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Abstract

Background: Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR)
agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is
mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation
to identify molecular effects of SLP in pre- and post-ischemic myocardium.

Methodology/Principal Findings: Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days.
Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to
25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts
from SLP mice ($1.3-fold change, FDR#5%). Induced genes encoded sarcomeric/contractile proteins (Myh7,
Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes
primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in
inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress
proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3,
Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular
movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-
ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance
to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes
(Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip.

Conclusions: Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of
sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional
protective molecules are unaltered.
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Introduction

Adjunctive cardioprotective therapy to limit myocardial damage

and death during infarction or surgical I-R in ischemic heart

disease (IHD) patients remains an important though elusive

clinical goal [1]. IHD is the leading cause of death and healthcare

expenditure in Australia, and is predicted to remain the leading

global health problem in coming decades, emerging as a major

issue in both developing and developed countries [2]. With

population aging the impact of IHD will rise, with growing

incidences of diabetes, obesity, dyslipidemia, and hypertension

further contributing to IHD prevalence. Despite the enormity of

this problem, we still have no clinically effective cardioprotective

therapies to improve short- or long-term outcomes from myocar-

dial ischemia, beyond essential (and timely) reperfusion. This

reflects in part our incomplete understanding of mechanisms

governing myocardial survival vs. death, and particularly how

these are influenced by age, sex, disease and common pharma-

ceuticals [3,4]. Unfortunately, widely studied experimental stimuli

including pre- and post-conditioning may be impaired or negated

with aging [5], relevant disease states such as diabetes [6,7],

obesity [8] and hypertension/hypertrophy [9,10], and commonly

applied drugs such as ß-blockers [11] and ACE inhibitors [9].

Contrasting conventional protective responses, SLP is highly

effective in both young and aged myocardium, inducing protection

that persists for up to a week post-stimulus and that is equivalent or

superior to that with other preconditioning stimuli [12–15]. While
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potentially superior to other candidate responses, the molecular

basis of SLP remains to be elucidated. Shifts in myocardial protein

expression/localization are likely involved given that SLP requires

3–5 days of induction and generates persistent protection evident

both in vivo and ex vivo [15]. Mechanistically, SLP is distinct from

conventional protective and conditioning responses [14,15], being

Gi (pertussis toxin) insensitive and independent of well-established

mediators including PI3K/Akt, NOS, mTOR, PKC, KATP

channels and cRaf1 kinase (upstream of MEK/MAPK signaling),

whereas Gs-dependent PKA signals may contribute [14]. Given

these unique features, we here applied un-biased transcriptome-

wide interrogation to identify molecular changes associated with

novel SLP.

Results

Cardiac Response to SLP
Induction of SLP did not modify baseline contractile function or

coronary flow in isolated perfused hearts (Table 1). In terms of I-

R tolerance, hearts from SLP mice exhibited substantially

improved ventricular contractile recoveries (Figure 1). Further-

more, the extent of cellular death/damage, as indicated by post-

ischemic LDH efflux, was significantly reduced by .75% in the

SLP group (Figure 1).

Transcriptional Effects of SLP ‘‘Induction’’ in Normoxic
Myocardium

To identify molecular adaptations in SLP hearts, myocardial

gene expression was interrogated via microarray. Of 45,200

transcripts represented on the Illumina MouseWG-6 v1.1

BeadChip, 13,335 (30%) were expressed in $2 myocardial

samples per group. In normoxic myocardium SLP induction was

associated with up-regulation of 14 transcripts and repression of 86

transcripts, based on fold-changes $1.3 and a FDR of #5%

(Table S1). Induced transcripts were involved in contraction/

sarcomeric function (Myh7, Mybpc3, Myom2, Des), cardioprotec-

tion/remodeling (Nppa, Nppb), and stress signaling (Csda, Ptgds). Of

highly repressed transcripts, a majority were chemokines (Ccl2,

Ccl4, Ccl7, Ccl9, Ccl13, Ccl3l3, Cxcl3), cytokines (Il1b, Il6, Tnf), and

other inflammation/immunity related transcripts (Serpina3, Saa1,

C3, Cd74, Hla-drb1, Hla-dbq1, Selp, Cd83, Cd86), together with

endoplasmic reticulum stress response (ERSR) genes (Dnajb1,

Socs3, Herpud1, Il6, Gadd45g, Rcan1) and transcriptional controllers

(Egr2, Egr3, Fos, Hmox1, Nfkbid). We further assessed shifts in

protein expression for 2 key transcript changes - Myh7 and Nppa

(Figure 2). These data confirm Myh7 transcript induction

translates to increased myocardial MYH7 protein content (which

was below detection limits in untreated tissue, consistent with

normal expression in the neonatal myocardium), whereas induc-

tion of Nppa was not associated with a detectable increase in

cardiac ANP expression (Figure 2).

Functional annotation and interrogation via the IPA suite

identified similar themes of inflammatory/immune modulation,

regulation of cell movement, growth and development, and cell

death/survival responses (Table 2; Table S3). The top molecular

canonical functions identified included (in descending order of

significance): cell-to-cell communication and interaction, cellular

movement, antigen presentation, cellular development, cellular

function and maintenance, cellular growth and proliferation, cell

death, and cell signaling. The top represented disease processes

included: inflammatory responses, immunological disease, con-

nective tissue disorders, inflammatory disease, skeletal and

muscular disorders. These paths and functions are suggestive of

SLP-dependent control of inflammatory/immune function, cardi-

ac contraction and remodeling, and stress-responses (cell death,

survival and signaling, oxidative stress responses). Network analysis

identified 9 significantly modified networks during SLP induction,

based upon known molecular interactions (Table 3). Again, the

most significantly modified revolve around cell movement,

immune/inflammatory functions and cardiovascular disease and

development (Table 3). As detailed in Figure 3 the two top

modified networks are involved in inflammatory/immune func-

tion, network 1 centered on NfkB and Il12/chemokine responses,

and network 2 centered on TNFa and MHC/HLA responses.

The two cardiovascular-related networks identified (3 and 4) also

involve inflammatory signaling, together with processes of cellular

growth and development (Figure 4).

Transcriptional Effects of SLP in Post-Ischemic
Myocardium

Myocardial gene expression patterns following ischemic insult

will influence progression of infarction, remodeling and ultimately

failure. Post-ischemic expression patterns were significantly

modified by SLP, which led to up-regulation of 29 transcripts

and repression of 51 transcripts in reperfused myocardium (Table
S2). Of these SLP-responsive transcripts, 33 were similarly altered

by SLP pre-ischemia, whereas 46 were identified as specifically

modified by SLP post-ischemic tissue only (21 up- and 25 down-

regulated). The latter included up-regulation of transcripts

involved in cardiac stress signaling and development (Xirp1,

Ankrd1, Clu) and anti-oxidant function (Mgst3, Gstm1, Gstm2), and

repression of Txnip and heat shock transcripts (Hsph1, Hspa1a,

Hspd1, Serpinh1) (Table S2). Functional/pathway analysis of post-

ischemic transcriptional responses to SLP identified processes and

networks similar to those modified in normoxic tissue, including

inflammatory/immune signaling paths and processes, cellular

movement, growth, development, and signaling (Tables 4 and 5;
Table S4).

Select gene changes identified via microarray interrogation of

normoxic and post-ischemic myocardium were further validated

via RT-qPCR analysis. As shown in Figure 5, genes assessed by

RT-qPCR exhibited expression changes during SLP induction

that were consistent with responses detected by microarray

Table 1. Baseline function in Langendorff hearts from SLP and placebo mice.

GROUP LVEDP (mmHg) LVDP (mmHg) +dP/dt (mmHg/s) 2dP/dt (mmHg/s) Coronary Flow (ml/min/g)

5-day Placebo (n = 8) 561 14869 54586487 33456256 3.060.2

5-day SLP (n = 8) 461 15067 52206363 32086210 2.960.2

Data were acquired after 30 min aerobic perfusion (at a fixed heart rate of 420 bpm). Data are means6S.E.M. There were no significant differences in baseline (pre-
ischemic) functional measures between groups. LVEDP, left ventricular end-diastolic pressure; LVDP, left ventricular developed pressure; dP/dt, differential of ventricular
pressure development or relaxation over time.
doi:10.1371/journal.pone.0072278.t001
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analysis. The very strong positive and linear correlation (r2 = 0.95)

highlights the complementarity of RT-qPCR and microarray

techniques, and thus the general quantitative value of array-

derived gene expression changes (though the slope of the

relationship reflects a superior sensitivity and dynamic range for

RT-qPCR; Figure 5). Interestingly, of this sub-set of transcrip-

tional responses specifically quantitated by PCR, pre-ischemic

induction of myocardial Myh7 and Nppa, and repression of Pdk4,

Ccl7, Fos and Il6 have not previously been reported for

cardioprotected models. Post-ischemic induction of Ankrd1 and

Xirp1 and repression of Txnip and Tlr2 have also not been linked to

cardioprotection.

Discussion

Clinically applicable interventions to limit myocardial cell death

with infarction or surgical I-R are needed [3,4]. Interventions

based on conventional pre- and post-conditioning have been

widely studied, yet may possess significant drawbacks. Notably,

they appear sensitive to inhibitory influences of age (with the

majority of IHD patients .50 yrs old), disease status (most IHD

patients suffer co-morbidities of obesity/dyslipidemia, diabetes,

and/or hypertension), and common pharmaceuticals (almost all

IHD patients are on ß-blockers, statins, ACE inhibitors or

angiotensin II receptor blockers [4]. These factors may explain

modest outcomes from clinical trials of conditioning stimuli [3].

Experimental SLP on the other hand engages unique signaling

which may be resistant to these inhibitory influences [14,15], and

indeed is effective in aged myocardium [13]. While SLP induction

is wortmannin-sensitive [15], implicating PI3K, whether this

reflects a role in phospho-dependent signal transduction, activa-

tion of mRNA translation, and/or regulation of gene transcription

is not known. Certainly the resulting phenotype is unique, I-R

tolerance being independent of PI3K/Akt, NOS, mTOR, KATP

channel and MEK/MAPK activation [14].

Array analysis reveals SLP significantly alters the cardiac

transcriptome, though consistent with novel signaling involvement

[14], this does not involve modulation of canonical protective

paths or molecules (eg. RISK signaling elements, NOS) [16], anti-

oxidants, or major determinants of cell death/apoptosis. Rather,

SLP induces unconventional transcriptional changes, including

shifts in mediators of inflammation/immunity, sarcomere func-

tion, and cardiovascular growth and development (Figures 3 and

4, Table S1). Intriguingly, this response exhibits features similar

to those arising with cardioprotective exercise [17], itself attributed

to OR-dependent signaling [18,19]. Both SLP and voluntary-

Figure 1. Cardioprotective effects of OR-dependent SLP. Data are shown for contractile recoveries and cell death following 25 min ischemia
and 45 min reperfusion in isolated hearts from placebo vs. SLP treated mice (n = 8 per group). Shown are recoveries of left ventricular developed
pressure (% of baseline) and left ventricular end-diastolic pressure (mmHg), together with total post-ischemic washout of cellular LDH. Values are
mean6S.E.M. *, P,0.05 vs. Placebo.
doi:10.1371/journal.pone.0072278.g001

Figure 2. Relationship between transcript and protein expres-
sion changes for cardiac MYH7 and ANP. Data are shown for
myocardial: A) Myh7 and MYH7 transcript and protein levels,
respectively; and B) Nppa and ANP transcript and protein levels,
respectively (n = 6 per group). ND; not detected (MYH7 was un-
detectable in the placebo group; ANP was un-detectable in the
cytosolic fraction). Values are mean6S.E.M. *, P,0.05 vs. Placebo.
doi:10.1371/journal.pone.0072278.g002
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running generate predominant mRNA repression vs. induction,

and modify transcripts involved in inflammation/immunity and

sarcomeric function.

Transcripts Up-Regulated in SLP Hearts
Data in Figure 1 highlight powerful protection against

dysfunction and cell death with SLP, a persistent stress-resistance

induced by several days of OR agonism [15]. This pattern

implicates protein expression changes rather than or additional to

post-translational regulation. Only a small set of transcripts was

induced by SLP, the majority being repressed (Table S1). Several

induced transcripts may contribute to I-R tolerance, including a

novel suite of sarcomeric genes (Myh7, Mybpc3, Myom2, Des),

together with potentially protective Nppa and Nppb.

Sarcomeric elements. Myh7 was the most highly induced,

with encoded ß-myosin heavy chain protein also elevated

(Figure 2). There are no prior reports of OR (or ischemic)

regulation of this protein, which is considered a marker of

pathological hypertrophy (reflecting expression of a fetal gene

program). Nonetheless, a solely pathological function for the

protein has recently been challenged [20], and is contrary to

improved cardiac efficiency [21] and Ca2+ homeostasis [22] with

ß-myosin heavy chain expression. Pronounced induction may thus

benefit hearts, reducing the effects of I-R on 2 key outcome

determinants - contractile efficiency and Ca2+ handling.

Transcript for myosin-binding protein C (Mybpc3), a critical

regulator of cardiac function, was also induced. Myosin-binding

protein C stabilizes thick filaments and regulates actomyosin

ATPase activity. Dysregulation leads to dilated and hypertrophic

cardiomyopathies, with phospho-dependent degradation poten-

tially contributing to I-R injury [23]. Induction has not been

previously reported in protected phenotypes, yet could limit

cardiac I-R injury, protect sarcomeric function, and together with

ß-myosin heavy chain improve contractile efficiency.

Induced Myom2 and Des may additionally preserve sarcomere

function. Myomesin-2 is the primary myosin M-band cross-linking

protein, and binds titin in a complex with obscurin/obs1. The

protein is key to normal function, as evidenced by associations

between heart failure and low expression. Since titin is a critical I-

R sensitive sarcomere element [24], up-regulated myomesin-2

may mitigate against titin dysfunction (and is also increased with

protective exercise [17]). Up-regulated desmin (Des) connects

myofibrils to each other and the sarcolemma, controls mitochon-

drial proximity to myofibrils, and maintains myocyte structure and

interactions at Z-disks/intercalated disks. Evidence indicates

degradation of desmin may contribute to cardiac I-R injury

[25]. Novel up-regulation may thus be protective. Collectively,

induction of this suite of key sarcomeric genes may protect against

I-R damage, with reduced desmin and myosin-binding protein C

already implicated in I-R injury, while roles for ß-myosin heavy

chain and myomesin-2 warrant further study.

Natriuretic peptides. Transcripts for atrial natriuretic pep-

tide (ANP) and brain natriuretic peptide (BNP) - Nppa and Nppb,

respectively - were induced with SLP. There are no prior reports

Table 2. The top functional gene groupings sensitive to SLP induction in normoxic myocardium.

Molecular and Cellular Functions P-Value Range No. of Genes

Cell-to-Cell Communication and Interaction 2.48E-23-2.25E-05 51

Cellular Movement 1.61E-20-2.25E-05 43

Antigen Presentation 9.5E-16-1.69E-05 31

Cellular Development 5.97E-14-2.62E-05 51

Cellular Function and Maintenance 6.79E-13-1.13E-05 35

Cellular Growth and Proliferation 2.82E-12-2.62E-05 59

Cell Death 1.09E-10-2.31E-05 53

Cell Signaling 7.27E-10-1.29E-05 24

Molecular Transport 7.27E-10-2.2E-05 27

Physiological System Development and Function P-Value Range No. of Genes

Hematological System Development and Function 1.61E-20-2.58E-05 52

Immune Cell Trafficking 1.61E-20-2.58E-05 42

Tissue Development 2.54E-15-2.58E-05 50

Lymphoid Tissue Structure and Development 8.17E-15-1.16E-05 23

Tissue Morphology 1.25E-14-1.81E-05 35

Disease and Disorders P-Value Range No. of Genes

Inflammatory Response 1.61E-20-2.58E-05 49

Immunological Disease 7.27E-17-1.84E-05 46

Connective Tissue Disorders 1.18E-13-2.47E-05 39

Inflammatory Disease 1.18E-13-2.47E-05 50

Skeletal and Muscular Disorders 1.18E-13-2.47E-05 52

Functional groupings of transcripts differentially modified by SLP in normoxic tissue (also shown are P-values, and numbers of involved genes). Groupings from IPA
analysis are categorized into molecular and cellular functions, physiological system development and function, and disease and disorder (complete functional gene
grouping data can be found in Table S3).
doi:10.1371/journal.pone.0072278.t002
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of OR-dependent control of cardiac ANP/BNP expression,

though the secretion of ANP may be enhanced by ORs [26–28].

Surprisingly, ANP/BNP involvement in pre- or post-conditioning

has not been tested, despite increased secretion with brief ischemia

and reduced I-R injury with exogenously applied peptide [29–31].

ANP and BNP appear to limit cell damage via cGMP/PKG

signals, NO and KATP channels, and modulation of SR Ca2+

handling [31,32]. Curiously, despite Nppa induction here we did

not detect changes in ANP protein (Figure 2). The basis for these

differing responses is unclear. Cardiac ANP is largely restricted to

secretory granules, secretion leading to membrane-receptor and

cGMP-dependent protection. It is possible SLP enhances both

ANP expression and subsequent secretion, since opioidergic

stimuli (including morphine and m and k-OR agonists) increase

cardiac ANP secretion [26–28], which can be temporally

dissociated from Nppa expression [26]. Potential protection via

SLP-dependent ANP/BNP expression is consistent with impaired

I-R tolerance in mice lacking the natriuretic peptide receptor

guanylyl cyclase-A [33]. Furthermore, cardioprotection with

prolonged oxytocin is associated with ANP expression [34], and

post-ischemic Nbbp correlates with I-R tolerance in a model of

epoxyeicosatrienoic acid mediated protection [35]. Nonetheless,

mechanistic involvement of the peptides in these and other

protective responses remains to be established.

Other induced transcripts. Up-regulated Csda encodes

cold-shock domain protein A (or OxyR), a redox-sensitive

transcriptional controller of anti-oxidants and cellular stress

responses [36]. Induction has not been reported in protected

states, yet may promote myocardial I-R tolerance. Up-regulated

Ptgds encodes prostaglandin D2 synthase, involved in synthesis of

prostaglandin D2. Induction prevents cardiovascular injury via

anti-inflammatory effects [37], protects against platelet aggrega-

tion, and limits growth of vascular smooth muscle cells [38], effects

that could contribute to I-R resistance in vivo. The function of

induced Mpv17 is poorly understood, though there is evidence this

inner mitochondrial membrane protein may regulate mtDNA

copy number and longevity [39]. Tfrc encodes the transferrin

receptor, which contributes to iron handling and could facilitate

iron-dependent oxidative stress. However, there is no strong link

between iron handling and cell damage in myocardial infarction.

Transcripts Repressed in SLP Hearts
The majority of SLP-sensitive transcripts were repressed (Table

S1). Predominant transcript repression has also been observed in

I-R resistant hearts from exercised animals [17]. Most repressed

transcripts were involved in inflammation/immunity, supporting

suppression of inflammation in I-R resistant tissue, again

consistent with anti-inflammatory transcriptional patterns with

Table 3. Functional gene networks modified during SLP induction in normoxic myocardium.

ID Top Functions Molecules In Network Score Focus

Molecules
1 Cellular Movement,

Hematological System
Development and Function,
Immune Cell Trafficking

C8,C/ebp,CCL4,CCL7,CCL9,CCL3L3,CD86,CHEMOKINE,CORO1A,CXCL2,CXCL3,CXCL6,EMR1,Ferritin,
HAMP,HLA-DR,Ifn,IFN alpha/beta,Ifn gamma,Ikk (family),IL-1R,IL12 (family),IRAK,MIP1,
NFkB (complex),NfkB-RelA,NFKBID,PF4,RSAD2,SELPLG,SLC40A1,TFRC,Tlr,TLR2,Tnf

32 18

2 Antigen Presentation,
Inflammatory Response,
Immunological Disease

ALT,C1q,C1QB,CD74,Cebp,CH25H,CLEC6A,CPT2,CTSC,CYP19,FCER1G,Gm-csf,GUCY,H2-a,HDL,
HLA-DQ,HLA-DQA1,HLA-DQB1,HLA-DRB1,IgG2a,IL23,IL1/IL6/TNF,LGALS4,LYVE1,MHC,MHC Class II
(complex),Mhc2 Alpha,NME3,PLIN4,PLK3,SAA,SAA1,Sphk,TLR2/3/4/9,TNF

31 17

3 Cardiovascular Disease,
Infectious Disease,
Inflammatory Disease

ACTG2 (includes EG:72),Adaptor protein 2,AKAP12,Alp,Angiotensin II receptor type 1,Calcineurin
A,CCL2,CCL13,Ck2,Collagen(s),CYR61,DAB2,EGR1,EGR3,Fibrinogen,Focal adhesion kinase,Ikb,IKK
(complex),IL1B,Integrin,Laminin,Lfa-1,Mmp,MYBPC3,N-cor,Pak,Pdgf,Pdgf Ab,PDGF
BB,PTGDS,SERPINA3,SOCS3,STAT,STAT5a/b,STC1

24 14

4 Cardiovascular System
Development and Function,
Tissue Morphology, Lipid
Metabolism

26s Proteasome,ANGPTL4,CENPE,CES1 (includes
EG:1066),CFD,cholesterol,
COMP,CRYAB,DES,DNAJB1,DNAJB4,DSG2,EPAS1,ERBB2,FBP2,GBP5,H6PD,HMGCS2,hydrogen
peroxide,INS1,LAPTM5,ME1,MPV17,MRC1L1,MYOM2,NNMT,
PDPN,PFKFB3,PLIN4,progesterone,SDPR,TACC2,TGFB1,TOM1L2,Ubiquitin

21 13

5 Hematological System
Development and Function,
Hematopoiesis, Lymphoid
Tissue Structure and
Development

AMPK,CD83,Cdc2,Cyclooxygenase,Elastase,Fcer1,GADD45G,Growth
hormone,Hsp27,Hsp70,IFI16,IFI27L2,IFITM1,IFN Beta,Ifnar,Ige,IL1,IL6,IL12 (complex),IRG,JAK,
Ldh,LDL,NfkB1-RelA,Nos,NPC1,P38 MAPK,RCAN1,SELE,SELP,Sod,SYK/ZAP,TLR2/TLR4,UCP3,VCAM1

19 12

6 Drug Metabolism, Lipid
Metabolism, Small Molecule
Biochemistry

ABRA,BCL2A1,BCR,C3,Calcineurin protein(s),Calpain,Caspase,Caspase 3/7,CD72,CFP,CSDA,Cyclin
A,DUSP1,Endothelin,Eotaxin,ERK1/2,GSTA3,HERPUD1,Iga,Igm,IL1A,Immunoglobulin,JINK1/2,MAP2K1/
2,NPPA,NPPB,p70 S6k,Pi3-kinase,PLA2,Pld,Pro-inflammatory Cytokine,Raf,Rar,Sapk,Tgf beta

19 12

7 Lipid Metabolism, Small
Molecule Biochemistry,
Embryonic Development

ACTB,ADCY,Akt,ANGPTL4,Ap1,CD3,Creb,Cyclin E,EGR2,ERK,Erm,Estrogen Receptor,F
Actin,FOS,FOSL2,FSH,hCG,HMOX1,Hsp90,Insulin,JUN/JUNB/JUND,Lh,Mapk,Mek,Nfat (family),NGF,p85
(pik3r),Pka,Pkc(s),PPP1R15A,RAB8B,Ras,Ras homolog,TCR,Vegf

10 8

8 Protein Degradation, Protein
Synthesis, Organ
Morphology

Actin,ADAMTS4,AOX1,CD74,CLPX,CNDP2,Collagen type I,CTRL,FAP,FCGR1C,GUK1,IFITM3,IgG,IgG1,
IGg-Rheumatoid factor,IMMP2L,Interferon alpha,Jnk,KRAS,leukotriene
D4,LGMN,MMP13,MMRN1,MYH7,PDK4,PEPD,peptidase,PEROXIDASE,PI3K,PREP,RNA polymerase
II,SERPINB7,SPCS3,SPPL2B,Tni

8 6

9 Cell Cycle, Gene Expression,
Cellular Growth and
Proliferation

AKAP12,ASF1B,BAZ2A,BRD2,CBR2,CD69,CHFR,DIO1,DOT1L,ELP2,ELP3 (includes
EG:55140),ERCC6,G6PD,Gcn5l,Hat,HIRA,Histone h3,Histone
h4,HPSE,HRAS,ING1,JMJD6,KIR3DL1,MCM4,MGMT,NOC2L,PELP1,SH2D3C,SLAMF9,SMN2,SOX5 (includes
EG:6660),THAP7,VRK1,ZBTB5,ZBTB7A

3 3

doi:10.1371/journal.pone.0072278.t003
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exercise [17]. Additionally, a number of stress-response genes were

repressed by SLP (Table S1).

Inflammation/immunity. Transcripts involved in inflam-

mation/immunity, including interleukins, chemokines/cytokines

and their receptors, and other immune modulators, were down-

regulated (Table S1). A number of these changes may be relevant

to I-R tolerance. Ccl2 (MCP-1) was one of the most repressed, and

is involved in monocyte invasion during I-R [40]. Inhibition of

MCP-1 thus protects the heart, reducing monocyte infiltration and

inflammation [41]. MCP-1 additionally mediates myocyte death

via ER stress [42]. Repression of MCP-1 and other pro-

inflammatory chemoattractants such as Cxcl3, Ccl9/MCP-5,

Ccl4/MIP-1ß, and Ccl7/MCP-3 may thus be relevant to I-R

tolerance, particularly in vivo. Indeed, Ccl7 exaggerates inflamma-

tory injury in heart [43]. The cytokine TNFa is a well-established

mediator of inflammation, cell death and I-R injury, and

repression of Tnf together with pro-inflammatory, pro-apoptotic

and cardiodepressant Il1ß and Il6, may also limit inflammation

and cell damage during I-R.

Endoplasmic Reticulum Stress-Response (ERSR)

transcripts. A significant number of repressed transcripts are

involved in or targeted by the ERSR. While generally beneficial,

the ERSR can also promote apoptosis during severe or sustained

insult, including myocardial I-R [44]. Known ERSR genes Dnajb1,

Socs3 and Herpud1 were repressed by SLP, together with putative

ERSR genes Il6, Gadd45g and Rcan1. As noted above, MCP-1 also

up-regulates myocyte ER stress genes, such as Dnajb1, promoting

ER-dependent apoptosis [42]. Repression of Dnajb1 and MCP-1

may thus counter death signaling. Reductions in Socs3, a feedback

inhibitor of JAK-Stat, can also limit infarction and remodeling

[45]. Repression of Il6 may further contribute since Il6 induction

by BNIP3 in hypoxia/ischemia may mediate infarction and

pathological remodeling.

Other repressed transcripts. Other down-regulated tran-

scripts are relevant to SLP protection. Pdk4, encoding pyruvate

dehydrogenase kinase 4 (PDK4), was the most repressed in SLP

hearts (Table S1). PDK4 phosphorylates and inactivates pyruvate

dehydrogenase, with repression favoring a substrate switch from

fatty acid to glucose metabolism, a shift known to protect against I-

R injury [46,47]. While there are no reported associations between

Pdk4 expression and cardioprotection, inhibition of PDK does

protect ischemic myocardium [48], supporting benefit via SLP-

dependent Pdk4 repression. Repression of Mmp13 may also

improve post-ischemic outcomes since MMP-13 is involved in

post-infarction fibrosis and detrimental ventricular remodeling.

SLP Modulation of Post-Ischemic Transcripts
While ,1/3 of transcripts modified by SLP in post-ischemic

tissue were similarly altered prior to ischemia, 46 were specific to

post-ischemic tissue (Table S2). These include up-regulated

transcripts for regulators of cardiac growth and function (xin

actin-binding repeat containing 1 and ankyrin repeat domain 1 -

repression of the latter linked to cardiac apoptosis), anti-oxidants

and cell-stress proteins (microsomal glutathione S-transferase 3,

glutathione S-transferase m1 and m2, clusterin), cell-signaling

elements (dual specificity phosphatase 6, connector enhancer of

kinase suppressor of Ras 1, GTP cyclohydrolase I feedback

Figure 3. The top 2 networks modified by SLP in normoxic myocardium (networks 1 and 2, both involved in immunity/
inflammation). Shown are the 2 most modified gene networks in SLP hearts. Network 1 is involved in hematological development and cellular
movement/immune cell trafficking; Network 2 in antigen presentation and immune/inflammatory function. Transcripts are color-coded according to
expression changes (green, up-regulated; red, down-regulated). Grey highlights molecules present in the dataset (FDR#5%) that did not meet the
$1.3-fold cut-off criteria. White indicates predicted molecules computationally incorporated into networks based on evidence within the IPA
knowledge base. Lines between molecules indicate direct molecular connections.
doi:10.1371/journal.pone.0072278.g003
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Figure 4. The top 2 cardiovascular-related networks modified by SLP in normoxic myocardium (networks 3 and 4). Shown are the 3rd
and 4th most modified gene networks in SLP hearts. Network 3 is involved in cardiovascular, inflammatory and immune diseases; Network 4 in
cardiovascular system development. Transcripts and interactions are coded as outlined in Figure 3.
doi:10.1371/journal.pone.0072278.g004

Table 4. The top functional gene groupings sensitive to SLP in post-ischemic myocardium.

Molecular and Cellular Functions P-Value Range No. of Genes

Cell-To-Cell Signaling and Interaction 7.10E-13 - 2.00E-03 33

Cellular Movement 3.75E-08 - 2.52E-03 26

Antigen Presentation 5.52E-08 - 2.37E-03 18

Cell Signaling 5.72E-08 - 2.50E-03 19

Small Molecule Biochemistry 5.72E-08 - 2.52E-03 29

Physiological System Development and Function P-Value Range No. of Genes

Hematological System Development and Function 2.80E-10 - 2.53E-03 31

Immune Cell Trafficking 5.80E-10 - 2.52E-03 26

Nervous System Development and Function 5.03E-08 - 5.88E-04 8

Endocrine System Development and Function 1.85E-07 - 2.52E-03 7

Tissue Development 5.43E-07 - 2.52E-03 31

Disease and Disorders P-Value Range No. of Genes

Inflammatory Response 4.70E-10 - 2.52E-03 31

Inflammatory Disease 1.13E-09 - 2.52E-03 31

Renal and Urological Disease 1.51E-09 - 1.77E-03 18

Immunological Disease 3.80E-09 - 2.52E-03 19

Cardiovascular Disease 6.63E-09 - 2.53E-03 22

Functional groupings of transcripts differentially modified by SLP in post-ischemic tissue (also shown are P-values, and numbers of involved genes). Groupings from IPA
analysis are categorized into molecular and cellular functions, physiological system development and function, and disease and disorders (complete functional gene
grouping data can be found in Table S4).
doi:10.1371/journal.pone.0072278.t004
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regulator), metabolic enzymes (glucokinase or hexokinase-4,

NADH dehydrogenase 1ß sub-complex 4), and tumor necrosis

factor receptor superfamily member 12A (TWEAK receptor,

involved in maladaptive remodeling and inflammatory disease).

Transcripts repressed in post-ischemic tissue included Txnip, which

inhibits thioredoxin and is an important determinant of myocar-

dial I-R damage not previously linked to cardioprotective stimuli.

Ucp2 was also repressed, which may protect against oxidative

stress. A number of these responses, together with common pre-

and post-ischemic responses outlined above (eg. induced Myh7,

Mybpc3, Nppa, Nppb; repressed Pdk4, Ccl2, Ccl4, Il1ß, Ccl7) could

well contribute to improvements in post-ischemic infarct develop-

ment with SLP.

SLP also repressed post-ischemic expression of a cluster of

stress-responsive transcripts, consistent with enhanced I-R toler-

ance (Figure 1). Post-ischemic expression of Hsph1, Hspa1a,

Serpinh1, Hspd1, and Hsp90aa1 was reduced in SLP hearts (Table
S2). As the cells molecular response to insult determines stress-

signaling activation (rather than the nature of the external insult

itself), reduced expression of such transcripts may well reflect a

more robust intracellular milieu and intrinsic resistance to I-R in

SLP hearts.

Conclusions

Consistent with a unique signaling profile [14], SLP does not

transcriptionally modify canonical pathways/mediators of cell

survival and cardioprotection, but regulates expression of genes

involved in inflammation/immunity, contractile/sarcomeric func-

tion, cardiac growth and development, and stress-signaling. The

novel SLP response offers distinct advantages as a candidate for

development of adjunctive cardioprotection (albeit currently

limited to pre-ischemic intervention), including preserved efficacy

in aged myocardium [13] where conventional stimuli may fail [4].

Though able to limit infarction up to 40% if implemented within a

60–90 min window from symptom onset [16], effects of reperfu-

sion therapy remain variable: in as many as half of patients, 50%

of at-risk myocardium may not be salvaged, while in a quarter up

to 75% infarction may still occur [49]. Unfortunately, optimal

timing of reperfusion is frequently unrealized, with reports of

delays of 4–5 hrs from symptom onset to reperfusion for US

patients [50,51], and in urban Australian hospitals [52]. These

data emphasize the need for adjunctive cardioprotection that may

be applied prior to, with or after reperfusion to improve outcomes,

broaden the window for reperfusion and limit progression to

failure. The present data, highlighting shifts in inflammation/

immunity and sarcomere structure/function with SLP, suggest

that modulation of inflammatory signaling and sarcomeric

integrity may be valuable in generating sustained I-R tolerance.

Future work is warranted in identifying the functional relevance of

these novel gene expression patterns in governing myocardial

resistance to injurious stimuli.

Materials and Methods

All studies were approved by and performed in accordance with

the guidelines of the Animal Ethics Committee of Griffith

University, which is accredited by the Queensland Government,

Department of Primary Industries and Fisheries under the

guidelines of ‘‘The Animal Care and Protection Act 2001, Section

757’’.

Animals and Experimental Design
Mature male C57Bl/6 mice aged 10–14 weeks (n = 8 for

functional studies; n = 6 for gene and protein expression analyses)

were briefly anesthetized with halothane, a small incision made at

the base of the neck, and placebo or 75-mg morphine pellets

Table 5. Functional gene networks modified by SLP in post-ischemic myocardium.

ID Top Functions Molecules In Network Score Focus

Molecules
1 Lipid Metabolism, Small

Molecule Biochemistry,
Cellular Function and
Maintenance

Alp,AMPK,CLU,Cyclooxygenase,Cytochrome c,DNAJB1,DUSP6,Fcer1,glutathione transferase,
Growth hormone,GST,GSTM1,GSTM2,Hsp27,Hsp70,HSP90AA1,HSPA1A,IGFBP5, IgG1,IgG2a,IL1,IL6,
JINK1/2,LDL,LGALS4,MGST3,NPC1,PLIN2,SAA,Serine Protease, SERPINA3,Sod,STAT,UCP2,UCP3

30 16

2 Antigen Presentation,
Inflammatory Response,
Immunological Disease

ANKRD1,CCL4,CCL7,CCL3L3,CD74,CHEMOKINE,CORO1A,Endothelin,Gm-csf,HLA-DQ,HLA-DQA1,
HLA-DQB1,HLA-DR,HLA-DRB1,IFN alpha/beta,IFN Beta,Ifn gamma,Ifnar,IFNB1,IL-1R,IL12 (complex),IL12
(family),Immunoglobulin,LY6C1,MHC,MHC Class II (complex),Mhc2 Alpha,NFkB (complex),NfkB-RelA,
NfkB1-RelA,Pro-inflammatory Cytokine,RSAD2,Tlr,TNFRSF12A,TXNIP

25 14

3 Hematological System
Development and Function,
Hematopoiesis, Organismal
Development

ANGPT1,ATP5S,C22ORF28,C5ORF13,CBR2,CCDC80,
dimethylglycine,EPO,EWSR1,FYCO1,HNF4A,HRAS,HSPH1,HTT,KNDC1 (includes
EG:85442),KRAS,LAPTM5,MYH7, NDUFB2,NDUFB4,NME3,
NRN1,PDK4,RAPH1,RASL11B,RTP3,SEC11C,SLC25A22,SLC44A2,SLFN12L,TLN1,TNF,TRIM15 (includes
EG:89870),ZBTB11,ZNF318 (includes EG:24149)

25 14

4 Nucleic Acid Metabolism,
Small Molecule Biochemistry,
Endocrine System
Development and Function

ABRA,Akt,C3,C4A,CCL2,CDH16,Collagen(s),Cyclin A,Cyclin E,EIF4EBP1,ERK,ERK1/2,Estrogen Receptor,
Focal adhesion kinase,HES1,HMOX1,HSPD1,Ige,Igm,IL1B,Insulin,MAP2K1/2, NGF,NPPA,NPPB,
p70 S6k,p85 (pik3r),Pdgf,PDGF BB,Pi3-kinase,PI3K,Pld,PTGDS,Ras,STAT5a/b

22 13

5 Cell-To-Cell Signaling and
Interaction, Cellular
Movement, Immune Cell
Trafficking

ABAT,ACPP,ANKS1A,ARC,C11ORF82,CHAC1,CRK,CXCL6,CXCL10,ERBB2,GBP1 (includes
EG:14468),GCHFR,H6PD,HNRNPK,hydrogen peroxide,IFI30,IFI47,IFIT5,IFITM2,IFITM3,IFNG,
IL4I1,IRF6,IRGM2,LAMP1,MIRN324,MPV17,MRC1L1,MYBPC3,PRDX2,RBMX,SERPINH1,
SLCO2B1,SP110,ZFX

16 10

6 Carbohydrate Metabolism, Cell
Morphology, Cellular Assembly
and Organization

ANGPTL4,Ap1,B2M,Ck2,CNKSR1,EHD4,Fibrinogen,FSH,GCK,hCG,Histone h3,Histone h4, HSPG2
(includes EG:3339),IgG,Ikb,Interferon alpha,Jnk,KLRA17,Lh,LYVE1,Mapk,MHC Class I
(complex),Mmp,MMP13,Nfat (family),P38 MAPK,Pkc(s),Ras homolog,RGS5,RNA polymerase
II,Rxr,SERPINB7,Tgf beta,Tnf,Vegf

11 8

doi:10.1371/journal.pone.0072278.t005
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(National Institute of Drug Abuse, Bethesda, MD) were inserted

into the dorsal subcutaneous space before closure with 9-mm

wound clips, as outlined previously [12,15]. Pellets were left in

place for 5 days before analysis of cardiac I-R tolerance ex vivo and

analysis of cardiac gene expression.

Ex Vivo Myocardial I-R
Mice were anesthetized with sodium pentobarbital (60 mg/kg)

and hearts excised and perfused in a Langendorff mode as

described previously [15]. After 30 min stabilization control

(placebo) and SLP hearts were subjected to either 25 min of

global normothermic ischemia and 45 min of aerobic reperfusion,

or time-matched normoxic perfusion. Protection afforded by SLP

was evaluated by assessing post-ischemic recoveries of left

ventricular end-diastolic pressure and developed pressures, with

total washout of myocardial LDH throughout the reperfusion

period employed as an indicator of cellular disruption/oncosis

(LDH content assayed enzymatically as outlined previously [15]).

On completion of experiments hearts were stored in cold RNAlater

solution to protect RNA integrity and expression levels prior to

ventricular dissection and RNA extraction.

RNA Isolation and Microarray Analysis
Microarray analysis was performed in a manner similar to that

outlined previously [17]. Atrial and vascular tissue was removed

and left ventricular myocardium dissected from each heart,

homogenized in TRIzolH reagent (Invitrogen, Carlsbad, CA,

USA), and total RNA isolated according to manufacturer’s

guidelines. Total RNA was further purified using RNeasy spin

columns (Qiagen, Maryland, USA). The RNA yield and integrity

were determined using a NanoDrop ND-1000 (NanoDrop

Technologies, Wilmington, DE, USA) and a 2100 Bioanalyzer

(Agilent Technologies, Forest Hills VIC, Australia), respectively.

RNA integrity (RIN) scores were $8.0 in each sample.

Microarray experiments were performed at the IMB Micro-

array Facility (University of Queensland) according to standard

protocols. In brief, 0.5 mg of total RNA was used to synthesize

biotinylated amplified RNA (aRNA) using an Illumina TotalPrep

RNA amplification kit (Illumina Inc., La Jolla, CA, USA). Samples

of aRNA (1.5 mg) were fragmented and hybridized (n = 6 per

group) to MouseWG-6 v1.1 BeadChips (Illumina Inc., La Jolla,

CA, USA). Following hybridization, microarrays were washed and

stained with streptavidin-Cy3 prior to scanning on an Illumina

BeadStation Scanner. Data values with detection scores were

compiled using BeadStudio v2.3.41 (Illumina Inc., La Jolla, CA,

USA). The data discussed here were deposited into NCBI’s Gene

Expression Omnibus (GEO). Data are accessible through GEO

Series accession number GSE39407 at http://www.ncbi.nlm.nih.

gov/geo/.

Array Data Analysis
Microarray expression data were variance stabilized and robust

spline normalized using the ‘lumi’ package in R/BioConductor

(http://www.r-project.org/) [53]. Data were filtered to include

only transcripts with detection scores $0.99 on $2 arrays before

statistical analysis via TIGR MeV 4.0 software (13,335 bead types

passed these criteria). The Significant Analysis of Microarrays

(SAM) algorithm was used to correct for multiple comparisons and

non-parametrically identify differentially expressed genes [54].

After multiclass SAM analysis, transcripts with fold-changes of

$1.3 and a false discovery rate (FDR) of #5% were classed as

significantly differentially expressed. These genes were functionally

annotated via Ingenuity Pathway Analysis (IPA) (v8.7; IngenuityH
Systems, Redwood City, CA, USA) to link SLP-sensitive genes in

signal networks based on known molecule interactions and

canonical pathways. IPA was also used to identify the top

biological and molecular themes on the basis of over-representa-

tion analysis. Briefly, the fraction of altered genes within a

canonical path was compared to the fraction of total genes within

that path. Probability of involvement of the respective number of

modified transcripts in the path/network is expressed as a P-value

(with values ,0.05 considered significant).

RT-qPCR Confirmation of Microarray Data
Two-step RT-qPCR, utilizing SYBR Green I, was employed to

confirm differential gene expression of the following 12 transcripts:

Ankrd1, Ccl7, Fos, Hamp, Il6, Myh7, Nppa, Pdk4, Tlr2, Txnip, Vcam1

and Xirp1 (primer details provided in Table S5). Six additional

genes (Actb, Top1, Pgk1, Gapdh, 18S rRNA and Atp5b) were assessed

using GeNorm to determine their usability as reference genes [55].

Following GeNorm assessment, Pgk1 was found to be the most

stable (M = 0.04) and therefore served as the endogenous reference

control for all mRNAs assessed via RT-qPCR. Briefly, 1 mg total

RNA was used to synthesize cDNA using the Superscript III First-

Strand Synthesis System (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s protocol. RT-qPCR was

Figure 5. Validation of microarray assay data by RT-qPCR.
Shown are expression changes determined via RT-qPCR and microarray
analysis for: A) SLP vs placebo responses in normoxic myocardium; and
B) SLP vs. placebo responses in post-ischemic myocardium. Data are
expressed as means 6 S.E.M. (n = 6 per group). Linear regression
analysis of these data yielded a significant and strongly positive
correlation (r2 = 0.95): RT-qPCR expression = (1.3516microarray expres-
sion) - 0.047 (the slope factor .1 indicative of a predictably greater
dynamic range for RT-qPCR analysis).
doi:10.1371/journal.pone.0072278.g005
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performed in a CFX96 Real-Time PCR Detection System (Bio-

Rad, Hercules, CA). The final reaction volume (10 mL) included

5 mL iQ SYBR-Green Supermix (Bio-Rad, Hercules, CA),

100 nM of each primer, and 4 mL of a 1:20 dilution of cDNA.

Optimal qPCR cycling conditions entailed an initial denaturation

at 95uC for 3 min followed by 40 cycles of 95uC for 15 sec/62uC
for 60 sec. After the final PCR cycle, reactions underwent melt

curve analysis to detect non-specific amplicons. All reactions were

performed in triplicate with each plate containing an equal

number of samples from each group, a calibrator control derived

from a pool of all cDNA samples, and a no-template control. PCR

amplification efficiencies (90–110%) for each primer pair were

calculated using a 5-log serial dilution of calibrator sample. PCR

data were analyzed using CFX Manager v1.6 (Bio-Rad, Hercules,

CA). Baseline subtractions and threshold settings above back-

ground were applied to all data. The calibrator sample was used to

normalize inter-assay variations, with the threshold coefficient of

variance for intra- and inter-assay replicates ,1% and ,5%,

respectively. Normalized expression (DDCq) was calculated, with

mRNAs normalized to Pgk1 levels and the calibrator control then

log2-transformed.

Myocardial Protein Expression
To assess the impact of transcriptional changes on protein

expression immunoblot analysis was employed as outlined

previously [14,15] to assess myocardial expression of MYH7 and

ANP, both transcriptionally induced with SLP and implicated in

modulation of cardiac phenotype under other conditions. Briefly, a

sub-set of placebo and SLP hearts (n = 6 per group) were removed

from the chest, frozen in liquid N2, and homogenized using a glass

dounce in lysis buffer containing protease and phosphatase

inhibitors. Samples containing 30 mg of protein from either

cytosolic or detergent-soluble membrane fractions were loaded

onto 10% acrylamide gels (equal loading confirmed by Ponceau

staining) and electrophoresed at 150 V for 1.5 hrs. Protein was

transferred to polyvinylidene difluoride membranes and blocked in

5% skim milk powder in Tris-buffered saline with Tween 20

(TBST) for 60 min. Membranes were then incubated with

primary antibody (MYH7 or ANP; 1:1000 dilution, Cell Signaling

Technology Inc., Danvers, MA, USA) overnight at 4uC. Following

3 washes in TBST, membranes were incubated with secondary

antibody and visualized on a ChemiDoc XRS system (Bio-Rad,

Hercules, CA, USA). Protein expression was normalized to values

for placebo hearts for the purposes of comparison.

Statistical Analyses
Unless stated otherwise, physiological and gene expression data

are expressed as means 6 SEM. Statistical approaches to

microarray interrogation are detailed above. Other data were

analyzed using SPSS 18.0 for Windows (SPSS Inc., Chicago, IL).

Comparisons between groups were made via an analysis of

variance (ANOVA), with Tukeys post-hoc test applied where

differences were detected. Significance was accepted for P,0.05.
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