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ABSTRACT

Diabetic kidney disease is one of the most frequent complications in patients with diabetes and constitutes a major
cause of end-stage kidney disease. The prevalence of diabetic kidney disease continues to increase as a result of the
growing epidemic of diabetes and obesity. Therefore, there is mounting urgency to design and optimize novel strategies
and drugs that delay the progression of this pathology and contain this trend. The new approaches should go beyond the
current therapy focussed on the control of traditional risk factors such as hyperglycaemia and hypertension. In this
scenario, drug repurposing constitutes an economic and feasible approach based on the discovery of useful activities for
old drugs. Pentoxifylline is a nonselective phosphodiesterase inhibitor currently indicated for peripheral artery disease.
Clinical trials and meta-analyses have shown renoprotection secondary to anti-inflammatory and antifibrotic effects in
diabetic patients treated with this old known drug, which makes pentoxifylline a candidate for repurposing in diabetic
kidney disease.
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DIABETIC KIDNEY DISEASE, AN INCREASING
PROBLEM

Diabetes mellitus (DM) is a world epidemic that affects ˃425
million people according to the International Diabetes Federa-
tion [1]. Recent estimates from this organization predict a preva-
lence of ˃630 million people with DM by the year 2045 [1]. One
of the most relevant complications of DM is diabetic kidney
disease (DKD) which occurs in ˃40% of diabetic patients, with
no difference between patients with type 1 or type 2 DM [2–4].
Metabolic and haemodynamic insults drive the pathophysiol-
ogy of DKD causing the deterioration of kidney functions. Un-
til recently, chronic kidney disease (CKD) derived from DM was
diagnosed as diabetic nephropathy, which begins with microal-
buminuria, followed by a gradual decline in kidney function and
overt macroalbuminuria. However, the report of patients with
DM and impaired renal function without albuminuria has led to
the concept of DKD. DKD is defined as CKD with diabetes being
partially involved in the pathogenesis of kidney disease, encom-
passing the concept of classical diabetic nephropathy [5–8]. De-
spite advances in therapeutics, healthcare structures and overall
population health,DKD is the singlemost common cause of end-
stage kidney disease (ESKD) [9, 10]. Patients with DKD present
20–40 times higher cardiovascular morbidity andmortality rates
than patients with DMwithout kidney impairment; in fact,most
patients with DKD die from cardiovascular disease before they
start renal replacement therapy.

As a consequence of the ever-growing epidemic of diabetes
and obesity, the absolute number of people with ESKD continues
to rise [11]. This situation has made the prevention and treat-
ment of DKD a global challenge and a threat to human health
and mortality, with a significant social and economic burden
[12, 13]. At present, there are no specific therapeutic strategies
for DKD, which makes finding new approaches a formidable
challenge for the scientific community, since simple control
of risk factors is insufficient to cope with disease progression.
In search for new therapies, researchers have explored several
drug-repurposing opportunities [14].

The pathogenesis of DKD comprises metabolic
(hyperglycaemia, dyslipidaemia) and haemodynamic
(glomerular hypertension) perturbations which, together,
cause mesangial expansion, impairment of endothelial cell
function and loss of podocytes in the glomerulus and inter-
stitial fibrosis in the tubular compartment [15–17]. However,
the full pathogenesis of the disease remains to be understood,
and specific therapeutic targets have not been determined.
Current practice guidelines are focussed on halting or delaying
the progression of DKD through nonspecific multidisciplinary
therapeutic approaches based on an adequate metabolic
control and in the control of blood pressure with the renin-
angiotensin system (RAS) blockade as a cornerstone therapy
[18, 19]. Although this approach improves the systemic blood
pressure as well as intraglomerular pressure, a key driver of
albuminuria and CKD progression and also decreases kidney
inflammation and fibrosis [20, 21], it does not generally halt the
progression to ESKD.Moreover, the combination of RAS blockers
such as angiotensin-converting enzyme inhibitors (ACEIs) and
angiotensin receptor blockers (ARBs) did not improvemonother-
apy results and is associated with adverse events including
hyperkalaemia, acute kidney injury and hypotension [22–25].
Importantly, sodium-glucose cotransporter 2 inhibitors (SGLT2i)
have been recently added to these multidisciplinary treatments,
as drugs of choice for DKD treatment [26]. Although the ev-

idence demonstrates renoprotection with the use of SGLT2i
on top of RAS blockade, patients with DM continue to suffer
from kidney disease and a high percentage of them progress to
ESKD. Therefore, there is a need to evaluate new strategies to
improve kidney function, delay the progression of the disease
and eventually improve kidney survival. These new therapeutic
approaches become even more necessary if we consider that
recent trials designed to find effective renoprotection in DM
patients have failed or were prematurely stopped because of
safety concerns; i.e. ruboxistaurin and sulodexide failed to show
clear-cut renoprotection in patients with type 2 DM and clinical
trials with avosentan and bardoxolone methyl were prema-
turely terminated because of serious safety concerns [25, 27–31].
The efforts are focussed on targeting key mechanisms involved
in the onset and progression of DKD including hyperglycaemia,
oxidative stress [32], inflammation [33] and fibrosis [34].

The drug pentoxifylline is a methyl-xanthine derivative
and a nonselective phosphodiesterase inhibitor with anti-
inflammatory, antiproliferative and antifibrotic actions cur-
rently indicated for peripheral artery disease. Clinical trials and
meta-analyses have shown renoprotection secondary to anti-
inflammatory and antifibrotic effects in diabetic patients treated
with pentoxifylline when added to RAS blockade, making pen-
toxifylline a potential candidate for repurposing in DKD [35].

EMERGING THERAPIES AND POTENTIAL
REPURPOSED DRUGS IN DKD

In recent years, promising nephroprotective therapeutic strate-
gies have arisen with the use of new antidiabetic drugs on
top of RAS blockade. As discussed above, the current main
pharmacological agents in DKD are RAS blockers and SGLT2i.
SGLT2i are anti-hyperglycaemic agents that block glucose
reabsorption by SGLT2 channels at proximal tubules, thereby
stimulating glucosuria and decreasing blood glucose levels in
an insulin-independent fashion [36]. But, beyond glycaemic
control, secondary outcome analyses in cardiovascular safety
randomized controlled trials (RCTs) in type 2 DM patients have
shown improved kidney outcomes in patients with CKD [26,
37, 38]. As a result of this evidence, recent consensus docu-
ments have placed SGLT2i as antidiabetic drugs of choice on
top of RAS blockade for type 2 DM patients with evidence of
kidney disease [39, 40]. Despite this success, renal decline still
continues in many individuals with diabetes and incident or
worsening nephropathy occurs in 12.7% of individuals treated
with empagliflozin [37] and new treatments are needed.

The unexpected nephroprotective success of SGLT2i in DKD
has not been replicated and a large number of drugs, even with
added RAS blockade, have failed [41]. New drug candidates in-
clude the groups of steroidal and nonsteroidal mineralocorti-
coid receptor antagonists (MRA). MRAs exert antihypertensive
actions by suppressing the action of aldosterone, the end prod-
uct of RAS, and has been reported to decrease proteinuria [42–
47]. Two groups of anti-diabetic drugs that could present nephro-
protective effects, possibly independently of the glycaemic con-
trol, are the glucagon-like peptide-1 (GLP-1) receptor agonists
(GLP-1RA) and the dipeptidyl peptidase-4 (DPP-4) inhibitors [48,
49]. These incretin-based drugs decrease albuminuria in DKD
patients, but controversy persists over their potential to slow
the rate of estimated glomerular filtration rate (eGFR) decline
[50–59].
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The effectiveness of inhibiting advanced glycation end prod-
uct (AGE) accumulation has been also conducted. AGE accumu-
lation in kidney samples correlates with DKD progression and,
at present, the administration of AGE inhibitors in DKD patients
is the focus of clinical and basic research, with controversial re-
sults in a decrease of proteinuria and in the progression of GFR
decline [60–63].

With the exception of SGLT2i and finerenone, there have been
no new therapies for the treatment of nephropathy in type 2
DM since the approval of irbesartan and losartan by the Food
and Drug Administration (FDA) ˃ 15 years ago. There is a desper-
ate need to identify treatments for DKD, and several large-scale
trials in people with DKD have been conducted and failed [24,
25, 29, 30]. In this sense, together with new antidiabetic drugs,
drug repurposing is an alternative to de novo drug discovery, to
find promising candidates to treat DKD. Drug repurposing of-
fers multiple advantages, such as an accelerated and inexpen-
sive drug development process. This approach decreases devel-
opment risks, since the safety of the compound, which is one of
the main reasons for high attrition rates, is already well estab-
lished [35, 64, 65].

The strategy of drug repurposing has been widely employed
in recent times during the coronavirus disease 2019 (COVID-
19) pandemic, witnessing the evaluation and use of several ex-
isting molecules for their therapeutic potential against coron-
aviruses including hydroxychloroquine, remdesivir, ivermectin,
lopinavir/ritonavir, baricitinib, dexamethasone and others [66].
Well-known examples of drug repositioning include thalido-
mide, which was used to prevent morning sickness and poste-
riorly repositioned for the treatment of multiple myeloma [67];
minoxidil and finasteride, initially approved for the treatment
of hypertension and benign prostate hyperplasia, respectively,
were repurposed for the treatment of male pattern baldness.

Methyl bardoxolone is a semi-synthetic triterpenoid with
anti-inflammatory effects [68]. Methyl bardoxolone, initially
studied for the prevention and treatment of cancer, was repur-
posed for other diseases with an inflammatory component in-
cluding DKD following the observation of decreased serum cre-
atinine in cancer patients [69, 70]. These promising results led
to the Bardoxolone Methyl Evaluation in Patients with Chronic
Kidney Disease and Type 2 Diabetes Mellitus: The Occurrence
of Renal Events (BEACON NCT01351675) phase III clinical trial
[30], which included 2185 participants with type 2 DM. Although
this trial was terminated due to serious adverse events originat-
ing from high rates of heart failure-related hospitalizations and
deaths in patients treated with bardoxolone, post hoc analyses
showed that the increase in heart failure events was most likely
caused by fluid overload in the first 4 weeks after randomiza-
tion [71]. Moreover, elevated baseline B-type natriuretic peptide
(BNP) levels (>200 pg/mL) and a history of hospitalization were
identified as the only risk factors for heart failure. Patients with-
out these two risk factors showed the same incidence of heart
failure in the bardoxolone methyl and in the placebo groups
(2%) [72]. The Phase 2 Study of Bardoxolone Methyl in Patients
with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI,
NCT02316821) [73] for the treatment of CKD in Japanese pa-
tients without these clinical characteristics, again indicated an
increase in the measured GFR in patients treated with methyl-
bardoxolone without cases of death or heart failure in any par-
ticipant.

Other anti-inflammatory agents repurposed for DKD include
CCX-140 and bariticinib, both originally developed for rheuma-
toid arthritis. CCX140-B is an inhibitor of C-C chemokine recep-
tor type 2 (CCR2) that decreasesmacrophagemigration and acti-
vation that was repurposed for DKD after the results of a phase

II RCT showing kidney-protective effects in patients with type
2 DM when administered on top of standard medication [74].
Administration of baricitinib,which selectively inhibits Janus ki-
nase 1 and 2 (JAK1 and JAK2), has been recently tested in a phase
II RCT including 129 DKD patients, finding a decrease in albu-
minuria [75].

Endothelin A is a vasoactive peptide that exerts vasoconstric-
tive actions of glomerular afferent and efferent arterioles, cru-
cial determinants of glomerular haemodynamics, which leads
to a decrease in GFR [76] and also generates kidney injury via in-
flammation, endothelial injury, podocyte disruption and fibrosis.
Endothelin A receptor antagonists were first evaluated in men
withmetastatic hormone-refractory prostate cancer [77] and are
currently approved for the treatment of pulmonary arterial hy-
pertension [78]. The endothelin A receptor antagonists atrasen-
tan decreases proteinuria in experimental kidney disease [79],
which has led to clinical testing in DKD [80–82]. In DKD, atrasen-
tan decreased blood pressure and albuminuria when added to
stable RAS blockade, but was associated with fluid overload and
heart failure exacerbation [83].

Finally, pentoxifylline has recently been added to this group
of potentially repurposed kidney protective drugs based on its
anti-inflammatory and antiproteinuric effects. Pentoxifylline is
currently indicated for peripheral artery disease, but open-label
trials have shown beneficial results in DKD and also in nonspe-
cific CKD and chronic allograft nephropathy. Along with the de-
crease in albuminuria and inflammation, the deceleration in the
GFR decline rate and the preservation of the anti-ageing factor
Klotho are the most important findings in DKD patients treated
with pentoxifylline [84–86].

PENTOXIFYLLINE IN DKD

An old-new friend

Pentoxifylline [3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-
purine-2,6-dione] is a promising anti-inflammatory methyl-
xanthine derivative with haemorheological actions. Pentoxi-
fylline was approved by the United States FDA for the treatment
of intermittent claudication resulting from peripheral vascular
disease ˃30 years ago [87–89]. This drug decreases blood vis-
cosity, erythrocyte aggregation, erythrocyte rigidity and platelet
aggregation. The improvement in red blood cell flexibility and
deformability leads to an improved blood flow [89, 90]. The
pharmacological properties of pentoxifylline have been fre-
quently revisited, and recent evidence indicates other possible
beneficial effects of this old drug [91]. Thus, the repurposing of
pentoxifylline has been suggested for treating brain ischaemia,
non-alcoholic fatty liver diseases and preserving skeletal
muscle function [90].

The haemorheological properties and its potential to de-
crease intraglomerular pressure led to an early interest in pen-
toxifylline as a therapeutic agent in kidney disease. In 1982,
Blagosklonnaia et al. [92] presented the first clinical evidence
of kidney protective effects of pentoxifylline. Diabetic patients
treated with 300 mg/day of pentoxifylline for 3 weeks im-
proved eGFR and decreased proteinuria. The possible applica-
tion of pentoxifylline for kidney protection in DKD was recently
renewed as studies showed pentoxifylline anti-inflammatory,
anti-proliferative and anti-fibrotic effects [93, 94] (Table 1).

A series of five open-label clinical trials conducted between
1999 and 2006 focussed on the potential kidney protective ef-
fects of pentoxifylline in DKD (Table 1). First, Navarro et al. [95]
reported a 42.2 and 59.3% decrease in serum tumour necrosis
factor α (TNFα) and proteinuria levels, respectively, in a small
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group of patients with DM and advanced CKD under pentoxi-
fylline treatment (400 mg/day; 6 months) when compared with
a control group. Posteriorly, two open-label RCTs conducted
by Aminorroaya et al. [96] and Rodríguez-Morán et al. [97] also
reported a decrease in proteinuria in non-hypertensive type
2 DM patients with microalbuminuria comparable with those
achieved with ACEI treatment (captopril) after the administra-
tion of 400 mg pentoxifylline three times a day (t.i.d.) for 2
(40% in pentoxifylline-group and 38.5% in captopril-group) and
6 months (77.2% in pentoxifylline-group and 76.6% in captopril-
group), respectively. In a subsequent randomized, open-label
trial, Navarro et al. [98] found an additive percentage decrease
in proteinuria of 11.2% in those ARB-treated DM patients who
also received 1200 mg/day pentoxifylline for 4 months; i.e. pa-
tients receiving pentoxifylline. Pentoxifylline treatment also de-
creased both serum and urinary levels of TNFα, without signifi-
cant variations in patients exclusively under therapy with ARB.
The antiproteinuric effect of pentoxifylline correlated with a de-
crease in urinary TNFα levels [98]. Finally, a subsequent RCT by
Rodríguez-Morán et al. [99] newly reported a decrease in the lev-
els of both high and lowmolecular weight urinary protein excre-
tion (73.8 and 86.4% decrease, respectively) in non-hypertensive
microalbuminuric type 2 DM patients treated with 400 mg pen-
toxifylline (t.i.d. for 16 weeks) not receiving ACEi or ARB therapy.
An RCT published by Badri et al. [100] showed a 56% decrease
in proteinuria in a small group of non-diabetic patients with
glomerulonephritis with add-on pentoxifylline therapy to the
background RAS blockade without affecting eGFR. Other clinical
trials with different study designs, drug dosages and follow-up
periods, also examined the kidney protective effects of pentox-
ifylline with generally inconclusive results. An open-label con-
trolled clinical trial conducted by Diskin et al. [101] did not find
any additive antiproteinuric effect of pentoxifylline in diabetic
glomerulosclerosis patients with a background of ACEI and ARB
therapy after 1 year of follow-up. Important concerns of this
study are its non-randomized design, the small number of par-
ticipants (14 patients) and the use of dual RAS blockade, which
has important safety concerns [25, 112]. In a double-blind RCT,
Perkins et al. [102] also found no differences in proteinuria in 40
DKD patients with mild to moderate CKD after 1 year of add-on
pentoxifylline therapy to RAS blockade. However, they observed
deceleration in renal function decline in the group treated with
pentoxifylline when compared with the control group, with a
mean difference between groups of 6.0 mL/min/1.73 m2, and ar-
gued that the proteinuria may not always constitute an optimal
surrogate outcome parameter in these studies.

To date, the most important RCT evaluating the kidney pro-
tective effects of pentoxifylline in DKD is the Pentoxifylline for
Renoprotection in Diabetic Nephropathy (PREDIAN) study, pub-
lished in 2015 by Navarro Gonzalez et al. [84]. The study com-
prised 169 type 2 DM patients with CKD stages 3 and 4 and resid-
ual albuminuria despite RAS blockade.After 2 years of follow-up,
patients randomized to the active group (1200 mg/day of pen-
toxifylline on top of RAS blockade) presented a decrease in the
rate of progression of kidney disease, with an eGFR mean differ-
ence between groups of 4.3 mL/min/1.73 m2, accompanied by a
14.9% decrease in proteinuria (increased by 5.7% in the control
group). The deceleration in the decline of GFR in the pentoxi-
fylline arm began atmonth 6 and reached statistical significance
after 1 year, suggesting that the therapeutic benefit may only
be observed in the long term. Moreover, urine TNFα presented a
10.6% decrease in the pentoxifylline group, with no changes in
the control group.

At present, the identification of the central role of inflamma-
tion in the development and progression of CKD and its pos-

sible therapeutic targets constitutes an important field of re-
search for nephrologists. The anti-inflammatory actions elicited
by pentoxifylline have been related to antialbuminuric effects
[93, 113–118]. In this regard, an antiproteinuric or kidney func-
tion preservation effect of pentoxifylline has also been found
in non-diabetic subjects. Goicoechea et al. [103] reported stabi-
lization of kidney function and a significant decrease in mark-
ers of inflammation, such as TNFα, fibrinogen and high sensi-
tivity C-reactive protein (CRP; a 45.5, 11.1 and 57.4% decrease,
respectively) in patientswith stage 3 CKDor higherwho received
pentoxifylline therapy when compared with those exclusively
on RAS blockade. Proteinuria did not decrease in the pentox-
ifylline group, although there was a drop-out and incomplete
follow-up rate. Lin et al. [104] found that pentoxifylline on top of
ARB background therapy stabilized GFR and decreased protein-
uria (−23.9%) in macroalbuminuric CKD stage 3 patients after 1
year of follow-up as comparedwithARBmonotherapy, forwhom
proteinuria increased 13.8%. Moreover, pentoxifylline decreased
urinary levels of TNFα and monocyte chemoattractant protein
1 (MCP-1) (TNFα: 42.8% versus 18.8% and MCP-1: −28.9% versus
6.2%, for pentoxifylline and control groups, respectively). A de-
crease in both parameters was directly related to the change in
proteinuria in the pentoxifylline group. Chen et al. [105] reported
that 800 mg/day pentoxifylline for 6 months decreased pro-
teinuria in 17 patients with primary glomerular diseases [36.5%
and 33.9% decrease in spot and 24 h proteinuria (g/g Cr)]. This
decrease was associated with a decline in urinary mean per-
centage decrease of 46% in MCP-1 urinary excretion levels. In
a larger study, Chen et al. published a retrospective analysis of a
study comprising 661 patients with CKD stages 3–5 treated with
pentoxifylline [106]. Again, pentoxifylline on top of RAS block-
ade had kidney protective effects in the subset of patients with
higher levels of proteinuria. A trial conducted by Shu et al. [107]
reported a 19.6% decrease in proteinuria in third month and im-
proved graft survival by the end of the study in non-diabetic
renal transplant recipients with chronic allograft nephropathy
and microalbuminuria treated with pentoxifylline for at least 6
months.

Two recent meta-analyses reported the effects of pentoxi-
fylline alone or in combination with other treatments in the
decrease in proteinuria and in the preservation of kidney func-
tion in patients with diabetic or non-diabetic CKD. In the first
meta-analysis, Leporini et al. [119] concluded that pentoxifylline
was effective in decreasing proteinuria compared with control,
a benefit that was more evident in patients with type 1 DM,
higher proteinuria at baseline and early renal impairment. They
also found an improvement in renal function (eGFR/creatinine
clearance) in the long-term and in patients with more advanced
CKD. In the second meta-analysis, Liu et al. [120] concluded that
pentoxifylline in combination with RAS blockade decreases pro-
teinuria and slows down the decline of renal function in patients
with CKD stages 3–5.

Finally, an analysis of a nationwide administrative dataset
of advanced CKD patients identifying two propensity score-
matched cohorts (pentoxifylline users and nonusers) reported
that the pentoxifylline groupwas protected fromESKD [121] This
was the first evidence of the ability of pentoxifylline in decreas-
ing the risk of ESKD even in patients with advanced CKD.

Mechanisms of kidney protection by pentoxifylline

Pentoxifylline is a methyl-xanthine derivative with several
effects including the non-selective inhibition of phosphodi-
esterases (PDEs). The balance of intracellular cyclic adenosine-
3,5-monophosphate (cAMP), an important intracellular second
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FIGURE 1: Mechanism proposed to explain the anti-inflammatory effects of pentoxifylline. The inhibition of PDE exerted by pentoxifylline increases cAMP levels
activating PKA. Active PKA would inhibit ubiquitination that drives IkB to proteasome degradation preventing thus p50/p65 translocation and the expression of
inflammatory cytokines and other genes. Dashed lines, inhibition; PTF, pentoxifylline; PDE, phosphodiesterase; ATP, adenosine triphosphate; AC, adenylate cyclase;

cAMP, cyclic adenosine-3,5-monophosphate; IkB, inhibitor of kappa B; TNF, tumour necrosis factor α; IL, interleukin; IFN, interferon; ICAM1, intercellular adhesion
molecule 1; VCAM1, vascular cell adhesion molecule 1; CRP, C-reactive protein.

signallingmessenger, is mainly dependent on the activity of two
enzymes: adenylyl cyclase, which plays a major role in cAMP
synthesis and PDEs, which hydrolyze cAMP [122, 123]. Therefore,
the inhibition of PDEs by pentoxifylline prevents the degradation
of cAMP (Fig. 1). High cAMP levels in turn promote protein kinase
A (PKA) activation leading to the phosphorylation of diverse ef-
fectors followed by inhibition of signalling pathways involved in
proteinuria and renal fibrosis [124–126].

PDEs have emerged as promising targets for pharmacologi-
cal intervention against CKD progression [127–129]. Mammalian
cells have 11 gene families (PDE1–PDE11) and each family en-
compasses 1–4 distinct genes, giving ˃20 genes in mammals
encoding ˃60 different PDE isoforms. In vitro, pentoxifylline in-
hibits PDE3 and/or PDE4 isozymes through a PKA-dependent
pathway [124, 126, 130]. Importantly, PDE3 and PDE4 isozymes
are mainly expressed in monocytes and neutrophils [131–133],
which makes them a therapeutic target in many inflamma-
tory diseases, including asthma, chronic obstructive pulmonary
disease, inflammatory bowel disease, psoriasis, nervous sys-
tem inflammation and rheumatoid arthritis [133]. Pentoxifylline
presents anti-inflammatory properties mediated by the inhibi-
tion of PDEs that supports its potential application in the kid-
ney protection of the patient with DM [113–118]. In experimental
models, pentoxifylline modulates signalling pathways or com-
ponents triggered by inflammatory cytokines. In vitro, pentoxi-
fylline inhibits endotoxin-induced TNFα synthesis in RAW 264.7
macrophages [108]. Pentoxifylline also inhibited endotoxin-
induced TNFα production both in the serum of mice and in
cultured adherent peritoneal exudate cells [93]. In a rat model
of crescentic glomerulonephritis, pentoxifylline exerts anti-
inflammatory and immunomodulatory actions through the in-

hibition of renal TNFα, ICAM-1,RANTES,MCP-1 andOPN, thereby
suppressing progressive renal injury [109]. Similarly, pentox-
ifylline decreases the renal expression of pro-inflammatory
cytokines including TNFα and IL6 in streptozotocin- or alloxan-
induced diabetic rat models [110, 111], ameliorating renal hyper-
trophy and sodium retention [110]. Clinical trials evaluating the
anti-inflammatory properties of this drug in non-diabetic pa-
tients report considerable modulating effects on the production
of inflammatory cytokines and adhesion molecules in patients
with coronary artery disease and atherosclerosis [134, 135]. Sim-
ilarly, pentoxifylline decreased TNFα and interferon-gamma T-
cell expression in ESKD patients [136].

As discussed above, most RCTs evaluating the renal effects
of pentoxifylline in patients with DM have shown kidney pro-
tection, evidenced by the decrease in proteinuria and, in some
cases, the improvement or preservation of GFR (Fig. 2). Impor-
tantly, some RCTs also observed a significant decrease in inflam-
matory parameters. The antiproteinuric effect of pentoxifylline
has been associated with a significant decrease in TNFα levels
[95, 99]. Similarly, clinical trials conducted in CKD patients with
stage 3 or higher reported stabilization of renal function and de-
creased circulating levels of TNFα, fibrinogen andCRP after treat-
ment with pentoxifylline [118] and a decrease in proteinuria and
urinary levels of TNFα and MCP1 after 1 year on add-on pentox-
ifylline to ARB background therapy [104]. The PREDIAN trial [84]
evaluated the kidney-protective effects of pentoxifylline in DKD
patients under RAS blockade. After 2 years, patients on pentox-
ifylline presented a decrease in the progression of renal disease
that was accompanied by a decrease in proteinuria and urinary
levels of TNFα. Two meta-analyses also pointed to the decrease
of proinflammatory cytokines production as the most likely
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FIGURE 2: Proposed beneficial effects of pentoxifylline on kidney function in DKD patients.

explanation for this antiproteinuric effect in DKD patients [137]
and concluded that pentoxifylline additively decreases protein-
uria and TNFα in DKD patients receiving RAS inhibitors [138].

An unexpected beneficial effect of pentoxifylline in DKD pa-
tients could be the stimulation of factors that promote kid-
ney health [139]. The protein Klotho is an important regula-
tor of mineral metabolism mainly expressed in kidney tubular
epithelial cells and, to a lesser extent, in parathyroid glands,
choroid plexus of the brain, vascular tissue and peripheral
blood cells [140, 141]. Two forms of Klotho can be found: a
single-pass transmembrane protein and a soluble form gener-
ated from proteolytic cleavage of the extracellular domain of
the membrane-bound form [142]. Soluble Klotho is found in the
cerebrospinal fluid, urine and blood, and declines in CKD pa-
tientswith the progression of the disease.Klothohas anti-ageing
and kidney-protective effects. In fact, specific epigenetic pre-
vention of Klotho downregulation prevented acute kidney in-
jury in mice [143]. Interestingly, patients with type 2 DM also
have lower soluble Klotho levels [144, 145] and kidney Klotho
is decreased in biopsies from patients with early stages of DKD
[146]. Taken together, these data point to the potential utility of
Klotho as an early biomarker of renal impairment in type 2 DM
patients and to Klotho downregulation as a driver of DKD pro-
gression [147].Moreover, Klotho has been inversely related to in-
flammation. Pro-inflammatory cytokines like TNFα and TWEAK
(tumor necrosis factor-likeweak inducer of apoptosis) inhibit re-
nal Klotho expression in an NF-κB-mediated manner in vivo and
in vitro [148–151]. Clinical translation of this observation is sup-
ported by a post-hoc analysis of the PREDIAN trial [84]. Adminis-
tration of pentoxifylline to type 2 DM patients with CKD stages 3
and 4 decreased serum and urinary TNFα and increased serum
and urinary Klotho levels [85]. Even though the precise mech-
anisms are unknown, a feasible hypothesis is that the stimu-
lation of Klotho production by pentoxifylline may result from
its anti-inflammatory properties, although in cultured tubular
cells, pentoxifylline directly prevented the albuminuria-induced
downregulation of Klotho expression [85, 152]. Moreover, pen-
toxifylline increased tubular cell Klotho above baseline levels,
suggesting that promoting kidney expression may be one of the
mechanisms of kidney protection by pentoxifylline. Moreover,
a recently published experimental study, confirmed the positive
effect of therapeutic doses of pentoxifylline (10μg/mL) onKlotho
expression in RAW 264.7 cells, showing that this up-regulation
is not limited to kidney cells [153].

CONCLUSIONS AND FUTURE PERSPECTIVES

The global burden of diabetes is predicted to increase dramat-
ically in the coming decades in parallel with the rising of obe-

sity. One of the most important complications of diabetes is
DKD, which substantially increases cardiovascular morbidity
and mortality, determining a considerable impairment in the
quality of life. Indeed, CKD is set to become the fifth global cause
of death by 2040 [154]. In a recent large, retrospective cohort
study including 65000 adults with type 2 DM and CKD, a high
proportion (10%–17%) of patients presented disease progression
over a median follow-up of only 2 years [153]. Previous studies
also indicated that DM is a more frequent cause of accelerated
progression from CKD to ESKD compared with other predictors
including proteinuria, heart failure, anaemia and elevated sys-
tolic blood pressure [155].

Even with the widespread use of SGLT2i and GLP-1 receptor
agonists, a substantial residual risk of DKD progression remains.
Therefore, there is a need to find new therapeutic targets and
strategies. Pentoxifylline constitutes a potential repurposed
drug for the treatment of DKD. Although the repurposing of
pentoxifylline constitutes a promising opportunity in providing
a low-cost access to a feasible therapy in DKD, various chal-
lenges remain. A recent study reported an increased risk of
major bleeding events in CKD patients on pentoxifylline treat-
ment [156]. This population carries a higher risk of bleeding due
to the presence of platelet dysfunction and anaemia, especially
in patients with albuminuria [157, 158].

As pointed out by Leporini et al. [119] in a systematic re-
view andmeta-analysis aimed at evaluating the benefits of pen-
toxifylline on renal outcomes in CKD patients, whether this
drug may be useful for retarding disease progression remains
partly unanswered for definite reasons. One of them is the het-
erogeneity of the studies with respect to sample sizes, doses
of pentoxifylline, poblation in the study (CKD stage and ae-
tiology, proteinuria levels) and control groups and concomi-
tant RAS blocking treatments. Most RCTs were of low method-
ological quality and carried out with small sample sizes and
only provided short-term data for surrogate kidney function
endpoints such as eGFR or serum creatinine, proteinuria and
albuminuria.

Future studies with longer follow-up, larger sample size and
including hard clinical outcomes are needed. To our knowledge,
at present, there are two phase IV clinical trials evaluating the
effects of pentoxifylline in the progression of DKD patients. The
Veterans Affairs (VA) PTXRx (NCT03625648) is a double-blind,
placebo-controlled, multicentre RCT designed to evaluate the
utility of pentoxifylline, when added to usual care, in the de-
crease in the incidence of ESRD or death in patients with type
2 diabetes with DKD [159]. The enrolment of patients for this
study (which is estimated in 2510 participants) began in 2019
and the primary completion datewill be at the beginning of 2028.
The second clinical trial in course, PENFOSIDINE (Pentoxifylline
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Effect in Patients With Diabetic Nephropathy, NCT03664414),
began in 2018. PENFOSIDINE included 196 patients with DKD
and the objectives included evaluating the antioxidant, anti-
inflammatory and antifibrotic effects of receiving pentoxifylline
(400 mg/three times a day) for a period of 2 years. The results
of these trials will shed light on the long-term effects of pen-
toxifylline on various markers of inflammation, oxidative stress
and fibrosis, on surrogate markers of renal function such as a
decrease in proteinuria and changes in eGFR and on hard end-
points such as ESRD and death.

In any case, an important problem that faces the repur-
posing of many drugs, including pentoxifylline, is the absence
of exclusivity for the industry. Since pentoxifylline was ap-
proved for intermittent claudication, no studies were conducted
about its utility for other diseases prior to the approval or be-
fore the expiration of the patent. This implies that funding
for future research is highly compromised even though cur-
rent research may demonstrate the efficacy of pentoxifylline
in other diseases. Pharmaceutical companies find it less lu-
crative redirecting resources towards repurposing programmes
given the lack of standardized regulations ensuring market
protection. Moreover, even after marketing approval, the off-
label and unlicensed prescription of a generic version of this
old drug leaves little or no space for profit for the industry.
Therefore, pivotal RCTs in search of a DKD indication for pen-
toxifylline should be funded by government-supported trial
programmes.

In addition, a successful new indication of the repurposed
drug requires extensive knowledge of the pathogenesis of the
target disease, as well as the postulated mechanism of action
of the drug. Present data point to the ability of pentoxifylline to
slow CKD progression when macroalbuminuria is present, even
in advanced stages of DKDwithmaximized RAS blocker therapy.
However, although there is evidence for an anti-inflammatory
effect, the precise mechanism for the beneficial effect is not
known and may also involve increasing Klotho production. In
fact, the pathogenic pathways for DKD are poorly understood,
as exemplified by the poor therapeutic toolkit and low-grade in-
flammation is just one of the interrelated contributing mecha-
nisms alongwith hyperglycaemia, altered lipidmetabolism, RAS
hyperactivation and increased sympathetic activity. In any case,
an in-depth study of the hidden therapeutic potential of pentox-
ifylline and its repurposing for the DKD new indication offers a
tremendous hope to decrease residual kidney risk and prevent
the growth of the DKD pandemic.
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