipin, and DGAT) bind FFAs under the
action of Acyl-coA and convert them to TG and then storing
them in LD, reducing the damage of cardiomyocyte lipotoxi-
city by isolating TG. What is more, LDs also can promote
autophagy by storing neutral lipids to support Plin5-
dependent autophagic membrane formation [57]. Therefore,
Plin5 is indirectly involved in the process of cellular autoph-
agy by cooperating with LD in regulating FA. As the conver-
sion into TG molecules gradually increases, their size
gradually increases [58]. When TG grows to a certain extent,
it is released from the ER into the cytoplasm to form LD.
When hypoxia, ischemia, or pressure overload occurs, FA
is mobilized and stored in the LDs, and Plin5 is phosphory-
lated in a PKA-dependent manner and translocated from
the LD to the nucleus to activate SIRT1, forming a complex
with SIRT1 and PGC-1α to activate PGC-1α/PPAR-α [41,
47, 48, 59] that promotes TG catabolism and mitochondrial
FA oxidation. Phosphorylated Plin5 is released, binds to
ATGL, and activates CGI-58 to drive the lipolysis process
[27, 28, 60]. Under the action of Plin5 together with ATGL,
HSL, and monoacylglycerol lipase (MAGL), TG is finally
decomposed into three FAs and one glycerol molecule and
released into the cytoplasm after a series of biochemical reac-
tions [27, 35, 61]. FAs can be efficiently transported to mito-
chondria for β-oxidation via carnitine lipid acyltransferase
(CPT-1, β-rate limiting enzyme) or plin5-mediated LD-
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mitochondrial contacting [62, 63], thereby reducing lipotoxi-
city caused by excessive accumulation of FFAs in cells.

Plin5, SIRT1, PGC-1α, and its promoter PPARs regulate
the FA β-oxidation process in mitochondria, of which PGC-
1α plays an important role in mitochondrial biogenesis and
energy metabolism [64, 65]. In particular, the expression of
PGC-1α is positively correlated with the expression of
TCA cyclase, which promotes hypoplasia and leads to heart
failure (HF) [66, 67]. Enhanced expression of Plin5 in failing
heart may activate PGC-1α and improve TCA cyclase activ-
ity. In mitochondria, FA oxidation not only generates energy
but also releases ROS. When FA overload leads to enhanced
mitochondrial oxidation, excessive ROS are released into the
cells causing myocardial damage. ROS are essential intracel-
lular second messengers that play an important role in the
regulation of inflammation, oxidative stress response, cell
growth, and differentiation. Therefore, it can be inferred that
Pin5 is involved in the regulation of lipolysis and FA metab-
olism, as well as in the corresponding pathological processes
such as cellular inflammation and oxidative stress.

Plin5 is highly concentrated and expressed in cardio-
myocytes, skeletal muscle, liver, and other oxidized tissues

[17, 22, 37], and a small part is distributed in islet β-cells
and liver stellate cells [68, 69]. In whole-body energy metab-
olism, Plin5 can protect muscle cells by promoting LD
decomposition reducing internal fuel consumption and
controlling FA flux to reduce lipotoxicity [24, 70]. It plays
different roles in different tissues. For example, Plin5 can
protect pancreatic β-cells and regulate lipid metabolism in
mouse islet β-cells [32, 69], as well as regulate fasting
induced IR and lipotoxic in muscle cells [23]. These results
suggest that Plin5 expression is tissue-specific and can ame-
liorate pathological changes such as IR, lipotoxicity, and ell
injury in different tissues through several pathways.

The expression of Plin5 was positively correlated with
increased steatosis in cardiac, skeletal muscle, and liver
tissue [30, 71–74] but negatively correlated with the expres-
sion of oxidative metabolism-related gene (such as PPAR-α,
PGC-1α, and related genes), mitochondrial function indica-
tors, and FA oxidation level in the heart [71, 72]. This differ-
ence may be related to the inherent ability of the normal
adult heart to handle the TG rate and Plin5-independent
FA flux, which is a characteristic of cardiac hypertrophy
[75–77]. In Plin5 knockout mice, researchers monitored
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Figure 1: The process of lipid metabolism in DC. FFAs in cells synthesize TG under the action of Acyl-coA, DPAT, AGPAT, Lipin, and
DGAT protein and store TG in LD. With the increase of TG synthesis, LD increases gradually and is separated from ER into cytoplasm
to isolate FAs and reduce lipid toxicity. When stimulated by external stimuli, Plin5 recruits ATGL to LD, Plin5 is phosphorylated and
inactivated, CGI-58 is released, ATGL and HSL are activated, and lipolysis is initiated. Under the action of corresponding proteases, TG
is decomposed into FA, which is released into cytoplasm by FABP4 or directly into mitochondria through Plin5-mediated LD-
mitochondrial contact. Meanwhile, Plin5 can carry muFAs into the nucleus. Plin5 binds to SIRT1 PGC-1α to form a complex that
activates PPAR and oxidative gene expression, promoting lipolysis and mitochondrial β-oxidation.
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significant reductions in TG and LD content in their skeletal
muscle, liver, and heart [24, 35, 70]. Plin5 deficiency is asso-
ciated with increased accumulation of ceramides and IR in
skeletal muscle [70]. In the liver, it is associated with
PPAR-α-activated hepatocyte nonesterified FAs, increased
ER stress markers, inflammation, and tissue damage [35].
In the heart, it can lead to an increase in FA oxidation asso-
ciated with age-related cardiomyopathy [24], which verifies
the important role of Plin5 in lipid metabolism.

In conclusion, although Plin5 has specific expression in
different tissues, its basic role is major in regulating lipid
metabolism. Plin5 can promote FA synthesis and storage
of TG in LD to reduce lipid toxicity in physiological states
of steatosis and its related oxidative stress, inflammation,
IR, ER stress, and other pathological processes. Plin5
enhances the expression of lipids, accelerates lipolysis, and
promotes lipid utilization during lipid increase and steatosis.
Therefore, we can speculate that Plin5 may play a bidirec-
tional role in lipid metabolism, while the deficiency of Plin5
reduces the synthesis of TG and LD in cells, and even pro-
motes the appearance of cardiomyopathy related to lipid
metabolism in the heart. Plin5 has great research value and
development potential to improve DC pathological changes.
A full understanding of DC pathological changes and path-
ogenesis is conducive to promoting future studies on Plin5
intervention in DC treatment.

2. The Role of Plin5 in Lipid Metabolism
and DC

Obesity [78], IR [79, 80], dyslipidemia [81], and type 2 dia-
betes (T2DM) [82, 83] are basic risk factors for cardiovascu-
lar disease. These risk factors include imbalance of glucose,
lipid metabolism, and changes in blood flow leading to heart
remodeling [84, 85]. Myocardial remodeling is a disorder of
myocardial cell structure and function caused by molecular
biological and genetic changes under neurohumoral factors
[86]. Cardiac remodeling can flexibly adjust energy supply
and improve cardiac function during short periods of myo-
cardial ischemia and hypoxia [87, 88]. However, long-term
cardiac remodeling leads to cardiac cell death [89, 90], pro-
moting the development of DC and ultimately developing
heart failure (HF) [91].

In the early stages of diabetes, IR leads to metabolic
changes in cardiomyocytes that increase FA intake and β-
oxidation, to maintain adequate levels of ATP production.
However, when the FFAs being ingested far exceed those
need for β-oxidation, intracellular lipid accumulation will
lead to lipid toxicity [92]. It is well known that patients with
obese diabetes show more significant visceral fat deposition.
Diabetes is associated with significantly abnormal cardiac
structural changes in steatosis [93]. However, large lipid
accumulation can also cause cardiac dysfunction. In fulmi-
nant type 1 diabetes (T1DM) patients complicated with car-
diac shock, the electron microscope showed large amounts
of LDs and a wide range of inflammatory cell infiltration
in the myocardial cells, and cardiac ultrasound showed the
heart appeared to have serious cardiac insufficiency [20].
TG accumulation can increase free radical sources, which

can induce oxidative stress and trigger lipid peroxidation
[94]. This is accompanied by the release of proinflammatory
cytokines, mitochondrial damage, and ER stress, aggravating
myocardial injury. Modern pharmacological reports believe
that with the progression of cardiac hypertrophy, cardiac
energy metabolism disorder, and limited use of FA, lipid
accumulation will aggravate the occurrence of cardiac
hypertrophy and HF [95, 96]. Therefore, with the increase
of glucose and lipid metabolism disorder, the damage to
the heart also gets worse constantly.

Steatosis is usually associated with increased lipolysis and
IR, leading to increased FFA levels. In physiological state,
cardiomyocytes preferentially use FAs in a concentration-
dependent manner in many cardiac energy substrates such
as ketone body, lactate, FAs, and glucose [97]. In diabetes,
impaired insulin signaling pathways lead to increased lipoly-
sis and increased levels of FFAs in the body, resulting in
increased utilization of FAs [98]. Excessive FFAs can produce
lipid toxicity to cardiomyocytes. Despite high glucose levels,
heart muscle cells from diabetic patients use relatively low
level of glucose [99, 100]. Experimental studies [101] found
that increased glucose transport in the myocardium after
the short-term onset of diabetes would aggravate mitochon-
drial oxidative dysfunction, thus reducing the glucose utiliza-
tion rate in the myocardium. Part of the accumulated glucose
is converted into lipids and stored in LD, while the other part
of the glucose that is too late to be decomposed generates a
large amount of ROS to damage β-cells, causing glucotoxicity
and aggravating islet cell damage. The appearance of lipid
toxicity, glucotoxicity, and their interaction will further
aggravate cardiomyocyte damage in DC.

Plin5 is a key protein in cardiac remodeling, which is
involved in intracellular lipid storage and lipid oxidation.
LDS can regulate FFA metabolism to maintain lipid homeo-
stasis and endothelial cell survival in diabetic CMECs by bal-
ancing the expression status of Plin5 [102]. It can also
regulate the exposure process of lipid metabolism in the
cytoplasm to reduce the lipotoxicity by mechanisms such
as antioxidative stress [24, 103]. Plin5 deficiency increases
complexes I and III, the dominant ROS production sites in
the mitochondrial respiratory chain, activates PPAR-α, pro-
motes mitochondrial proliferation, and increases the rate of
lipolysis, thereby exacerbating stress overload-induced car-
diac remodeling [104]. T2DM can lead to changes in fat
metabolism, increase liposolysis, elevate levels of circulating
FAs, and enhance peripheral tissue uptake. Myocardial
remodeling usually occurs in patients with T2DM [105,
106]. In hyperfree fatty acidemia T2DM mice, Plin5 defi-
ciency leads to a reduction in capillary numbers and exacer-
bates microvascular endothelial injury and myocardial
diastolic dysfunction [102, 107]. CM-Plin5 deficiency
reduces ATGL and HSL-mediated lipolysis [72]. In vitro
experiments have shown that Plin5-/- cardiomyocytes main-
tain higher glycogen content and exhibit better hypoxia tol-
erance and less LD storage compared to Plin5+/+ [108],
suggesting that Plin5 can regulate the balance of glycolipid
metabolism and protect ischemic myocardium. However,
CM-Plin5 overexpression causes cardiac steatosis, increased
heart weight, left ventricular hypertrophy, and mild cardiac

4 Oxidative Medicine and Cellular Longevity



dysfunction in mice [71, 72]. In conclusion, the expression
status of Plin5 determines whether its regulatory effect on
lipid metabolism is positive or destructive to the heart.

Because the effect of diabetes on the body is broad, DC is
not only the influence of diabetes on the heart, but it also
affects the liver, pancreas, vascular, WAT, and skeletal
muscle of physiological and pathological changes. Therefore,
a comprehensive understanding of Plin5 in different organi-
zations helps us to explore the value of Plin5 in DC diagnosis
and treatment. Table 1 shows the known physiological
effects and related mechanisms of Plin5 on the heart, liver,
pancreas, vessels, skeletal muscle, etc. It can be seen from
Table 1 that Plin5-related mechanisms in DC include pri-
marily oxidative stress, inflammatory response, IR, ER stress,
apoptosis, and mitochondrial damage. FA content and con-
version play a key role in this process.

3. The Cellular Processes of Plin5 in DC

Early stages of DC are usually asymptomatic and manifest as
left ventricular hypertrophy, fibrosis, and abnormal cell sig-
naling, characterized by abnormal atrial filling and reduced
left ventricular diastolic function [99, 115, 116]. Underlying
pathological factors include hyperglycemia, IR, elevated FFA
levels, inflammation, ER stress, and mitochondrial dysfunc-
tion [99, 115]. Symptomatic left ventricular enlargement
and HF occur after systolic dysfunction [117, 118]. Reduced
cardiac diastolic function was observed in both T1DM and
T2DM [119], but enhanced cellular autophagy but not
hypertrophic cardiomyocytes was observed in T1DM mice
[120], whereas cardiac hypertrophy but suppressed cellular
autophagy was observed in T2DM mice [119]. This differ-
ence may be related to the different diabetic phenotypes
and underlying mechanisms [121], but both related with
pathological alterations in cardiac cells [3]. Further under-
standing of its pathological mechanism is helpful to explore
potential targets of Plin5 in the DC diagnosis and treatment.
Therefore, this section reviews the pathological changes of
cardiomyocyte apoptosis, cellular autophagy, myocardial
hypertrophy and fibrosis in DC, and microvascular injury
due to damage of the microvascular endothelium between
cardiomyocytes along with the associated pathogenesis of
oxidative stress, mitochondrial dysfunction, inflammation,
ER stress, and IR (Figure 2).

3.1. Apoptosis/Autophagy. Autophagy is an important
component of cardiomyocyte homeostasis that increases cell
survival after cellular stress and starvation [122]. In the pres-
ence of nutrient deficiency, the induction of autophagy
provides cells with the opportunity to reuse their own
components for energy [123]. However, under certain cir-
cumstances, autophagy not only protects cells from death
but also mediates cell death. Autophagic cell death occurs
if autophagy destroys cytoplasm and organelles beyond a
certain threshold [124]. Autophagy is mainly mediated by
Atg proteins [125], and apoptosis is mainly regulated by
the bcl-2 family of proteins and the cysteine family of
enzymes [126]. Although autophagy and apoptosis proceed
through different signaling pathways, many studies have

shown that activation of the PI3K/Akt signaling pathway
can inhibit apoptosis and excessive autophagy [127, 128].

Activated Akt is a downstream effector of PI3K and
inhibits apoptosis by regulating multiple targets such as
mitochondrial permeability transition pore (MPTP), tumor
necrosis factor α (TNF-α), endothelial nitric oxide synthase
(eNOS), bcl-2 family proteins, and NF-κB24. Experimental
studies showed that PI3K and Akt phosphorylation levels
in heart tissue from Plin5-deficient mice were reduced
[21], suggesting that Plin5 may activate the PI3K/Akt signal-
ing pathway to inhibit autophagy/apoptosis. Other possible
mechanisms include that oxidative stress can activate the
intrinsic apoptotic pathway of pancreatic β-cells [129], ER
stress can lead to Ca2+ disorder and promote autophagy/
apoptosis [130, 131], mitochondrial dysfunction exacerbates
oxidative stress levels activating the apoptosis/autophagy-
related pathway [4, 132, 133], and IR can activate GPR40
signaling pathway and JNK pathway aggravating lipid
metabolism disorder [68, 134, 135].

3.1.1. Oxidative Stress. When DC develops to the stage of
cardiac hypertrophy, the heart uses glucose instead of FAs
as its main energy source to reduce oxygen consumption
and promote the production of ROS [136–138]. At the same
time, lipid accumulation increases, and glucose utilization is
limited [95, 96]. Excessive cytoplasmic FFAs can stimulate
β-oxidation, release excessive ROS, and aggravate oxidative
stress [35]. Medium anti and high concentrations of ROS
can induce cell apoptosis and even lead to cell necrosis
through oxidative stress [10, 60]. Excess ROS can exacerbate
myocardial remodeling through DNA damage, protein oxi-
dation, matrix metalloproteinase activation, and lipid perox-
idation, leading to cellular dysfunction and cardiomyocyte
apoptosis [139].

Plin5 disrupts the interaction between ATGL and its
coenzyme α-β hydrolase domain 5 (ABHD5/CGI-58), inhi-
biting LD lipolysis and excessive FA oxidation [35, 104, thus
reducing the production of ROS and oxidative stress levels.
Plin5 expression has different effects on oxidative stress
expression. Studies have shown that overexpression of Plin5
can enhance antioxidative gene expression in skeletal muscle
[30]. While Plin5 deficiency can lead to proliferation of
myocardial mitochondria, promote mitochondrial oxida-
tion, increase ROS and malondialdehyde (MDA) levels,
and decrease superoxide dismutase (SOD) activity [21],
aggravating oxidative stress. ROS and MDA are the products
of lipid peroxidation and are induced by oxygen free radi-
cals. ROS and MDA can reflect the degree of cell damage,
while SOD can remove superoxide anion and protect cells
from damage. Therefore, Plin5 deficiency aggravates ROS-
mediated cardiac injury [24]. Plin5 has been shown to be
negatively correlated with oxidative stress in lipid
overload-induced mouse tissues [24, 110, 140], and Plin5
has a significant antioxidant effect on oxidative stress [32].

In cardiovascular and liver, Plin5 is involved in the
regulation of oxidative stress through PI3K/Akt or MAPK
pathways (P38, ERK, and JNK) [21, 140–143] and is also
an upstream regulator of Nrf2 in pancreatic β-cells [143,
144]. PI3K/Akt is an important antiapoptotic/proliferation
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Table 1: Physiological effects and related mechanisms of Plin5.

Tissue Model Findings Reference

Heart

Plin5−/− mice

↑ cardiac FA oxidation
↓ diacylglycerol and ceramide

↓ LDs and TAG content
↑ heart weight

No clear effect on glucose oxidation and sensitivity to hypoxia

[46, 108, 109]

Plin5+/+ mice No clear effect on glucose oxidation in isolated cardiomyocytes [108]

CM-Plin5 mice
↑ TAG content

↑ TAG hydrolytic activities: ↑ ATGL and CGI-58 protein levels
↓ FA oxidizing gene expression levels

[72]

MCK-Plin5 mice ↑ TAG content [73]

MKO mice
↓ TAG content

No ER stress, inflammation, and oxidative stress
[110]

Liver

Plin5−/− mice

↓ hepatic TAG content in fed state
↑ TAG content in fasting state

↑ lipolysis
↑ mitochondrial proliferation

↑ mitochondrial oxidative capacity
↑ expression of proinflammatory genes under an HFD

↑ expression of ER stress-related genes
↑ lipid peroxidation
↑ insulin sensitivity

[24, 35, 70]

MCK-Plin5 mice
↓ lipid uptake

↓ inflammatory markers
[73]

Hepatocyte-specific
Plin5−/− mice

↓ FA consumption and FA oxidation
↓ TAG secretion

↓ lipid peroxidation and oxidative stress
↑ insulin resistance under an HFD
↑ glucose intolerance under HFD
↑ TAG accumulation under HFD

[111]

Plin5+/+ hepatocytes cell
↑ hepatic TAG accumulation and hepatic steatosis

↓ VLDL content
[112]

Vessel

Plin5−/− mice

↓ LD content
↑ the level of intracellular FFAs in CMECs

↓ NO released in CMECs
↑ ROS generation

↓ the number and structural of cardiac microvascular
↑ apoptosis rate of CMECs and diastolic dysfunction

[113]

MCK-Plin5 mice

↑ LDs and intramyocellular TAG
↓ body weigh

↑ oxygen consumption
↑ muscle ER stress

No obvious defects in mitochondrial

[73]

Pancreas

Plin5−/− mice
↑ apoptosis

↑ palmitate-mediated mitochondrial dysfunction
No augment lipotoxicity

[32]

Plin5+/+ mice
↓ palmitate-mediated mitochondrial dysfunction

↓ oxidative stress
↑ antiapoptotic

BAT
Plin5−/− mice ↓ mitochondrial respiration

[34]
Plin5+/+ mice

↑ glucose tolerance and insulin sensitivity at room temperature
↓ weight during cold exposure

WAT Plin5+/+ mice
↑ insulin sensitivity
↓ inflammation

[34]
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signaling pathway [145], which can regulate it by regulating
mitochondrial proliferation and apoptosis. The MAPK path-
way is an important pathway for mitogen-activated protein
kinases (MAPKs) to coordinate cell metabolism and apopto-
sis, recognizing and responding to extracellular stimuli
[146]. The most extensively studied MAPK pathways are
ERK1/2, JNKs, and P38 kinases [146–148]. The ERK1/2 sig-
naling pathway is a key regulator of cell proliferation [147].

The P38 regulates the expression of several cytokine tran-
scription factors and cell surface receptors [148], and its
activity is crucial for immune inflammation. JNKs can
activate mitochondrial apoptosis pathway [149] and inhibit
insulin receptor signal transduction, leading to IR
[150–152]. Meanwhile, obesity-induced lipid toxic stress
can activate JNK pathway [153–155], resulting in a vicious
cycle of lipid metabolism in vivo. Experimental studies have

Table 1: Continued.

Tissue Model Findings Reference

Muscle

Plin5−/− mice
↑ skeletal muscle insulin resistance

↓ TAG content
[24, 70, 114]

MKO mice

↑ fat mass
↓ respiratory exchange ratio
↑ FA oxidation under HFD

↑ oxidative stress
↑ TAG content

↓ proinflammatory markers

[110]

MCK-Plin5 mice
↑ LD formation

↓ body weight compared to nontransgenic littermates under control and HFD diet
↑ expression of ER stress markers

[73]

Plin5−/−: Plin5 deficient; Plin5+/+: Plin5 overexpression; FA: fatty acid; LD: lipid droplet; TAG: triacylglyceride; CM-Plin5: cardiac muscle-specific
overexpression of Plin5; ATGL: adipose triglyceride lipase; CGI-58: comparative gene identification-58; MCK-Plin5: skeletal muscle-specific overexpression
of Plin5; MKO: muscle-specific Plin5 knockout; ER: endoplasmic reticulum; HFD: high-fat diet; VLDL: very-low-density lipoprotein; CMECs: cardiac
microvascular endothelial cells; FFAs: free fatty acids; BAT: brown adipose tissue; WAT: white adipose tissue; ROS: reactive oxygen species.
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7Oxidative Medicine and Cellular Longevity



found that Plin5 can increase the activity of the PI3K/Akt
and ERK pathways and reduce the activity of the P38
and JNK pathways [32], thus achieving the effect of anti-
oxidant improvement of IR and reduction of cell stress
and apoptosis.

Plin5 reduces oxidative damage related to lipid toxicity
by activating PI3K/ERK-mediated Nrf2-ARE signaling path-
way in INS-1 pancreatic cells [32]. Nrf2 is a major regulator
of oxidative stress in cells [144]. Oxidative stress activates
Nrf2 in pancreatic β-cells, which promotes the expression
of antioxidant enzymes by binding to ARE in promoter
region [144, 156], thus promoting antioxidant capacity,
improving the function and survival rate of β-cell.

3.1.2. Mitochondrial Dysfunction. Mitochondria typically
occupy approximately 20% to 30% of the total cell volume
of cardiomyocytes [99]. Typically, mitochondrial oxidative
phosphorylation produces more than 95% of ATP, with
the remaining 5% produced by the glucose and lactate tricar-
boxylic acid cycles [157]. However, in an environment of
hyperglycemia, IR, and hypertriglyceridemia, cardiomyo-
cytes have a reduced ability to utilize glucose, with FFAs as
the main source of energy [100].

The high glucose environment in DC was shown to
inhibit the activity of AMPK-activated protein kinase α2
and increase the expression of human protein (Fundc1)
from the outer mitochondrial membrane [158, 159], pro-
moting the formation of the mitochondria-associated endo-
plasmic reticulum (MAM) in diabetes, leading to increased
mitochondrial Ca2+, mitochondrial rupture, mitochondrial
dysfunction, and myocardial dysfunction [4, 132, 133]. Plin5
is involved in mitochondrial fission, which requires phos-
phorylation of mitochondrial fission factor (Mff) to recruit
dynamin-related protein 1 (Drp1) [160]. Reduced amount
of phosphorylated Mff in transgenic mouse cardiomyocytes
with the Plin5 gene encoding serine-155 to alanine exchange
implies reduced recruitment and fission of mitochondrial
Drp1, which may protect against lipotoxic-induced cardiac
dysfunction [161].

PGC-1α synergistically activates PPAR and plays a key
role in the regulation of mitochondrial FA β-oxidation and
mitochondrial oxidative phosphorylation [17, 24, 37, 162].
PPAR and PGC-1α regulate the expression of Piln5, and
its miRNA and protein are highly enriched in oxidized
tissues such as heart [37]. In the absence of Plin5, the expres-
sion of PPAR-α protein and miRNA was significantly
increased in the liver [17], and the levels of PPAR-α and
PGC-1α were significantly upregulated in cardiac myocytes
[104]. PPAR may be associated with peroxidase proliferator
reaction elements (PPREs) and retinoic acid X receptor
(RXR) binding, thus increasing FA oxidation capacity.
PPAR-α is a direct regulator of Plin5 [33], while the induc-
tion of Plin5 expression by PPARβ/δ and/or PPAR-γ activa-
tion is indirect. The specific regulation mechanism still
needs further study. SIRT1 plays a key role in sensing intra-
cellular REDOX (NAD), coordinating cell functions
[52–54], that can promote LD catabolic metabolism and is
responsible for downstream FA metabolic pathways [59].
SIRT1 deacetylates PGC-1α and promotes its interaction
with PPAR-α [59], increasing PGC-1α/PPAR-α activity [41].

The lipolysis process is significantly activated in response
to increased energy requirements. Plin5 promotes mito-
chondrial biogenesis and oxidative metabolism through
SIRT1/PGC-1α/PPAR-α-dependent pathways. Recent
experiments have shown that Plin5 preferentially binds
LD-derived monounsaturated fatty acids (MUFAs) after
activation and phosphorylation of PKA, transports it to the
nucleus under cAMP/PKA-mediated lipolytic stimulation,
activating SIRT1 and forming a complex with SIRT1 and
PCG-1α to activate the lipolysis process [41, 59], and pro-
motes mitochondrial biogenesis in BAT and muscle. In cells
and animal models, MUFA enhances PGC-1α/PPAR-α
signaling and promotes oxidative metabolism in a SIRT1-
dependent manner. When Plin5 is deficient, FFAs can also
increase transcription of PPAR [41, 163], leading to upregu-
lation of PPAR-α and PGC-1α levels. At the same time, the
content of mitochondrial DNA (mtDNA) and the number
of mitochondria in cardiomyocytes are significantly
increased, thus stimulating mitochondrial proliferation
[104] and oxidation-related gene transcription [41], increas-
ing the degree of oxidative stress.

3.1.3. Endoplasmic Reticulum Stress. Insufficient autophagy,
excess or restricted nutrition, excessive oxidative stress, and
inflammation can disrupt ER homeostasis, leading to the
accumulation of unfolded or misfolded proteins in the ER
compartment, called ER stress, which activates the unfolded
protein response (UPR) [164]. Under physiological condi-
tions, the UPR helps cells adapt to ER stress and regulates
the cellular life state [165]. In acute ER stress, the UPR is
activated to restore ER protein folding homeostasis [166].
If ER stress is chronic or severe, UPR activation can lead
to Ca2 + disorder [130, 131] and promote cell survival or cell
death [167, 168]. ER stress reveals a perturbation of ER func-
tion, which further initiates UPR and ER stress-related
autophagy to reestablish ER homeostasis; otherwise, unre-
solved ER stress inevitably leads to cell death through induc-
tion of apoptosis [169, 170]. Indeed, the crosstalk between
UPR and autophagy or apoptosis determines cell fate and
is controlled by multiple signaling pathways. The way in
which lipids cause ER stress is unclear, but there is growing
evidence that this conserved response plays an important
role in maintaining metabolism and lipid homeostasis.

LD accumulation is related to ER stress in the yeast and
mammalian liver [171, 172], which stimulates the formation
and accumulation of LD [173], and promotes the appear-
ance of lipid toxicity. ER stress is an important factor in
the generation of pancreatic β-cell lipid toxicity [174, 175].
In pancreatic β-cells, Plin5 alleviates ER stress induced by
overnutrition [33]. ER stress is associated with IR [176],
which is thought to be an imbalance between protein folding
capacity and increased demand for insulin production and
secretion [164, 177].

Plin5 acts as a protective factor against lipid toxicity in
the liver and skeletal muscle and regulates ER stress [35,
70, 110, 178]. Studies have shown that Plin5 overexpression
can slow down lipolysis and FA oxidation under basic con-
ditions [178]. It can significantly promote FA oxidation in
skeletal muscle under stimulation of starvation or activated
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PKA [178]. It is common sense to speculate that Plin5 may
promote LD formation and inhibit ER stress under underly-
ing conditions. However, studies have found that loss of
Plin5 in skeletal muscle can reduce ER stress [179], and
there is no significant difference in ER stress in the heart
even if Plin5 is completely lost [179]. The regulation mode
of Plin5 in ER stress needs further study.

3.1.4. Insulin Resistance and Signal Conduction. Insulin
resistance (IR) is a reduction in glucose utilization by target
organs in response to insulin [180] and is an important risk
factor for cardiovascular disease [180, 181]. Inflammation,
mitochondrial dysfunction, hyperinsulinemia, and hyperlip-
idemia can all induce IR [180], with high concentrations of
circulating FFA-induced lipotoxicity being a key mechanism
of IR [182]. In animal studies, mice were found to develop
myocardial IR because of a high-fat diet, characterized by
downregulation of IR activity, reduced Akt signaling, and a
shift from glucose utilization to fatty acid utilization [183].
The role of autophagy in insulin resistance has been contro-
versial [184–186]. Recent studies have found that in a rat
H9c2 cardiomyocyte IR model [187], cardiomyocytes show
hyperactivation of autophagy and increased apoptosis with
increasing insulin resistance, and the PI3K/Akt/mTOR path-
way is involved in this process. The PI3K/Akt/mTOR path-
way is the link between insulin resistance and autophagy.
The two major insulin receptor substrates, IRS-1 and IRS-
2, activate the PI3K/Akt pathway [188], while the PI3K/
Akt/mTOR pathway inhibits autophagy when activated
[189]. It has been shown that Plin5 can inhibit autophagy
by regulating the activation of mTOR that can be activated
through the PI3K/Akt pathway [190].

Plin5-/- mouse models have demonstrated that Plin5 can
improve IR in the skeletal muscle of the insulin sensitive
liver with glucose tolerance [70], and the specific pathway
mechanism is still being explored. According to previous
studies, Plin5 also can improve insulin resistance by mediat-
ing the JNK pathway. FFA is an effective activator of JNK
[191–194], and FFA induces insulin resistance by inhibiting
the serine phosphorylation of IRS-1 [134, 135]. Biochemical
studies have confirmed that IRS-1 phosphorylation is the
target of JNK-mediated insulin resistance [150, 153]. The
activity of Jun’s N-terminal kinase JNK is primarily provided
by JNK1, and when JNK1 is lost, its inhibition of IRS-1
phosphorylation can be reduced and the ability to transduce
insulin receptor signals can be improved to some extent
[153]. Studies have shown that the loss of JNK1 can promote
the reduction of obesity, the significant improvement in
insulin sensitivity, and the enhancement of insulin [153].
However, whether IRS-1 phosphorylation is the only target
of JNK-mediated insulin resistance remains to be further
studied. On the one hand, Plin5 can accelerate the utilization
of FFAs by lipid-mitochondrial contact [39] or reduce the
activation effect of FFAs on JNK by isolating FFAs [24].
On the other hand, Plin5 can reduce the activity of the
JNK pathway and reduce the inhibition of IRS-1, thus
achieving the effect of improving insulin resistance.

Plin5 can also regulate lipid metabolism and promote
postprandial insulin secretion in a manner dependent on

cAMP and the G protein-coupled receptor 40 (GPR40)
[68]. β-Cell dysfunction is a basic defect of diabetes [195],
leading to insufficient basal insulin secretion and long-term
poor control of postprandial hyperglycemia, leading to mac-
rovascular lesions. FA promotes postprandial insulin secre-
tion by acutely increasing insulin release [196, 197] and
activates GPR40 to produce intracellular FA metabolites
[198]. GPR40 is a highly expressed FA receptor on the cell
surface [199]. GPR40-/- mice showed that approximately
50% of FA-mediated enhancement of insulin secretion is
dependent on GPR40 [200]. It was found that the destruc-
tion of GPR40 in mice reduced the induction of insulin
secretion by FAs [200]. In contrast, transgenic overexpres-
sion of GPR40 in mice improved glucose-stimulated insulin
secretion in wild-type and diabetic mice [201]. This suggests
that GPR40 plays an important role in regulating insulin
secretion. Plin5 may engage in a cross-dialogue with the
GPR40 signaling pathway in extracellular secretion of FA
or in collaboration with the GPR40 signaling pathway in
cells [68]. Intracellular lipid metabolism and GPR40 signal-
ing are intertwined rather than operating independently.
Plin5 also relies on CAMP-activated protein kinase (PKA)
to mediate increased lipolysis, which may be sufficient to
alter the structure of intracellular lipid metabolites and thus
participate in the regulation of insulin secretion [68].

3.1.5. Inflammation. Autophagy is a key link in the autono-
mous control of inflammation by cells [202]. Uncontrolled
inflammation is one of the main factors in the pathogenesis
of cardiomyopathy [203]. Organelle autophagy plays an
important role in cell protection; for example, activation of
mitochondrial autophagy can protect cardiomyocytes from
lethal inflammation by promoting an anti-inflammatory
response, inhibiting cardiomyocyte loss, and promoting the
protective effects of tissue remodeling and fibrosis [204,
205]. Research finds that Plin5 promotes autophagy and pre-
vents FA-induced inflammation through SIRT1 signaling
during fasting [206], while Plin5 deletion has also been
found to reduce the inflammatory response in liver cells
[178]. P38 is the second prototype member of the MAPK-
related pathway in mammalian cells [207, 208], which can
reduce the activity of the inflammation pathway [32, 209].
Theoretically, Plin5 can restrain inflammatory immunity
through this pathway, but the mechanisms between Plin5
and inflammation are still largely unknown.

3.2. Myocardial Hypertrophy and Fibrosis. Plin5 deficiency
increases oxidative load, which exacerbates stress overload-
induced cardiomyocyte hypertrophy [104]. It is well known
that ROS induce cardiac hypertrophy and cardiac dysfunc-
tion through oxidative damage and/or abnormal redox sig-
naling [21, 210]. In a mouse model of transverse aortic
constriction- (TAC-) induced cardiac hypertrophy and heart
failure [104], Plin5-deficient mice had an enlarged cardio-
myocyte cross-section compared to wild mice after TAC,
and their lipid content in the myocardium was reduced
approximately three times more than that of wild-type mice.
Moreover, in Plin5-deficient mice, a significant increase in
mitochondrial number and mitochondrial DNA content
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was observed, with significantly higher levels of MDA and
ROS and significantly lower SOD activity. This suggests that
Plin5 effectively reduces lipid content [24], stimulates mito-
chondrial proliferation, and exacerbates myocardial oxida-
tive stress [21].

Activation of PPAR by PGC-1α is known to play a key
role in regulating fatty acid mitochondrial β-oxidation as
well as core genes involved in mitochondrial oxidative phos-
phorylation [17, 24]. mRNA levels of PPAR-α and PGC-1α
were significantly increased in Plin5-deficient cardiomyo-
cytes after TAC surgery [104], which may contribute to
mitochondrial proliferation and increased levels of enzymes
involved in oxidative phosphorylation elevated levels. Taken
together, the increased mRNA expression of PPAR-α/PGC-
1α in the absence of Plin5 stimulates an increase in mito-
chondrial DNA content, promotes mitochondrial prolifera-
tion to increase oxidative levels, accelerates the utilization
of FFAs in cells, and reduces lipid synthesis. As a result of
increased oxidation levels, the released ROS in turn stimu-
late cellular hypertrophy.

Hyperglycemia, IR, and oxidative stress all can promote
the expression of cardiomyocyte hypertrophy genes such as
the insulin-like growth factor IGF-1 receptor [211]. High
insulin levels induce cardiomyocyte hypertrophy through
binding to IGF-1 receptors. IGF-1 produced by cardiomyo-
cytes can also stimulate cardiomyocyte hypertrophy through
ERK1/2 and PI3K signaling pathways [212]. The crosstalk
pathway between IGF-1 and insulin signaling plays an
important role in hyperglycemia/insulin resistance-induced
cardiac hypertrophy and fibrosis in diabetic cardiomyopa-
thy. IGF-1 knockdown reduces glucose uptake by the heart,
increases cardiac reactive oxygen species (ROS) production,
and induces mitochondrial dysfunction that impedes cardiac
metabolism and function and increases fibrosis [213, 214].
Inflammatory factors such as TNF-α, NF-κB, protein
kinases, JNK, and P38 can directly induce myocardial
hypertrophy and promote myocardial fibrosis [87, 215].
How Plin5 stimulates cellular hypertrophy and fibrosis
through these inflammatory factors still needs further
experimental exploration.

3.3. Microvascular Endothelial Dysfunction. Microangiopa-
thy occurs widely in T2DM, leading to microcirculation
abnormalities [216, 217]. Normal function of the coronary
arteries and downstream microcirculatory vessels is
impaired in diabetic cardiomyopathy. Structural abnormali-
ties in the coronary microcirculation include luminal
obstruction, inflammatory infiltration, vascular remodeling,
and perivascular fibrosis [218]. Functional abnormalities in
the coronary microcirculation include endothelial and
smooth muscle cell dysfunction and impaired vasodilation
and contraction as well as ischemia-reperfusion [218]. Coro-
nary angiography suggests that microvascular endothelial
dysfunction is an important cause of coronary microvascular
disease (CMD) [219].

Microvascular endothelial cells are the basic structure of
microvascular. Microvascular endothelial cells (CMECs)
occur before DC cardiomyopathy [220] and are the earliest
and most vulnerable target of heart damage from DM

[221]. More than 67.1% of T2DM patients have abnormal
lipid metabolism [222], and plasma FFAs gradually increase
as early as two weeks before hyperglycemia [223]. Studies
have shown that HFFA reduces the number of microvascu-
lar and destroys the integrity of microvascular in T2DM-
HFFA mice [107]. Plin5 plays an important role in LD and
FFA metabolism of CMECs, and its expression status deter-
mines its protective/destructive effect on CMECs.

Plin5 protects diabetic CMEC by bidirectionally regulat-
ing FFA metabolism through phosphorylated and nonpho-
sphorylated states [102]. Nonphosphorylated Plin5 can
inhibit lipolysis and promote mitochondrial contact of
LDs, thus promoting FFA storage in LDs and reducing
FFA damage to CMEC. Loss and phosphorylation of Plin5
can induce CMEC damage through oxidative stress as a
potential mechanism [102]. Activation of PKA can stimulate
phosphorylation of Plin5 [26, 224], and Ser155 may be an
important site [26, 41]. Both the deficiency of Plin5 and
phosphorylation pattern of Plin5 (P-Plin5) promote the
hydrolysis of triglycerides (TG) in LD and the release of
FAs to the cytoplasm [163]. In addition, P-Plin5 in the
nucleus also inhibits SIRT1 activity, promotes PGC-1α
transcription, and enhances mitochondrial synthesis and
oxidation functions [41]. In physiological state, the phos-
phorylated and nonphosphorylated states of Plin5 can be
transformed into each other and regulate the FFA content
bidirectionally. When Plin5 phosphorylation or Plin5 dele-
tion exceeds the body’s ability to repair itself, excessive
FFA and strong mitochondrial oxidation capacity will be
generated, which will stimulate mitochondrial β-oxidation,
produce a large number of ROS [225, 226], and reduce the
expression and activity of endothelial nitric oxide synthase
(eNOS) [227], ultimately leading to increased apoptosis rate,
decreased capillary number, worsening structural insuffi-
ciency, and increased diastolic dysfunction [107].

4. Clinical Intervention

Controlling blood glucose level and lipid metabolism can
effectively reduce blood glucose fluctuation and fatty degen-
eration in treatment of DC. Similar to the idea of hypoglyce-
mia in diabetes, in order to reduce the damage of lipotoxicity
on cells, clinical interventions can be considered to increase
the storage of lipids to reduce the accumulation of excessive
FFAs in the cytoplasm on the one hand and promote the oxi-
dation level of fatty acids to accelerate the utilization of lipids
to reduce steatosis on the other hand [228]. Based on the
great potential of Plin5 in lipid regulation, we can interfere
with the transcriptional expression of Plin5 and its involve-
ment in lipolysis and LD-mitochondrial contact processes
to achieve bidirectional regulation of FA metabolism.

4.1. Plin5/PPAR-α: Lipid Oxidation and Myocardial
Hypertrophy. As previously known, PPAR-α regulates the
transcriptional expression of Plin5 in the nucleus and plays
a key role in Plin5-mediated lipid metabolism and mito-
chondrial oxidation. Activation of the PPAR-α-related
signaling pathway directly affects the expression of key genes
for FA oxidation [229]. Dapagliflozin, a member of the
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sodium-glucose cotransporter 2 inhibitors (SGLT-2), which
is a new class of hypoglycemic agents, enhances renal excre-
tion of excess glucose or glycerol [230]. Dapagliflozin
(DAPA) has been widely used in the treatment of diabetes
and cardiovascular disease [231–233]. DAPA mediated
Plin5/PPAR-α signaling axis to reduce vascular endothelial
growth factor-induced cardiac hypertrophy in vivo and
in vitro [234, 235], while silting Plin5 can reverse the protec-
tive effect of this pathway [234]. At the same time, DAPA
significantly improved cardiac function and increased ejec-
tion fraction [234–236]. It is important to note that DAPA
had the same protective effect in both diabetic and nondia-
betic patients, so the cardioprotective effect of DAPA was
independent of the hypoglycemic effect of the drug [236,
237]. In conclusion, although SGLT-2 drugs act mainly in
the kidney to promote the metabolism of excess glycolipids
from the body, they can also interfere with the Plin5/
PPAR-α pathway to regulate lipid metabolism and cardio-
myocyte hypertrophy for cardiac benefit.

The absence of PPAR-α is known to lead to significant
hypertrophic growth and cardiac dysfunction [238]. Experi-
mental results showed that fenofibrate, as a PPAR-α agonist,
can not only reduce cardiac hypertrophy by activating the
PPAR-α signaling pathway that negatively regulates the
binding activity of activated protein-1 (AP-1) [239, 240]
but also significantly inhibit the activation of ERK1/2 and
Akt induced by high glucose [241], reducing myocardial oxi-
dative stress. Overexpression of PPAR-α targeting hypertro-
phic myocardium can also improve cardiac function by
attenuating mitochondrial death pathways [242]. Therefore,
fenofibrate has bright clinical benefits as PPAR-α receptor
agonists in improving lipid-induced cardiac hypertrophy
and cardiac dysfunction.

4.2. GPR40: FFA Receptor, Bidirectional Regulation of
Insulin. The GPR40 agonists are also expected to be a novel
intervention drug for DC based on the mechanism of insulin
resistance/deficiency pathway between Plin5 and DC.
GPR40 agonists are currently being used as a novel treat-
ment for type 2 diabetes [243]. GPR40, also known as FFA
receptor 1 [244], activates phospholipase production of diac-
ylglycerol, which increases insulin secretion [244–246].
Clinical trials have shown that the GPR40 agonist TAK-
875 can reduce fasting and postprandial blood sugar and
the HbA1c without causing hypoglycemia or lipid toxicity
[247–250]. GPR40 agonist can promote insulin secretion
and hypoglycemia without causing lipid toxicity, showing
unique advantages in regulating glucose and lipid metabo-
lism, which has great research and development potential.

Some foods may also enhance insulin sensitivity through
the Plin5-related pathway. For example, sweet potato squash
improves insulin sensitivity through PPAR-γ and GLUT4
that activates 3T3-L1 adipocyte IRS-1/PI3K/AKT pathway
[251]. Promoting insulin secretion and increasing insulin
sensitivity is a relatively ideal treatment direction for insulin
resistance/deficiency lipid metabolism abnormalities, which
can effectively accelerate the utilization or storage of FAs
to reduce lipid toxicity. As an important target for improv-

ing insulin resistance/deficiency, Plin5 provides new ideas
for future treatment of DC.

4.3. Other Mechanisms and Interventions. Research shows
that Plin5 ameliorates podocyte injury induced by high
glucose by inhibiting Akt/GSK-3BETA/NRF2-mediated
apoptotic oxidative stress and inflammation [252]. The
result suggests that intervention of Plin5-related inflamma-
tory and oxidative stress pathway may also reduce DC. For
example, allopurinol can activate Nrf2/P62 and reduce oxi-
dative stress, thereby alleviating diabetic cardiomyopathy
in rats [253]. Resveratrol alleviates diabetic cardiomyopathy
in rats by improving mitochondrial function through PGC-
1α deacetylation [254].

Because of the complex interactions between various
mechanisms such as oxidative stress, inflammation, and IR,
the process by which Plin5 regulates lipid metabolism is also
intricate. Therefore, the pathway of clinical interventions to
regulate lipid metabolism by Plin5 is not as homogeneous
as presented by purely experimental data. Nevertheless, this
does not negate the importance of Plin5 in DC lipid metab-
olism and the effectiveness of current clinical interventions.

5. Conclusions

Lipid toxicity caused by DC metabolism disorder can aggra-
vate myocardial cell injury, promoting heart failure, ventric-
ular remodeling, cardiac dysfunction, and other adverse
events. As the pathogenesis of DC is complex, the clinical
application of RAAS system inhibitors and β-blockers is
not effective, and it is very important to find new DC inter-
vention targets. Plin5, as a LD-associated protein, is highly
expressed in the heart and is closely related to energy
metabolism-related organelles such as the nucleus, mito-
chondria, and ER, playing an irreplaceable role in regulating
lipid metabolism.

The role of Plin5 in lipid metabolism in cells has been
reported. Plin5 participates in the synthesis of TG by FAs
in the ER, forming LDs and reducing the lipid toxic damage
caused by excessive FFAs in cells. When stimulated, Plin5
binds to ATGL and HSL to promote lipolysis of LD and
releases FAs. The released FAs can be transported to mito-
chondria through Plin5-mediated LD-mitochondrial contact
for FA β-oxidation to release energy, thus reducing excessive
accumulation of FFAs in cells.

Plin5 can multidimensionally protect the body damaged
by lipid toxic of DC, such as regulating lipid balance, reduc-
ing oxidative stress and inflammation levels, reducing IR
and ER stress, protecting mitochondria and endothelial cells,
and delaying apoptosis. On the one hand, Plin5 regulates
oxidative stress by activating the PI3K/Akt pathway to regu-
late mitochondrial proliferation and apoptosis. Plin5, on the
other hand, mediates cell metabolism and apoptosis by
interfering with the MAPK pathways (P38, ERK, and
JNK), including mediating the inflammatory response by
inhibiting the P38 pathway, promoting cell proliferation by
activating the ERK pathway, and promoting insulin receptor
signaling by inhibiting the JNK pathway. ER stress is closely
related to insulin resistance, and the specific mechanism is
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still unclear. It may be related to lipid toxicity of islet β-cells
caused by overnutrition. Plin5 can also improve mitochon-
drial metabolism through the PPAR-α/PGC-1α signaling
pathway and prevent the mitochondrial dysfunction caused
by it. Each signaling pathway is different, but each signaling
molecule is closely related and interacts with each other,
jointly improving the pathological changes caused by DC
lipid toxicity under the action of Plin5.

Fortunately, there are some novel drugs for Plin5 to
intervene in DC lipotoxic injury, such as SGLT-2 inhibitor
(DAPA), PPAR-α agonist, and GPR40 agonist. These drugs
not only boost metabolism but also protect the cardiovascu-
lar system. Studies have shown that they can improve anti-
oxidant, anti-inflammatory, and insulin resistance to some
extent, reduce lipid toxicity, and protect the myocardial cell
without causing hypoglycemia.

However, despite the fact that relevant experiments have
proven clinical benefit of Plin5, a large number of experi-
ments and data are needed for further verification. In addi-
tion, Most of the conclusions are based on animal
experiments, and clinical observation is relatively scarce.
Therefore, in future studies, (a) broadening the network of
Plin5 targets and cofactors at different stages of DC pathogen-
esis will help to determine the more specific role of Plin5,
possibly using the protein as a tool for diagnostic or therapeu-
tic targeting. (b) In terms of therapy, a comprehensive under-
standing of the mechanism of Plin5 DC protection and its
related signaling pathway may be of additional value to over-
come the limitations of a singlemeasure and target. (c) On the
basis of more abundant and mature laboratory studies, more
clinical studies should be carried out appropriately.
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