
RESEARCH ARTICLE

Genetic structure and temporal

environmental niche dynamics of sideoats

grama [Bouteloua curtipendula (Michx.) Torr.]

populations in Mexico
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Abstract

In the past years, several plant breeding programs have been done to select outstanding

genotypes of sideoats grama (Bouteloua curtipendula) for restoration purposes. Such pro-

grams have been focused mainly on agronomic traits; however, little attention has been

paid to the genetic structure and environmental adaptation of the selected genotypes. Thus,

in this study we evaluated the genetic structure of 85 sideoats grama populations in Mexico.

In addition, we modeled the past, present and future environmental niche of the genetic

clusters of this species. Ninety sideoats grama populations were genetically analyzed

through AFLP (Amplified Fragment Length Polymorphisms) markers. The environmental

niche of the population clusters was modeled by using the maximum entropy method. The

genetic analysis separated the populations into two genetically different clusters (p =

0.0003). The differentiation of these lineages can be partially explained by the paleoclimatic

events experienced during the last interglacial and glacial maximums. Consequently, the

genetic clusters have different environmental niche at the present time. Suitability areas for

the distribution of Cluster I are mainly located in the central part of the country while the envi-

ronmental niche of Cluster II is located in the semiarid region, close to the mountain range of

the Sierra Madre Occidental. Thus, selection and restoration programs with sideoats grama

must be carried out using local germplasm from each environmental niche. Given the envi-

ronmental niche of both genetic clusters will suffer changes in the near and mid-century

future, climate change must be considered for genotypes selection and restoration

programs.
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Introduction

Sideoats grama [Bouteloua curtipendula (Michx.) Torr.] is one of the most utilized species for

grasslands restoration in northern Mexico. This grass has been widely used due to its great

adaptability to a wide range of environmental conditions and due to its high forage quality [1].

In the past years, breeding programs have focused on selecting outstanding genotypes for res-

toration of degraded grasslands [2–5]. However, these selection programs have mainly focused

on agronomic traits, such as high biomass and seed production, and the pressure of these

selections may lead to genetic depression and loss of traits related to environmental adaptation

[6, 7]. Thus, it is fundamental to know about the genetic structure and environmental adapta-

tion of the selected genotypes.

Genetic structure is an important factor influencing the adaptation to environmental condi-

tions and the distribution of grass species [7]. For this reason, knowledge about the genetic

structure is crucial to design strategies for the conservation and utilization of native germ-

plasm. To assess the genetic structure patterns and quantify the number of genotypes existing

within the species, a diverse array of neutral molecular markers, i.e. RAPDs, AFLPs or micro-

satellites have been used [8]. Data of genetic structure may be useful to model the migration

patterns shown by different species through time and, to determine the interactions that have

influenced the genetic structure within the species [9]. In addition, knowledge about the

genetic structure allows identification of present and future suitable areas for the use of a given

genotype in ecological restoration [10]. In turn, this may help to increase the probability of

success of restoration programs [11, 12].

A way to determine suitable areas for the use of a genotype is through the use of mathemati-

cal models [13]. The maximum entropy method is a mathematical model widely used to esti-

mate the environmental niche of species of flora and fauna [14, 15]. The maximum entropy

method is available in the MaxEnt software and has several advantages, i.e., it is possible to

obtain a high level of certainty using limited records of presence [16]. Hence, it serves to deter-

mine the environmental niche of different genotypes, if their geographic distribution is known

[17, 18]. Furthermore, this model has been used to identify suitable areas for distribution and

use of sideoats grama in Mexico and the United States [19, 20]. Thus, the objective was to eval-

uate the genetic structure of sideoats grama populations in Mexico and to model the past, pres-

ent and future environmental niche of the genetic clusters of this species.

Materials and methods

Sampling

In this study, 85 natural populations, distributed in 10 states of Mexico, were sampled (S1

Table). Such populations are representative of the species environmental and habitat diversity

in Mexico. This species has a distribution of 548,719 km2 [20] and the sampling area repre-

sents 57% (316,740 km2) of the national distribution. Leaves from at least three plants per pop-

ulation were collected and stored in coolers with dry ice. The samples were then transported to

a laboratory for further genetic analysis. Sampling was performed in the arid and semiarid

regions of the country, based on the sideoats grama distribution shown in Fig 1.

Genetic structure analysis

The genetic structure of the sampled sideoats grama populations was analyzed trough AFLP

(Amplified Fragment Length Polymorphisms). Leaf samples were used for the DNA extraction,

which was performed following the method proposed by Doyle and Doyle [21]. DNA from the

three sampled plants from each population was bulked for the analysis. AFLP protocol was
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carried out following Vos et al. [22]. It started with restriction digestion of 2 ml of diluted DNA,

using the EcoRI and MseI restriction enzymes. The digested DNA fragments were then ligated

to EcoRI and MseI adapters. The pre-amplification step was carried out with AFLP primers

having an additional single nucleotide (EcoRI + AandMseI + A). For the selective amplification,

the fluorescent-labeled primer combinations EcoRI + AGG–MseI + CTG; EcoRI + AGG–MseI

+ CTA; EcoRI + AGG–MseI + CGG; EcoRI + ACA–MseI + CGA and EcoRI + ACA–MseI

+ CAC were used. Polymerase chain reaction (PCR) was performed in a thermal cycler ERI-

COMP TwinBlock using the following amplification profile: 1 cycle with a duration of 30 s at

94˚C, 30 s at 65˚C and 1 min at 72˚C, 12 cycles of 94˚C for 30 s, 65˚C for 30 s (with decrements

of 0.78˚C at each cycle), 72˚C for 1 min and 23 cycles of 94˚C for 30 s, 56.8˚C and 72˚C for 1

min. The selective amplification products (5 μL) were mixed with 2 μL of 5X SGB (buffer: 95%

formamide, 0.05% bromophenol blue, 0.05% cyanol xylene and 10 mM NaOH). The DNA was

denatured at 95˚C for 10 min. Finally, the AFLP fragments were analyzed by electrophoresis,

which was performed in an acrylamide gel at 6.5%. The DNA bands were transferred from the

gel to a nylon membrane (0.45 μm of 30×39 cm), for 16 h with the Southern Dry Blot technique.

The membranes were exposed 3 to 4 h to a radiographic film. Then AFLP data from all primers

was transferred into a binary matrix, scored as “1” (presence of fragment) and “0” (absence of

fragment). Bands were considered polymorphic if the frequency of one of its states (present or

absent) was less or equal to 0.98 (present or absent in at least 84 from the 85 populations.

Fig 1. Sites geographic location of the collected samples from the 85 sideoats grama (Bouteloua curtipendula) populations. Digital Elevation Model from INEGI

(https://www.inegi.org.mx).

https://doi.org/10.1371/journal.pone.0254566.g001
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The binary data were subjected to a genetic structure analysis, based on Bayesian clustering

algorithms. This analysis was performed in the STRUCTURE version 2.3.4 software [23, 24].

Correlated allele frequencies and admixed model were applied with 100,000 burn-in and

10,000 Markov chain Monte Carlo (MCMC) replications. The predefined number of clusters

(K) was from 1 to 10. Thirty independent simulations were conducted for each K value. Struc-

ture Harvester was used to estimate the optimum value for K [25] (http://taylor0.biology.ucla.

edu/structureHarvester/). The optimum value for K was defined based on the mean log-likeli-

hood [L(K)] and the delta K (ΔK) statistic, according to the method proposed by Evanno et al.

[26].

Population clusters, based on the STRUCTURE analysis; were compared through an analy-

sis of molecular variance (AMOVA) [27]. This analysis was carried out using GenAIEx version

6 [28]. Based on the F statistics of the AMOVA, genetic differentiation among populations was

calculated as Wright’s FST [29]. Gene flow (Nm) between population clusters was calculated as

Nm = [0.25 (1- FST)/(FST)] [30]. Moreover, genetic data were subjected to a Genetic Barrier

analysis to identify ecological barriers to gene flow among populations. This was performed

based on Monmonier’s maximum difference algorithm, which treated geographical coordi-

nates and genetic distances (Dice Coefficient) of each population as inputs. The Genetic Bar-

rier analysis was carried out with the software BARRIER, ver. 2.2 [31].

The diversity parameters percentage of polymorphic loci, average number of alleles per

locus, average effective number of alleles per locus, Shannon information index (I), and Nei’s

genetic diversity (He) were calculated with GenAIEx version 6 [28]. These indexes were

obtained for each of the genetic clusters formed by the STRUCTURE analysis. The Wilcoxon

test with Bonferroni´s correction was performed to compare the diversity indexes between

clusters (α = 0.05).

Environmental niche modeling

To quantify the ecological differentiation, the environmental niche of the genetic clusters,

derived from the STRUCTURE analysis, was modeled with Maxent 3.3.3 [16]. The coordinates

of populations integrated into the genetic clusters were utilized to model the environmental

niches. Bioclimatic variables 1–19 from Worldclim 1.4 [32] were used as predictors. Prior to

any modeling step, a pairwise correlation matrix was calculated to identify possible collineari-

ties existing among predictors. As a result, nine variables were discarded from the models

because they were highly correlated with or more of the rest of the variables (Pearson’s correla-

tion coefficient >0.85), leaving 10 bioclimatic variables. Variables included in the models were

mean diurnal range (Bio2), temperature seasonality (Bio4), max temperature of the warmest

month (Bio5), mean temperature of the wettest quarter (Bio8), mean temperature of the driest

quarter (Bio9), mean temperature of the coldest quarter (Bio11), precipitation seasonality

(Bio15), precipitation of the wettest quarter (Bio16), precipitation of the driest quarter (Bio17)

and precipitation of the warmest quarter (Bio18). These environmental variables were down-

loaded from the website https://www.worldclim.org. Environmental niche modeling was car-

ried out to predict the past, present, and future suitable areas for the distribution of the genetic

clusters revealed by the STRUCTURE analysis.

The MaxEnt program offers five features: Linear (L), quadratic (Q), product (P), threshold

(T) and hinge (H). These features were used to develop 25 MaxEnt models, based on different

feature combinations (LQ, LQH, LQHP, and LQHPT) and regularization multipliers (1, 2, 5,

10, 15, and 20). This was performed by using the ENMeval package [33] in R software. Models

were selected using two criteria: first, they were separated based on partial ROC tests [34], dis-

carding non-significant models (P>0.1). Second, the models were sorted by the Akaike
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Information Criterion corrected for small sample sizes (AICc), choosing those with the lowest

values as the final models [35].

Paleoclimatic data for the Last Interglacial (LIG; 120,000–140,000 years ago) and the Last

Glacial Maximum (LGM; 22,000 years ago) were used to predict the past distribution. The LIG

was utilized at a 2.5 arc-minutes of spatial resolution [36]. Meanwhile, the LGM was obtained

based on the Community Climate System Model 4 (CCSM4), at a 30 arc-seconds resolution

[37]. Simulations to estimate the present distribution were performed with the historical cli-

mate data for the period 1970–2000, at 30 arc-seconds resolution. Future climate data were

obtained from projections of the MIROC-ES2L climate model [38], at 2.5 arc-minutes spatial

resolution. Near and mid-century projections (2021–2040 and 2041–2060) were used, based

on the Representative Concentration Pathway (RCP) 4.5. RCP 4.5 is the second-to-lowest

emission scenario and could be considered to be a moderate mitigation scenario [39]. The

models were constructed by using 50 replicate runs. Runs were evaluated by dividing the sam-

pling points into 75/25% train/test, then estimated using the Area Under the Receiver Operat-

ing Curve (AUC). MaxEnt results were transformed into geographic maps showing the

probability of occurrence from 0 to 1, where 1 indicates the maximum probability of occur-

rence and 0 indicates inadequate environmental conditions. All models were post-processed

and visualized in ArcMap ver. 10.3 (ESRI, CA). The obtained environmental niches represent

the modeled statistical association between the distribution of the genetic clusters and the cli-

matic conditions.

The niche identity test was carried out to compare the environmental niches of the two

genetic clusters. This test assessed if the suitable areas for the distribution of the two clusters

overlap, in the past, present and future scenarios. The niche identity test was conducted

through the ENM Tools software package in R, ver. 4.0.4. To determine significance for the

niche identity test, we ran 100 permutations in which sample labels were randomized to gener-

ate a null distribution of the identity statistics, Schoener’s D [40] and Warren’s I [41]. If the

empirical value of these statistics fell below the 95% confidence interval of the null distribution,

we considered the niches of the two clusters to be significantly differentiated. Niche overlap

measured as Schoener’s D (SD) and Warren’s I (WI) ranges from zero (no overlap) to one

(total overlap). The methodological approach used in this study is summarized in Fig 2.

Results

Genetic structure

The AFLP analysis generated 281 fragments, with 36.5% of them being polymorphic. The

STRUCTURE analysis divided the sideoats grama populations into two genetic clusters, since

K = 2 obtained the highest L(K) and ΔK values (Fig 3).

The AMOVA revealed differences between the clusters (p = 0.0003). Although the parti-

tioning of the total AFLP variation showed that only 6.3% of the variation was explained by the

differences between the clusters and, most of the genetic variation was presented within clus-

ters (93.7%). Accordingly, the gene flow (Nm) between genetic clusters was 3.73 and the Fst
0.18, indicating a relatively high genetic exchange and low differentiation between clusters. In

addition, the population clusters, grouped by the STRUCTURE analysis, showed no differ-

ences (p<0.05) in all of the diversity parameters evaluated (Table 1).

Despite the high gene flow and the low differentiation found between clusters, as revealed

for Nm and Fst, BARRIER analysis identified five genetic barriers to gene flow (Fig 4). The

genetic barriers mainly isolated the populations located in the semi-arid region close to the

Sierra Madre Occidental to the rest of the populations. Results from BARRIER analysis agree
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with the clustering patterns obtained in STRUCTURE analysis since both analyses generated

similar clustering patterns.

Environmental niche of the genetic clusters

Environmental niche modeling was conducted by using 53 sampling localities for Cluster I

and 37 for Cluster II, according to the clustering pattern revealed by the STRUCTURE analy-

sis. The past, present and future environmental niche models (ENMs) of clusters I and II were

supported by AUCs higher than 0.92 and 0.82, respectively. The contribution of the variables

varied among environmental niche models. However, there were variables of great contribu-

tion for the past, present and future ENMs of both clusters. Mean temperature of the driest

quarter, mean temperature of the coldest quarter and precipitation of the wettest quarter were

variables of the highest percentage contribution for the past, present and future ENMs of Clus-

ter I. Mean temperature of the wettest quarter and mean temperature of the coldest quarter

were predictors of the highest percentage contribution on the ENMs of Cluster II (Table 2).

The environmental niche of the two clusters resulted in a quite different geographical pat-

tern, for the past, present and future scenarios (Fig 5). The present surface area with a high

Fig 2. Summary of this study´s methodological approach. We used the information of AFLP molecular markers to quantify the number of genetic clusters existing

within sideoats grama (Bouteloua curtipendula) populations in Mexico. Subsequently, we combined genotype and environmental data to simulate different scenarios over

time (past, present and future) to determine the paleoclimatic interactions that have influenced the genetic structure within the species. This information was also used to

predict suitable areas where each genotype can be used for restoration, in the present and future climate change scenarios.

https://doi.org/10.1371/journal.pone.0254566.g002
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probability of occurrence (>0.8) was 39,372.2 and 72,425.6 Km2 for clusters I and II, respec-

tively (Table 3). The niche identity tests revealed significant (p<0.05) differences between the

present ENMs of the two clusters, according to the statistic for niche overlapping (SD = 0.48

and WI = 0.65). However, these results varied from the ones obtained in past and future

ENMs. The surface area with a probability >80% for the distribution of Cluster I was similar

Fig 3. A) Mean log-likelihood [L(K)] and B) Evanno’s delta K (ΔK) values for AFLP based on STRUCTURE analysis of 85 sideoats grama (Bouteloua curtipendula)

populations from 10 states of Mexico. K values tested were from 1 to 10. C) Barplots represent the estimated membership probability (y axis) of a population that

belongs to a specific cluster (indicated by specific color).

https://doi.org/10.1371/journal.pone.0254566.g003

Table 1. Descriptive statistics of genetic diversity within two population clusters of sideoats grama (Bouteloua curtipendula).

Genetic cluster Percentage of polymorphic loci Average number of alleles per locus Average effective number of alleles per locus I He

Cluster I 37.0 1.34 1.20 0.181 0.120

Cluster II 36.7 1.33 1.18 0.176 0.115

I = Shannon Information index; He = Nei’s genetic diversity.

https://doi.org/10.1371/journal.pone.0254566.t001
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for the LIG and present times, while Cluster II had approximately 18 thousand Km2 more sur-

face area.

Fig 4. Genetic barriers predicted by BARRIER analysis among 85 sideoats grama (Bouteloua curtipendula) populations, divided into two clusters by

STRUCTURE analysis. A) STRUCTURE clustering pattern in a geographical context. B) Genetic barriers (red lines) and Voronoi’s hypothetical population

boundaries (blue lines). The analyses were performed base on 281 AFLP fragments. Digital Elevation Model from INEGI (https://www.inegi.org.mx).

https://doi.org/10.1371/journal.pone.0254566.g004

Table 2. Contribution (%) of 10 bioclimatic variables to the environmental niche models for two genetic clusters of sideoats grama (Bouteloua curtipendula), at five

different intervals of time.

ID Variable LIG LGM Present (1970–2000) Near future (2021–

2040)

Mid-century (2041–

2060)

Cluster I Cluster II Cluster I Cluster II Cluster I Cluster II Cluster I Cluster II Cluster I Cluster II

Bio2 Mean diurnal range 9.9 0.3 14.4 3.6 1.7 23.7 3.2 0.4 3.5 23.9

Bio4 Temperature seasonality 12.2 6.9 2.7 2.4 15.7 0.5 12.3 2.2 10.3 0.5

Bio5 Max temperature of warmest month 0.1 0.5 0.0 0.1 3.0 1.2 9.5 10.7 8.2 1.5

Bio8 Mean temperature of wettest quarter 0.8 7.0 7.4 62.4 11.5 20.5 3.3 7.1 7.8 10.8

Bio9 Mean temperature of driest quarter 14.7 3.0 26.3 7.6 28.6 6.2 29.2 48.8 21.3 4.3

Bio11 Mean temperature of coldest quarter 29.0 60.6 3.4 11.9 10.8 42.9 15.8 0.7 18.6 53.1

Bio15 Precipitation seasonality 3.6 8.0 11.6 3.8 0.2 1.8 2.7 0.3 0.4 1.5

Bio16 Precipitation of wettest quarter 4.4 5.3 24.9 2.7 19.2 1.2 16.6 0.1 21.8 1

Bio17 Precipitation of driest quarter 17.3 0.8 9.1 4.4 3.9 0.0 2 2.6 4.2 0

Bio18 Precipitation of warmest quarter 8.1 7.6 0.2 1.1 5.5 2.0 5.4 27.0 4 3.3

LIG = Last inter-glacial (120,000–140,000 years ago). LGM = Last glacial maximum (21,000 years ago).

https://doi.org/10.1371/journal.pone.0254566.t002
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Fig 5. Past, present and future MaxEnt niche models for two genetic cluster of sideoats grama (Bouteloua
curtipendula). Maps represent the average projections of the models to the last interglacial (120,000–140,000 years

ago), last Glacial Maximum (22,000 years ago), historical data (1970–2000), near future (2021–2040) and mid-century

(2041–2060). Genetic clusters were identified through AFLP markers and STRUCTURE analyses of 85 populations.

Scale corresponds to probability of occurrence (habitat suitability).

https://doi.org/10.1371/journal.pone.0254566.g005
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During the LGM, the surface area with a probability of occurrence>80% of Clusters I and

II showed a reduction of 1,595 and 17,893 km2, compared with the LIG models. However, the

surface area with a probability of occurrence >80% of both clusters were similar during the

LGM and the present time. Likewise, environmental niches of clusters I and II were less dis-

tinct during the LGM, but similarly distinct to the present (Table 3).

Comparing present and future ENMs, the areas with a probability >80% for the distribu-

tion of Cluster I will increase 6,148 km2 during the near future (2021–2040) but will be similar

to the present at the mid-century (2041–2060). In contrast, the surface areas with a probability

>80% for the distribution of Cluster II will be 2,877 km2 less during the near future but 4,327

km2 greater at the mid-century.

The present ENMs for the two clusters resulted in a quite distinct geographical pattern. The

surface with a probability>80% for the distribution of Cluster I is mainly located in the central

part of the country. For Cluster II, the surface with a probability >80% is mainly distributed in

the north of the country, in the semi-arid region in proximity to the Sierra Madre Occidental

(Fig 6).

For a more detailed analysis, the response curves of some of the variables with the greatest

contribution to the present ENMs are shown in Fig 7. According to these curves, the maxi-

mum probability of occurrence for both genetic clusters is close to 19˚C of the mean tempera-

ture of the wettest trimester. However, populations from Cluster II may be adapted to areas

with lower temperatures than those from Cluster I. The probability of occurrence for Cluster I

at 10˚C of the mean temperature of the wettest quarter is almost 0, while for Cluster II is 0.5.

Cluster I reaches the highest probability of occurrence (0.88) in areas with 200 mm precipita-

tion of the wettest quarter; however, its probability of occurrence declines to 0.2 at 100 mm. In

contrast, Cluster II reaches the highest probability of occurrence (0.78) in areas with 300 mm

precipitation of the wettest quarter and remains on 0.4 at 100 mm.

Discussion

Population genetic structure can reveal the interactions of various evolutionary processes,

such as population isolation and gene flow. According to the AFLP information and the

STRUCTURE analysis, the sideoats grama populations may be divided into two genetic clus-

ters. The reason for the divergence between clusters might be the variation in precipitation.

The populations belonging to Cluster II are located in areas with lower precipitation, com-

pared with Cluster I. The location of the populations of Cluster II average 389 mm of annual

precipitation and 209 mm of precipitation during the rainfall season. Meanwhile, the location

Table 3. Suitable areas and niche identity statistics for two genetic clusters of sideoats grama (Bouteloua curtipendula), based on MaxEnt environmental niche mod-

els for past, present and future scenarios.

Environmental niche model Genetic cluster Statistic for niche overlap

Cluster I (km-2) Cluster II (km-2) SD WI
Last inter-glacial (120,000–140,000 years ago) 40,327.7 90,827.1 0.66� 0.80�

Last glacial maximum (21,000 years ago) 38,732.7 72,934.0 0.59� 0.76�

Present prediction (1970–2000) 39,372.2 72,425.6 0.48� 0.65�

Near future (2021–2040) 45,520.8 69,548.6 0.55� 0.74�

Mid-century (2041–2060) 40,225.7 76,753.5 0.57� 0.75�

Surface areas for a probability> 0.8. SD = Schoener’s [37] and WI = Warren’s [38] statistic for niche overlap between clusters. Niche overlap measured as Schoener’s D

and Warren’s I ranges from zero (no overlap) to one (niche models identical).

�Indicates significant differences (p<0.05) between the environmental niches of the two clusters.

https://doi.org/10.1371/journal.pone.0254566.t003

PLOS ONE Genetic structure and enviromental niche of sideoats grama populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0254566 July 15, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0254566.t003
https://doi.org/10.1371/journal.pone.0254566


of the populations of Cluster I average 478 mm of annual precipitation and 295 mm of precipi-

tation during the rainfall season, according to the data obtained from Worldclim. These results

are in agreement with previous studies, which found that aridity can produce a genetic diver-

gence among lineages of plant species [42–44].

The partitioning of the AFLP variation showed that the genetic differences between clusters

explain only a small (6%) proportion of the total variation. This suggests there is a wide genetic

variation within clusters and the possibility of selecting populations individually, instead of the

whole genetic cluster. In grasses, differences within genetic clusters often explain only a small

proportion of the total variation, due to the high genetic exchange commonly occurring

among their populations [45, 46]. Accordingly, the gene flow (Nm) between genetic clusters

was 3.73. This value of Nm can be considered high, compared with those obtained in previous

research studies on grasses. For example, Coppi et al. [47] found a restricted gene flow

(Nm = 0.497) among Phragmites australis populations. Furthermore, Zhang et al. [43]

reported an Nm of 0.95 among Festuca ovina populations. Likewise, the Fst between clusters

was 0.18, suggesting relatively low differentiation between clusters. Mitchell et al. [45] obtained

a Fst of 0.02 among 85 Australian populations of Microlaena stipoides. The above mentioned

studies were performed by using AFLP markers.

The lack of differences between clusters in all of the diversity parameters evaluated impli-

cates that both clusters possess a similar level of genetic diversity. Cluster I and II presented a

Shannon Information index of 0.181 and 0.176, respectively. Todd et al. [48] evaluated 56

accessions of Panicum virgatum and obtained an I value of 0.317. Likewise, Wanjala et al. [49]

Fig 6. Areas with a probability of occurrence greater than 80% for the distribution two genetic clusters of sideoats grama (Bouteloua curtipendula),

based on historical (1970–2000) bioclimatic variables as derived from environmental niche models in MaxEnt.

https://doi.org/10.1371/journal.pone.0254566.g006
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Fig 7. Response curves of the greatest contribution variables for the enviromental niche models of two genetic cluster of sideoats grama

(Bouteloua curtipendula).

https://doi.org/10.1371/journal.pone.0254566.g007
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analyzed 281 cultivars of Pennisetum purpureum and found I values from 0.12 to 0.34. In com-

parison with these findings, the I values obtained in this study indicate an intermediate level of

genetic diversity within the clusters.

The ENMs of both cluster distributions could be modeled with acceptable accuracy, since

their AUCs were higher than 0.8 [16, 50]. ENMs provide preliminary evidence of niche spe-

cialization among the sideoats grama populations in Mexico. According to the present ENMs,

Cluster II had 33,053.4 Km2 more surface area with a high probability of occurrence (>0.8)

compared with Cluster I, suggesting that populations from Cluster II are adapted to a broader

range of environmental conditions than populations from Cluster I. However, these results

varied from the ones obtained in past and future ENMs. The surface area with a probability

>80% for the distribution of Cluster I was similar for the LIG and present times, while Cluster

II had approximately 18 thousand Km2 more surface area. The LIG was characterized with

higher sea-level, CO2 concentrations and average global surface temperature than the Holo-

cene [51, 52]. During this period, the temperature was 1.7˚C higher on land and 0.8˚C in the

oceans, than in the pre-industrial Holocene [36]. This was a consequence of the higher isola-

tion and the lower global ice volume [53, 54]. In North America, the climate became drier

towards the late LIG with the rain season concentrated in the summer, producing an expan-

sion of the C4 grasslands distribution [55]. The aforementioned is consistent with the result

obtained in this study, where the suitable areas for the distribution of both genetic clusters

were higher than the present. Furthermore, results from the LIG models suggest that popula-

tions of Cluster I may be better adapted to drought and high temperatures than Cluster II,

because this cluster showed better adaptability to the LIG warm and dry conditions. The over-

lapping between the environmental niche of the two clusters was higher during the LIG, com-

pared to the models corresponding to present time. This niche overlapping may have

reinforced gene exchange between genetic clusters and influenced the low genetic differentia-

tion between them. This is consistent with earlier findings that relate genetic structure with

paleoclimatic patterns [9, 13].

Clusters I and II presented less surface area with a probability of occurrence >80% during

the LGM compared with the LIG models, but similar to the present. Likewise, environmental

niches of clusters I and II were less distinct during the LGM, but similarly distinct to the pres-

ent. The changes in the environmental niches of the sideoats grama genetic clusters may be

caused by the cooling period that occurred during the LGM. The LGM was a glacial period,

caused by a reduction of atmospheric CO2 and sea level [36, 56]. The global cooling during the

LGM generated a strong cooling in the Northern hemisphere [57]. Cluster II was more affected

by the climate change caused by LGM, than Cluster I. The areas with a probability of occur-

rence greater than 0.8 for Cluster I increases in northern Mexico and decreases in the central

part of the country. This may be produced for the precipitation patterns that occurred during

this period. According to Metcalfe et al. [58], during the LGM, northern Mexico was notori-

ously wetter than the present due to an increased winter rainfall, while in the central part of

the country less precipitation than at present occurred. Changes in surface area with a proba-

bility>80% are consistent with the environmental changes, which occurred during LGM.

In the study area, the evaluated future scenarios predict an increase in the precipitation of

the wettest quarter in the near future and, a decrease during the mid-century period, compared

with the present. This is in agreement with Seager and Vecchi [59], who anticipated that

anthropogenic drying will reach the amplitude of natural decadal variability by mid-century,

in North America. Likewise, Dai [60] pointed out that most of the Americas will experience

severe droughts in the mid-century. Thus, populations from Cluster II appear to be more resis-

tant to anthropogenic drying, since the suitable areas for the distribution of this cluster will

increase at the mid-century.
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The present ENMs for the two clusters resulted in a quite distinct geographical pattern.

These results suggest the genetic clusters are ecologically distinct; hence, they can be consid-

ered as two distinct ecotypes. Each ecotype (genetic cluster) can be also considered to have its

own conservation unit. Thus, restoration programs with sideoats grama should be imple-

mented by using local germplasm from each ecotype. The aforementioned is consistent with

previous studies suggesting restoration programs must be carried out using local genotypes, to

preserve the genetic diversity and to guarantee a high probability of success [61]. However,

most of the sideoats grama seeds used for restoration in Mexico are imported from the United

States. For this reason, several breeding programs have been performed to select local out-

standing genotypes of sideoats grama in the past years [2–5, 62]. Nevertheless, such programs

have been mainly focused on agronomic traits and little attention has been paid to the genetic

structure and environmental adaptation of the selected genotypes. In contrast, results from

this study provide information on the environmental adaptability of sideoats grama popula-

tions in Mexico, which may be useful for future breeding programs. The AFLP markers exam-

ined in this study have revealed genetic clusters associated with geographical and climatic

patterns. The high genetic diversity found within these clusters suggests the possibility of

selecting outstanding populations from each cluster. Meanwhile, the niche specialization

revealed by the ENMs, highlights the potential of selecting genotypes based on environmental

adaptability.

Conclusions

The sideoats grama populations analyzed in this study can be separated into two genetically

and ecologically distinct clusters. One is mainly located in the central part of Mexico and the

other predominantly in the north, in the semi-arid region near the Sierra Madre Occidental.

The distribution pattern of these lineages can be partially explained by the paleoclimatic events

that occurred during the LIG and LGM periods, which may have influenced the genetic

exchange or isolation among populations.

Each genetic cluster has a different environmental niche and they can be considered as two

distinct ecotypes. Therefore, we recommend each cluster to have its own conservation unit

with potentially unique management needs. Accordingly, restoration programs with sideoats

grama should be performed by using local germplasms from the environmental niche of each

cluster. Predictions of future distributions suggest climate change will affect the distribution of

the environmental niches of the two clusters. This information should be considered for future

restoration programs. Finally, the high genetic diversity found within each cluster represents

an opportunity to select outstanding germplasm, which may be used in future restoration pro-

grams. However, the results from this study need to be validated with reciprocal transplant tri-

als, performed in the two environmental niches of the genetic clusters.
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Rev Mex Cienc Pecu. 2013; 4: 217–221.

PLOS ONE Genetic structure and enviromental niche of sideoats grama populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0254566 July 15, 2021 18 / 18

https://doi.org/10.1016/S0277-3791(99)00022-0
https://doi.org/10.1016/S0277-3791(99)00022-0
https://doi.org/10.1073/pnas.0910856107
http://www.ncbi.nlm.nih.gov/pubmed/21149692
https://doi.org/10.1002/wcc.81
https://doi.org/10.1002/wcc.81
https://doi.org/10.1016/j.baae.2009.09.002
https://doi.org/10.1371/journal.pone.0254566

