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Abstract: Objective: The early prediction of preterm labor can significantly minimize premature
delivery complications for both the mother and infant. The aim of this research is to propose an
automatic algorithm for the prediction of preterm labor using a single electrohysterogram (EHG)
signal. Method: The proposed method firstly employs empirical mode decomposition (EMD) to split
the EHG signal into two intrinsic mode functions (IMFs), then extracts sample entropy (SampEn), the
root mean square (RMS), and the mean Teager–Kaiser energy (MTKE) from each IMF to form the
feature vector. Finally, the extracted features are fed to a k-nearest neighbors (kNN), support vector
machine (SVM), and decision tree (DT) classifiers to predict whether the recorded EHG signal refers
to the preterm case. Main results: The studied database consists of 262 term and 38 preterm delivery
pregnancies, each with three EHG channels, recorded for 30 min. The SVM with a polynomial kernel
achieved the best result, with an average sensitivity of 99.5%, a specificity of 99.7%, and an accuracy
of 99.7%. This was followed by DT, with a mean sensitivity of 100%, a specificity of 98.4%, and an
accuracy of 98.7%. Significance: The main superiority of the proposed method over the state-of-the-art
algorithms that studied the same database is the use of only a single EHG channel without using
either synthetic data generation or feature ranking algorithms.

Keywords: preterm labor; prediction; electrohysterogram; empirical mode decomposition; support
vector machine

1. Introduction

Preterm birth, also referred to as premature delivery, is defined as giving birth sooner
than after 37 weeks of gestation. Preterm delivery is considered a complex condition that
occurs due to several biological, mental, and clinical factors, such as, but not limited to,
ascending infection, hypoxic-ischemic damage to the uteroplacental unit, chronic stress
and fetal and/or uterine developmental malformations, maternal stress, depression, mul-
tiple gestations, abortion and short cervical lengths, surgery, ethnicity, and lifestyle [1,2].
However, the extent to which these factors are associated with premature delivery has
not yet been proven, as almost 50% of preterm births happen without observation of the
mentioned factors [3].

According to the World Health Organization (WHO), preterm birth is the leading
cause of fetal morbidity and mortality, and it is increasing all around the world. A recent
report from the WHO shows that more than 15 million neonates are delivered prematurely,
of which 1 million die each year due to complications [4]. Even the survivors are exposed
to various lifelong disabilities, such as, but not limited to, learning difficulties and vision
or hearing impairments. Regardless of its complications, the price of medical care for
preterm babies imposes a significant financial burden on the family and society, as it
costs 5- to 10-times more than a term birth [5]. Thus, early prediction of preterm delivery,
combined with appropriate medication to prevent this phenomenon, can greatly minimize
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the corresponding complications for both the mother and the baby, and reduce the economic
load on public health systems.

To predict preterm labor, several physiological measurements, such as tocodynamome-
ter [6], ultrasound [7], fetal fibronectin [8], and internal uterine pressure [9] have been
studied. Despite adequate performance, the mentioned measurements are either subjective
or invasive [10]. Recently, the analysis of electrical representation of uterus contractions
collected from the abdominal surface of pregnant women, known as electrohysterography
(EHG), has been evidenced as a reliable tool for the prediction of premature delivery, as it
is a non-invasive procedure that can be automated to reduce human intervention [11–13].

To profile EHG signals for preterm labor prediction, a wide range of temporal and
spectral measurements have been investigated [14–16]. Khalil and Duchene [17] presented
a hybrid algorithm based on the dynamic cumulative sum and multiscale decomposition
to detect different events of EHG signals. Moslem et al. [18] investigated the irregularity of
EHG signals by sample entropy (SampEn) and showed its suitability for the discrimination
of term and preterm pregnancies. Diab et al. [19] examined time reversibility, SampEn,
Lyapunov exponents, and delay vector analysis to classify term and preterm EHG signals,
and reported that time reversibility gives the best results. Fele-Zorz et al. [20] compared
linear and nonlinear features to analyze EHG recordings for the identification of term
and preterm deliveries, demonstrating that non-linear ones are more appropriate. Using
wavelet package decomposition (WPD), Alamedine et al. [21] examined the adaptability
of several spectral features for term–preterm labor classification, and concluded that the
mean power frequency gives the best results. Ahmed et al. [22] showed the superiority
of multivariate multiscale fuzzy entropy over multivariate multiscale entropy for the
classification of term and preterm cases using EHG signals. Horoba et al. [23] studied
various temporal and spectral features of EHG signals, and reported the median frequency
as the most suitable feature for distinguishing term and preterm records. Yet, the main
limitation of the above-mentioned studies is that they consider only one measure for the
discrimination of term and preterm cases, compromising the performance of the learning
method [24].

2. Related Works

One of the most-studied EHG-related delivery databases is Term–Preterm Electro-
HysteroGram DataBase (TPEHG DB), which contains 262 term and 38 preterm labor
records, each with three channels [20]. A detailed description of the database is pro-
vided in Section 4.1. One of the greatest challenges for the aforementioned database is
the imbalanced class distribution of term and preterm EHG cases, which was resolved
by employing data-generation methods such as the synthetic minority oversampling
technique (SMOTE) [25] or the adaptive synthetic sampling approach (ADASYN) [26].
Fergus et al. [27] extracted the peak frequency, median frequency, root mean square (RMS),
and SampEn from a single EHG channel band-pass filtered at 0.34–1 Hz, and employed
SMOTE to overcome the imbalance problem. The best result was achieved by the polyno-
mial classifier with an average sensitivity of 97%, a specificity of 90%, and an area under
the curve (AUC) of 0.95. With features similar to [27] calculated from a single EHG channel
band-pass filtered at 0.3–3 Hz plus the min–max oversampling method, Hussain et al. [28]
reported 91.2% for sensitivity, 94.5% for specificity, and 92.7% for accuracy with the self-
organized network inspired by the immune algorithm (SONIA) classifier. Smrdel et al. [29]
used the adaptive autoregressive method to estimate the median frequency and SampEn
from a single EHG channel band-pass filtered at 0.3–4 Hz. After employing SMOTE,
quadratic discriminant analysis and a support vector machine showed accuracies of 86%
and 87%, respectively. In another study, Fergus et al. [30] extracted SampEn, waveform
length, log detector, and variance from a single EHG channel similar to [27]. Using SMOTE
for the data balancing, the authors reported an AUC of 0.94, a sensitivity of 91%, and a
specificity of 84%, achieved by mixture of a Levenberg–Marquardt-trained feed-forward
neural network, a radial basis function neural network, and random neural network classi-
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fiers. Peng et al. [31] investigated the appropriateness of 31 temporal and spectral features
extracted from three EHG channels, which were collected before the 26th week of gestation.
After selecting 15 features and employing ADASYN, a random forest classifier showed
an accuracy of 93%, a sensitivity of 89%, and a specificity of 97%. Degbedzui et al. [32]
employed autoregressive modeling to extract a new measure, called centroid frequency
estimation, from a single EHG channel. After employing ADASYN, an accuracy of 99.72%,
a specificity of 99.96%, and a sensitivity of 99.48% was achieved by the SVM classifier.
Ye-Lin et al. [33] extracted 203 temporal, spectral, and nonlinear features from 326 mul-
tichannel EHG recordings and employed SMOTE to balance the database. After feature
selection by a genetic algorithm, the authors reported a mean F1 score of 92.04% using an
ensemble classifier. Later on, Ye-Lin et al. [5] showed the efficiency of entropy measures
for the classification of the term–preterm EHG recordings by a linear discriminant analysis
(LDA) classifier with an average F1 score of 90.1%. Yang et al. [34] extracted RMS, median
frequency, peak frequency, and sample entropy from the EHG signals, and applied SMOTE
for overcoming the data imbalance issue. After employing five classifiers, the authors
reported the best accuracy, of 85%, by the gradient boosting classifier (GBC). Xu et al. [35]
presented a network theory-based algorithm for the prediction of preterm labor. Using a
partition-synthesis method for overcoming the data balancing and SVM for classification,
an accuracy of 91% was achieved.

As EHG signals are generated from a huge amount of intricately interconnected cells,
uterus contractions are expected to display strong non-stationarity [20]. Consequently,
employing non-stationary algorithms for feature extraction was expected to improve the
classification results. The most prominent example of such methods is empirical mode
decomposition (EMD) [36], which splits the input signal into several frequency components
(ordered from high to low), called intrinsic mode functions (IMFs), without requiring any
prior knowledge such as basis functions in the wavelet transform. For this reason, some
researchers performed EMD on EHG data, then extracted features from the decomposed
components. Ren et al. [37] used the Shannon entropy of the first ten decomposed IMFs to
form the feature vector. After applying SMOTE, several classifiers were used to discriminate
term and preterm deliveries. According to the authors, the best result was achieved based
on the Adaboost classifier with an AUC of 0.986. N. Sadi et al. [38] used a balanced data set
of EHG records (26 term and 26 preterm records) and extracted seven features from the
IMF3 and IMF6 of two EHG channels. After employing a linear SVM classifier, an average
accuracy of 95.70%, a sensitivity of 98.40%, a specificity of 93%, and an AUC of 0.95 were
achieved. Acharya et al. [39] employed EMD to extract 11 IMFs from EHG records that
were subsequently decomposed by WPD to 6 levels. After ranking significant features and
employing ADASYN, SVM achieved an accuracy of 96.25%, a sensitivity of 95.08% and a
specificity of 97.33%. Khan et al. [40] extracted nine features from the second to fifth IMFs.
After using ADASYN for data balancing and SVM for classification, an accuracy of 98%
was obtained.

While the mentioned investigations showed satisfactory results for the prediction of
preterm labor, the majority of them employed synthetic data generation to overcome the
imbalance problem, which may cause misleading results [11,29,30], i.e., if an algorithm
detects preterm labor cases with a sensitivity of 90% after data balancing, it is not clear
how much of that 10% of misclassified preterm cases are related to real data. Indeed, if
such a misclassification is strongly related to the real data, not the synthetically genereated
ones, the performance may not be reliable. To this aim, this research proposes an automatic
algorithm to predict preterm labor from a single EHG channel without employing any syn-
thetic data-generation algorithms. Our hypothesis is that EHG records related to preterm
labor contain stronger contractions than term ones; therefore, instead of extracting many
features, we consider only three features that properly address such differences. In addi-
tion, given our hypothesis—that EHG signals related to preterm labor cases have stronger
contractions—feature extraction is better to be performed on EHG signals decomposed by
EMD, where the EHG signal is represented by several components with different frequency
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ranges. After the feature extraction, k-nearest neighbors (kNN), SVM, and decision tree
(DT) classifiers are employed to investigate the effectiveness of the proposed features.

3. Methods
3.1. The Proposed Method

The block diagram of the proposed method is shown in Figure 1. In short, the following
procedures will be employed: (i) two IMFs are extracted from EHG signals; (ii) three features
are extracted from these IMFs to form the feature vector; (iii) the extracted features are fed
to three classifiers for studying the best possible discrimination of the term and preterm
cases. The following subsections explain the proposed method in detail.

EHG signal Feature set 10-fold stratified CVEMD Classification

IMF1

IMF2

r2

x(n)

1. RMS1  
2. SampEn1

3. MTKE1 
4. RMS2

5. SampEn2

6. MTKE2 

1
st

iteration 

2
n d

iteration 

3
rd

 iteration 

10
th

 iteration 

Figure 1. The block diagram for the discrimination of the deliveries.

3.2. Empirical Mode Decomposition

The basis of EMD is to decompose the input signal x(n) into m number of intrinsic
mode functions (IMFs) and one residual signal r(n), where the original signal can be
reconstructed as follows:

x(n) =
m

∑
j=1

IMFj + rm(n). (1)

Indeed, EMD decomposes the input signal from high to low frequency components
as the level of decomposition, j, increases. Since the input signal is decomposed in the
time domain, and the length of the decomposed components and the original signal is
equal, EMD preserves the characteristics of varying frequencies [36]. An IMF is defined as
a function that satisfies the two conditions:

1. In the whole data set, the number of extrema and zero-crossings must either be equal
or differ at most by one;

2. At any point, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero.

The second condition is ideal and may be not achieved in practice; therefore, it is
controlled by a threshold. If the mean value of the lower and upper envelopes is below
0.2, it is considered an IMF. The process of IMF extraction from x(n), known as the sifting
process, is described as follows:

1. Extract the local minima and local maxima from x(n);
2. Create the upper and lower signal’s envelopes using cubic spline;
3. Compute the local mean signal, m1(n), by averaging the upper and lower signal’s

envelopes;
4. Subtract m1(n) from x(n) to obtain the first possible IMF candidate y1(n) = x(n) −

m1(n).

Now, it should be investigated whether y1(n) fulfills IMF’s conditions. If not, y1(n) is
considered as a new signal, and steps 1–4 have to be repeated. This process is continued k
times until y1k(n) is chosen as the first IMF. In order to reach a series of IMFs, the residue,
r1(n), should be generated as follows:

r1(n) = x(n)− IMF1. (2)

Then, the sifting process is performed on r1(n) to obtain the second IMF.
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Considering the fact that EMD decomposes a signal from high- to low-frequency
components, and that our hypothesis that EHG signals related to preterm labor cases might
represent stronger contractions, i.e., show higher frequency components, we employ only
the first two IMFs. In order to decompose EHG signals by EMD, each signal was windowed
into 1-min segments, and the first two IMFs were extracted.

3.3. Feature Extraction

The first step for the true segmentation of term and preterm deliveries is to select
distinctive features. Our presumption is that preterm EHG signals contain stronger contrac-
tions than term ones; thus, features able to represent this property should be extracted. In
this paper, we extracted three features, RMS, SampEn [41], and mean Teager–Kaiser energy
(MTKE) [42], from the first two IMFs. Although the adequacy of the employed features
has been proven when directly extracted from EHG signals, better performance might
be achieved if they are extracted from decomposed EHG signals, where high-frequency
components, i.e., the first two IMFs, are the only ones considered. The motivation behind
using these three features is their capability to distinguish stronger contractions, as EHG
signals related to preterm cases are expected on the physiological background to show
such behavior. Indeed, stronger contractions show higher amplitude (RMS), uncertainty
(entropy), and energy (MTKE).

RMS is defined as the square root of the arithmetic mean of the squares of the values,
expressed as follows:

RMS =

√√√√ 1
N

N

∑
n=1

x2(n). (3)

As our assumption is that preterm EHG records contain stronger contractions, it is
expected that the RMS of term and preterm records show a meaningful difference [14].

SampEn is a modification of approximation entropy without independence from the
data length. For a given signal with a length of n, it can be expressed as the negative
logarithm of conditional probability that two sequences are similar for m point within a
tolerance value r, excluding any self-matches. Thus, it can be represented as:

SampEn(m, r, n) = −ln(
A
B
), (4)

where A = (n−m−1)(n−m)
2 Am(r) and B = (n−m−1)(n−m)

2 Bm(r). Am(r) and Bm(r) stand for
the probabilities of two sequence matches for m + 1 and m points, respectively. SampEn
represents the irregularity of the signal. As stronger contractions can also increase irregu-
larity, it can be expected as a proper feature for the term and preterm segmentation [5,18].
SampEn requires two parameters to be adjusted before implementation, embedding di-
mension m and scaling factor r. In this paper, we used m = 3 and r = 0.15, as suggested
in [5].

TKE is a well-known tool for the detection of muscle-contraction onsets from elec-
tromyogram signals. In this paper, we use the mean of TKE as follows:

MTKE = µ(x2(n)− x(n− 1)x(n + 1)), (5)

where µ represents the mean. The MTKE calculates the energy of a signal based on its
amplitude and frequency content; hence, its higher average value can represent preterm
cases [39].

As was already mentioned, each EHG signal is decomposed into two IMFs; therefore,
6 features from each channel are extracted. It should be noted that, after segmenting EHG
signals into 1-min windows and the IMF extraction, each feature was computed from all
those windows, and the average of them was considered as the final feature. In order to
normalize the features’ scale, each feature column is subtracted from its mean and divided
by its standard deviation.
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3.4. Classifiers

Three classifiers were learned and tested to best distinguish the term and preterm
delivery signs based on the above-presented features.

3.4.1. k-Nearest Neighbors

kNN is a simple supervised machine-learning algorithm, widely employed for clas-
sification and regression problems. The basis of kNN is to separate data points by using
a distance function. Indeed, kNN performs the classification by the majority vote of
neighbors, where each data point is attributed with a label that has the closest neighbors.
Therefore, kNN presumes that resembling data are in close proximity. There are two pa-
rameters that influence the classification results of kNN: the number of neighbors K and
the distance metric. The determination of both parameters is an experimental task [43].

3.4.2. Support Vector Machine

SVM is one the most efficient supervised machine-learning algorithms that have
been extensively used in dual classification problems. The main advantage of SVM is its
capability to separate and handle multiple continuous and categorical variables. In general,
SVM generates a hyperplane in multi-dimensional space to distinguish different classes.
Compared to other classifiers, SVM’s kernel-selection property provides a better solution
to deal with complex data. Yet, the optimization of kernel parameters is a time-consuming
procedure [44].

3.4.3. Decision Tree

The decision tree deals with the classification problem as a form of tree structures. It
decomposes the database into smaller subsets that are incrementally developed. As the
final results, decision and leaf nodes will be given, where decision nodes have two or more
branches and leaf nodes represent the classification results [45]. Compared to the SVM,
the classification result of DT depends on more required parameters in order to be tuned
accurately. As a consequence, DT can be more operator-dependent.

4. Evaluation
4.1. Data

The EHG records included in the TPEHG DB database were collected from 1997 to 2005
at the University Medical Centre Ljubljana, Department of Obstetrics and Gynecology [20].
The TPEHG DB contains 300 EHG records, of which 262 records were of term and 38 records
were of preterm deliveries. According to pregnancy weeks, these records are categorized
into two groups, where 143 term and 19 preterm records were collected before the 26th
week of gestation, and 119 term and 19 preterm records were collected during or after the
26th week of the gestation. Each record is comprised of three channels, recorded from four
electrodes placed on the abdominal surface of pregnant women, as shown in Figure 2.

Figure 2. The placement of EHG electrodes, adopted from [46].
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Using differences in the electrical potentials of the electrodes, three channels were
produced as CH1 = E2− E1, CH2 = E2− E3, and CH3 = E4− E3. Each record lasted for
30 min and was sampled at 20 Hz with 16-bit resolution over a range of ±2.5 millivolts.
After data collection, a fourth-order Butterworth band pass filter with cut-off frequencies of
0.08 and 4 Hz was employed to filter the raw EHG signals. To mitigate the transient effect
of filtering, the first and last 180 s of each record were removed [20]. Figure 3 shows 1 min
of the EHG signals from all three channels after filtering.

0 10 20 30 40 50 60
Time (second)

CH
3

CH
2

CH
1

Figure 3. Examples of the EHG signals from all three channels.

4.2. Imbalanced Database Issue

The major problem of the TPEHG DB database is the imbalance of EHG data for term
and preterm classes, as only 13% of data corresponds to preterm cases. In this situation,
the classifiers may be biased against the preterm labor cases [47]. Indeed, by using the
simple k-fold cross-validation, it is possible that few folds do not have preterm cases. The
most straightforward strategy addressed in the literature is to generate synthetic preterm
features by algorithms such as SMOTE or ADASYN. Yet, some studies argued that such a
strategy may lead to misleading results [11,29,30]. To overcome this issue, we employed
stratified k-fold cross-validation, which randomly splits the database into k subsets and
guarantees the existence of both classes in all subsets.

4.3. Evaluation Metrics

In order to evaluate the performance of the classifiers, the sensitivity (Se), specificity
(Sp), and accuracy (Acc) are computed as follows:

Se =
TP

TP + FN
× 100, (6)

Sp =
TN

TN + FP
× 100, (7)

Acc =
TP + TN

TP + TN + FP + FN
× 100, (8)

where TP and FN represent the number of correctly and wrongly classified preterm cases,
and TN and FP stand for the number of correctly and wrongly classified term cases.
To validate the performance of the classifiers, a 10-fold stratified cross-validation with
30 repetitions was performed. After splitting the data into 10 subsets, the training and
testing procedures are performed in such a way that, each time, 9 subsets are used for
training and 1 subset is used for testing. Consequently, the classification results are taken
as the average of 10 repetitions for training and testing. It should be noted that during
these 10 repetitions, the obtained testing results are independent of the previously trained
classifier. After finding the best results for each classifier, the AUC is computed as follows:

AUC =
∫

Se(T)(1− Sp)′(T)dT, (9)
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where T is the threshold related to the binary classifier.

5. Results and Discussion

As mentioned in the state-of-art review, each classifier requires the accurate setting of
parameters prior to performing the experiment. In this paper, we report the performance
of each classifier with an alternation of the most-prominent parameter. The remaining
parameters are set as the default. Compared to the state-of-art methods, we show the
employed features better discriminate term and preterm cases, supporting our claim with
quantitative results. Furthermore, the main superiority of the proposed method over the
state-of-the-art algorithms is to employ only real EHG signals. The experiments were
implemented in a MATLAB 2019 environment using a personal computer with a 3.2 GHz
core i7 CPU and 8-GB memory.

Figure 4 shows the distribution of the extracted features. As for kNN, the distance
metric and the number of neighbors should be specified first. According to the literature,
the most common distance metric for kNN classifiers is Euclidean; thus, the number of
neighbors plays the most important role. For this aim, a different number of neighbors, i.e.,
2, 4, 8, 10, and 12, are examined. As shown in Table 1, the best results were achieved from
CH2 by 4 neighbors with a mean Se of 86.9%, Sp of 98.0%, and Acc of 96.6%, followed by
4 neighbors with a mean Se of 86.1%, Sp of 97.8%, and Acc of 96.3% from CH1.

Table 1. kNN performance for different channel configurations. The best obtained results are in bold.

No. of K Channel Se Sp Acc

2
CH1 81.2 % 95.1 % 93.9 %
CH2 78.9 % 94.0 % 91.8 %
CH3 77.3 % 95.4 % 93.2 %

4
CH1 86.1 % 97.8 % 96.3 %
CH2 86.9 % 98.0 % 96.6 %
CH3 82.9 % 97.6 % 96.7 %

8
CH1 82.1 % 98.7 % 96.6 %
CH2 80.0 % 98.0 % 95.8 %
CH3 81.3 % 99.6 % 97.2 %

10
CH1 79.2 % 98.8 % 96.2 %
CH2 79.0 % 98.3 % 95.9 %
CH3 80.0 % 99.6 % 97.1 %

12
CH1 77.1 % 98.9 % 96.0 %
CH2 76.7 % 98.2 % 95.4 %
CH3 78.0 % 99.6 % 96.8 %

As for SVM, linear, radial basis function (RBF), and polynomial (Poly) kernels were
used. It should be noted that kernel parameters that maximize the margin between term
and preterm cases and minimize the misclassification rate were adjusted automatically in a
MATLAB 2019 environment. Table 2 shows the classification results by SVM. As displayed,
the best results were reached through CH1 features using a poly kernel with an average Se
of 99.5%, Sp of 99.7%, and Acc of 99.7%, followed by a poly kernel with an average Se of
93.6%, Sp of 99.6%, and Acc of 98.9% from CH2.

Regarding the decision tree classifier, there are two parameters that can influence the
performance: the maximum number of split (MNS) and the minimum leaf size (MLS). As
for MNS, we optimized the DT classifier in the MATLAB environment and a MNS of 6 was
considered as the optimal value. Thus, we investigated different numbers of leaves, i.e., 10,
20, 30, 40, and 50. Table 3 displays the classification results using DT. As can be observed,
the best result was obtained by 20 leaves from CH1, with a mean Se of 100%, Sp of 98.4%,
and Acc of 98.7%, followed by 30 leaves, with an average Se of 100%, Sp of 97.7%, and Acc
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of 98.2%. Compared to other two classifiers, the results obtained by DT seem to be more
robust to the different channels.

-4 -2 0 2 4 6
RMS1

Term Preterm

-4 -2 0 2 4
SampEn1

(a)

-2 -1 0 1 2 3
MTKE1

-2 0 2 4 6
RMS2

-5 0 5 10
SampEn2

-2 0 2 4 6
MTKE2

-4 -2 0 2 4 6 8
RMS1

-4 -2 0 2 4
SampEn1

(b)
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Figure 4. The distribution of the extracted features from IMF1 (first row) and IMF2 (second row)
from (a) CH1, (b) CH2, and (c) CH3.

Table 2. SVM performance for different channel configurations. The best results are in bold.

Kernel Channel Se Sp Acc

Linear
CH1 77.5 % 98.4 % 95.8 %
CH2 78.9 % 98.5 % 96.0 %
CH3 85.0 % 99.6 % 97.7 %

RBF
CH1 82.8 % 98.8 % 96.7 %
CH2 83.7 % 98.3 % 96.4 %
CH3 76.8 % 100 % 97.0 %

Poly
CH1 99.5 % 99.7 % 99.7 %
CH2 93.6 % 99.6 % 98.9 %
CH3 88.4 % 99.0 % 97.7 %
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Table 3. Decision tree performance for different channel configurations. The best results are in bold.

MLS Channel Se Sp Acc

10
CH1 93.4 % 96.4 % 96.1 %
CH2 87.8 % 92.8 % 92.1 %
CH3 89.7 % 94.8 % 94.5 %

20
CH1 100 % 98.4 % 98.7 %
CH2 91.0 % 96.9 % 96.2 %
CH3 91.7 % 96.8 % 96.2 %

30
CH1 100% 97.7 % 98.2 %
CH2 94.1% 96.7 % 96.2 %
CH3 91% 97.0 % 96.2 %

40
CH1 97.2 % 96.8 % 96.8 %
CH2 97.1 % 96.8 % 96.9 %
CH3 100 % 97.3 % 97.6 %

50
CH1 100% 93.2 % 94.1 %
CH2 100% 93.3 % 94.1 %
CH3 100% 93.2 % 94.0 %

According to Tables 1–3, the best performance results are obtained by SVM and DT
classifiers using extracted features from CH1. Figure 5 compares the best obtained results in
terms of Se, Sp, and Acc by all classifiers. As displayed, there is only a significant difference
(p < 0.05) between Se values of kNN vs. SVM and DT.

Acc Se Sp
80

85

90

95

100

(%
)

KNN SVM DT data4

*
*

Figure 5. The performance comparison of all three classifiers. * stands for p < 0.05.

The receiver operating characteristic (ROC) curves of all classifiers are shown in
Figure 6. As can be observed, SVM achieved the highest AUC of 0.999, followed by DT and
kNN, with 0.987 and 0.978, respectively.

Table 4 compares our algorithm with state-of-the-art algorithms tested against the
TPEHG DB database. The most noticeable advantage of our study is the use of original
EHG records without synthetic data generation. In addition, our algorithm does not require
feature ranking procedures. Instead, we employed three physiology-justified features
which could properly discriminate term and preterm cases. Considering the similarity
of feature extraction to our study, the best obtained results based on EMD analysis were
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achieved by the [39], with Se of 95.08%, Sp of 97.32%, and Acc of 96.25. On the other hand,
the resemblance of our results with [32] shows the applicability of the extracted features
even when imbalanced EHG records were employed. Regardless the obtained results, due
to low wearable complexity, i.e., single EHG channel, and computational cost, the proposed
method could be integrated for using in home-based surveillance in indoor environments.
Indeed, single-lead EHG monitoring paves the way for multimodal pregnancy monitor-
ing in home-care scenarios, which is increasingly stressed in countries with the lowest
population growth rates. The use of a single channel opens the possibility of selecting the
best channel out of the three used in regular monitoring and of modifying the selection
with changes of environmental conditions or the mother’s position, which optimizes the
monitoring quality-to-cost ratio and the accessibility of the method. Alternatively, a single-
channel EHG record may be considered as a part of a complex well-being record (including
mother motion and fetus heart rate measurements) that documents the course of pregnancy
while searching for possible threats.

0 0.5 1

FPR (1-Sp)

0

0.5

1

T
P

R
 (

S
e)

SVM, AUC=0.999
KNN= AUC=0.978
DT, AUC=0.987

Figure 6. ROC of all classifiers with their best performance.

Table 4. The comparison of our study with sate-of-the-art algorithms. * means feature selection was
performed before the classification.

Work Data Balancing Channel No. Data Classifier Acc Se Sp AUC

[27] Yes (SMOTE) CH3 262 term; 38 preterm polynomial – 96% 90% 0.95
[28] Yes (Min–Max) CH3 150 term; 19 preterm SONIA 92.7% 91.2% 94.5% 0.93
[29] Yes (SMOTE) CH3 262 term; 38 preterm SVM 87% 96% 79% –
[30] Yes (SMOTE) CH3 262 term; 38 preterm Combined * – 91% 84% 0.94
[31] Yes (ADASYN) CH1-3 143 term; 19 preterm RF * 93% 89% 97% 0.962
[32] Yes (ADASYN) CH1 262 term; 38 preterm SVM 99.72% 99.48% 99.96% –
[37] Yes (SMOTE) CH3 262 term; 38 preterm Adaboost – – – 0.986
[38] No CH1-2 26 term; 26 preterm SVM * 95.70% 98.40% 93% 0.95
[39] Yes (ADASYN) CH1-3 262 term; 38 preterm SVM * 96.25% 95.08% 97.33% –
[33] Yes (SMOTE) CH1-3 275 term; 51 preterm Ensemble * 91.64% 96.23% 87.04% 98.13
[5] Yes (SMOTE) CH1-3 275 term; 51 preterm LDA * 89.2% 98.4% 79.9% 0.936

[34] Yes (SMOTE) CH1-3 262 term; 38 preterm GBC 85% - - 0.91
[35] Yes (Partition-Synthesis) CH1-3 275 term; 51 preterm SVM * 91% 89.0% 93% 0.97
[40] Yes (ADASYN) CH1-3 262 term; 38 preterm SVM * 98.5% 98.4% 98.4% -

Ours No CH1 262 term; 38 preterm SVM 99.7% 99.5% 99.7% 0.999
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6. Conclusions and Future Works

This paper presents an automatic algorithm for the accurate classification of term
and preterm deliveries using a single EHG channel. The obtained results confirmed
the adequacy of extracted features as no synthetic data-generation or feature-ranking
algorithms were necessary. Indeed, our results suggested that employing features that
properly characterize the contractions can avoid such extra processing. In future works,
we should investigate (i) employing the categorical characteristics of each subject as the
complementary features in addition to the proposed ones, (ii) the performance of employed
features on other versions of filtered EHG signals with different cut-off frequencies (e.g.,
0.3–1 Hz), (iii) the classification of EHG data based on the recorded weeks to investigate
how far ahead preterm labor can be predicted, and (iv) the consistency of classification
with the shortening of records.
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