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Simple Summary: The Facciuta goat originated from Valnerina, a geographic area in central Italy,
including the adjacent parts of four regions: Umbria, Marche, Lazio, and Abruzzo. The aim of this
study was to assess how useful microsatellite molecular markers are for the genetic discrimination
of the local goat, Facciuta della Valnerina, compared with the two cosmopolitan breeds, Saanen
and Camosciata delle Alpi, reared in the same geographic area. The results revealed a very clear
separation between the local population (Facciuta della Valnerina) and the two reference goat breeds
(Saanen and Camosciata delle Alpi). Furthermore, reducing the number of markers from 16 to 12
still allowed us to distinguish the local population, indicating that microsatellite markers are an
inexpensive method to discriminate local livestock breeds. This could be a fast and inexpensive
genomic tool to trace goat products and distinguish their origin.

Abstract: Italy holds important genetic resources of small ruminant breeds. By distinguishing goat
breeds at the DNA level, certification of products from specific breeds can be valorized. The aim of
this study was to establish the genetic identity of Facciuta della Valnerina, a local goat population
of Italy, compared with the cosmopolitan breeds, Saanen and Camosciata delle Alpi, reared in the
same geographic area. A total of 116 microsatellite alleles ranging from 4 to 13 were detected at
16 loci in the three goat populations/breeds. A total of 23 private alleles with frequencies lower
than 0.3 were detected in the Facciuta della Valnerina population. The mean numbers of alleles
were 6.67, 4.58, and 4.92 in Facciuta della Valnerina, Camosciata delle Alpi, and Saanen, respectively.
The expected heterozygosity ranged from 0.20 to 0.86. Most loci were highly polymorphic and
informative (polymorphic information content≥0.50). Factorial correspondence analysis and principal
components analysis revealed very clear separation between Facciuta della Valnerina and the two
reference goat breeds. Reducing the number of markers from 16 to 12 (on the basis of polymorphic
information content and the number of alleles) still allowed us to distinguish the local population,
indicating that microsatellite markers are capable of discriminating local livestock breeds at a low cost.

Keywords: animal biodiversity; Capra hircus; genetic distinctiveness; microsatellite markers, molecular
traceability; SSR
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1. Introduction

Goat (Capra hircus) is one of the most widespread livestock species in the world, comprising
about 218 million goat heads in 2017. Asia has the largest proportion of the world population (52%),
followed by Africa (39%), Europe (5%), the Americas (4%), and Oceania (<1%) [1]. Compared to
other species (i.e., cattle), goats show a higher adaptability to different climatic and environmental
conditions, a milder character, and a better ability to use forages [2]. Goats provide valuable milk
and meat products [3], and goat meat prices are lower compared to other ruminant species. In terms
of nutritional value, goat meat is appreciated for low fat (both in terms of intramuscular fat and fat
deposits) and high protein content [4]. Moreover, it is characterized by a marked and unique flavor,
which makes goat meat suitable for a variety of gastronomic preparations [5].

The preservation of local breeds is necessary to limit the loss of genetic resources, in particular
for the species that are more important for food production, rural development, and environmental
protection [3]. Among the actions aimed at preserving biodiversity, promotion, and valorization of
local breeds, food products can be particularly effective [6]. The association between product and
breed might be a way to satisfy consumer demand for specialty products, which, in turn, may improve
the economic sustainability of local breeds [7]. Italy has a large variety of local breeds and typical
products derived from them. Many of these typical products have obtained EU Protected Designation
of Origin (DOP) or Protected Geographical Indication (IGP) labels, and many others are recognized by
trademarks [3] to preserve their uniqueness.

Following the EU regulation 1825/2000, a mandatory labeling system for beef, sheep, and goat
products was implemented to protect public health and to guarantee food safety [8]. Accordingly,
each cut of meat must show a label carrying an alphanumeric identification called a "batch number"
that identifies an animal, or a group of animals, and the country where the animal was born, reared,
slaughtered, and sectioned. However, as pointed out by several authors, this system does not fully
prevent frauds and errors along the production chain [9,10]. Animal identification using DNA-based
techniques could address this problem, since DNA is unalterable throughout animal life and is present
in derived products [11,12]. DNA-based identification could be extremely useful for traceability.
However, the cost of using DNA analysis is one of its major limitations, and research has been carried
out to develop fast and low-cost tests by using a low number of DNA markers [13–17]. Microsatellite
markers or simple tandem repeats (STR), available for all livestock species, are commonly used for many
applications such as parentage analysis and breed assignment [18]. These molecular markers are highly
polymorphic, codominant, easily scored, and therefore very suitable to study small populations [19,20].

The aims of the present study were to establish the genetic differences and to indicate which alleles
and which loci best describe the differences between the local population “Facciuta della Valnerina”
(FAC) goat and two cosmopolitan breeds, Saanen (SAA) and Camosciata delle Alpi (CAM), that are
widespread in the same geographic area, with the ultimate aim of valorizing the local population and
exploiting its products.

2. Materials and Methods

2.1. Animal Sampling

A total of 24 blood samples of FAC were collected from three randomly taken animals (both sexes)
per each of eight different flocks, all reared in Valnerina and Perugia, Italy. The approximate estimate
of the current census of this population is around 200 heads, distributed in the areas mentioned and
reared together with other goat breeds. Photos and supplementary information about the population
studied are furnished in Table S1. The Vacutainer system was employed, using tubes containing an
EDTA solution as an anticoagulant. The samples were transported at room temperature to the lab and
then stored at −20 ◦C until analyses were performed. The analyzed animals can be considered as a
representative sample of the population of FAC goats, since they were chosen trying to avoid closely
related individuals in different farms that never exchanged bucks. In addition, DNA samples of 10
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SAA and 10 CAM individuals (provided by the Italian Goat Consortium; http://www.goatit.eu/) were
included as out-groups representative of cosmopolitan breeds reared in Italy. No ethical approval
was required, in compliance with the European Directive 2010/63/UE and the Italian Regulation D.
Lgs n. 26/2014, because samples were taken during obligatory routine animal sanitary controls by an
authorized veterinarian.

2.2. Molecular Analyses

The GenElute Blood Genomic DNA kit (Sigma Aldrich, St. Louis, MO, USA) was used to extract
the genomic DNA. Sixteen microsatellite loci (Table 1) were selected according to the recommendations
of FAO and the International Society for Animal Genetics (ISAG) for genotyping and parentage
analyses in goat breeds [21]. The markers were selected based on their degree of polymorphism
and their position in the goat genome. STR markers were grouped in multiplex PCR according to
reaction conditions and expected fragment sizes as reported by [22]. PCR products were separated
by electrophoresis, with an automatic sequencer (ABI PRISM 3130xl, Applied Biosystems, Foster
City, CA) according to the manufacturer’s recommendations. Allele sizes were estimated by using
the internal size standard GeneScan-400 HD ROX (Applied Biosystems, Foster City, CA). Genotypes
were visualized and interpreted with GeneMapper software, version 5.0 (Applied Biosystems, Foster
City, CA).

2.3. Statistical Analysis

Allele frequencies, mean number of alleles, polymorphic information content (PIC) for each
STR locus, and the observed and expected heterozygosity in the three populations/breeds were
calculated using the Microsatellite Toolkit software [23]. The HP-RARE version 1.0 software was
used to calculate average allelic richness for each population/breed (Rt), allowing comparisons among
different sample sizes [24]. A test for departure from the Hardy–Weinberg equilibrium (HWE) was
performed using a Markov chain Monte Carlo method (20 batches, 5000 iterations per batch, and a
dememorization number of 10,000) implemented in the GENEPOP version 4.0 software [25]. The
levels of significance were adjusted using the false discovery rate (FDR) procedure [26]. Population
subdivision was investigated by calculating the global multilocus FST value. The pairwise FST index
between populations [27] was estimated using the Arlequin 3.5 software [28], and their associated 95%
confidence intervals (IC95%) were calculated using the GDA software [29]. Factorial correspondence
analysis (FCA) [30], carried out with GENETIX 4.05, was used to further investigate the differentiation
of the breeds. To investigate the distinctiveness of each breed when adopting an approach without
assumptions about HWE or linkage disequilibrium, discriminant analysis of principal components
(DAPC) was carried out with the method implemented in the ADEGENET software package [31] within
the statistical package R version 3.6.2 [32]. A multivariate DAPC analysis performs a preliminary data
transformation step using principal component analysis (PCA) to create uncorrelated variables that
summarize total variability (e.g., within and between groups). These variables are then used as input
to discriminant analysis (DA), which aims to maximize between-group variability and achieve the
best discrimination of individuals into predefined clusters. DAPC was conducted without a posteriori
group assignments by inferring the most likely number of genetic clusters (K) using the find.clusters
function of ADEGENET. This function utilizes K-means clustering to calculate a Bayesian information
criterion (BIC) value for each potential value of K (the most likely K has the lowest BIC value) and
delineates individual group assignments for DAPC.

3. Results and Discussion

3.1. Genetic Variation

The number of observed alleles (Na), together with the expected heterozygosity (HE) and observed
heterozygosity (HO), PIC values, and Hardy–Weinberg equilibrium test for each locus are presented in

http://www.goatit.eu/
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Table 1. A total of 116 alleles were found for the sixteen microsatellites analyzed, ranging from 4 (ETH10
and MAF209) to 13 (HSC) alleles per locus. The mean number of alleles per locus over all breeds
was 7.25. The expected heterozygosity varied from 0.86 at HSC to 0.20 at MAF209, and the average
across all loci was 0.65, indicating a moderate genetic diversity across the three goat breeds. The mean
PIC ranged from 0.18 to 0.80, with a mean value of 0.60. Due to its low PIC value, also observed
in other Italian and foreign breeds [33–36], the MAF209 marker was excluded for further statistical
analysis. The remaining 15 loci had PIC ≥ 0.50 and therefore were highly informative. Since significant
deviation from the Hardy–Weinberg equilibrium was detected for the loci OarFCB11, CRSM60, and
ILST19, they were excluded from further statistical analysis. The mean number of alleles per locus
ranged from 4.58 for CAM to 6.67 for FAC (Table 2). After adopting the rarefaction methodology [24],
the mean allelic richness ranged from 4.36 (CAM) to 5.17 (FAC) in a sample size of eight individuals.
Lower allelic diversity was found in many local goat breeds [37–40], but higher MNA values were
reported in both Italian [41–43] and foreign [20,44] breeds. FAC had higher observed heterozygosity
compared to the cosmopolitan breeds, with HO of 0.68. Although lower than HE (0.74), this value of
HO is similar to that reported for other Italian or foreign breeds [40,41,44]. Higher HE values were
reported in other cases [20,37,38]. The presence of private alleles (i.e., alleles present in one breed
and absent in the others) were observed in all three populations/breeds, but were about 5-fold more
abundant in FAC (25 in FAC, 4 in CAM and 5 in SAA). Considering the allele distribution within the
three breeds, it is possible to note the presence, both in CAM and SAA, of four alleles that are missing
in FAC (Table 3); these differences can be used to trace monobreed products. The frequencies of the
25 private alleles of FAC ranged from 0.0217 to 0.7708. A similar number of private alleles (21) were
reported in Sukuma goats [40], while lower numbers were reported in some Italian goat breeds such as
Alpine and Girgentana [41,43]. Again, this number is affected by the factors mentioned above.

Table 1. Characteristics of the SSR markers used for this study, relative to all 44 heads: chromosome
position (Chr), size range (S.R.), number of alleles (Na), expected heterozygosity (HE) and observed
heterozygosity (HO), mean polymorphic information content (PIC), number of breeds deviating from
the Hardy–Weinberg equilibrium (HWE Breed). The markers excluded from further analysis on the
bases of PIC values and/or deviation from HWE are shown in grey.

Locus Chr. S.R. (bp) Na HE HO PIC HWE
Breed †

INRA005 10 176–190 5 0.59 0.54 0.51 0
BM8125 17 110–130 9 0.71 0.63 0.63 1

CSRD247 14 220–247 8 0.65 0.57 0.59 1
HAUT27 26 128–158 7 0.77 0.82 0.71 0
TGLA122 21 137–181 8 0.75 0.78 0.68 0

HSC 20 267–301 13 0.86 0.78 0.80 0
MCM527 5 165–187 7 0.65 0.72 0.60 0
SRCRSP8 Not reported 215–255 9 0.52 0.56 0.50 0
BM1329 6 155–200 6 0.66 0.50 0.58 1

OarFCB11 2 122–140 7 0.75 0.71 0.70 2
MAF209 17 100–104 4 0.20 0.19 0.18 2
MAF65 15 116–158 10 0.75 0.52 0.68 1

CRSM60 Not reported 75–91 6 0.72 0.43 0.66 3
ETH10 5 212–224 4 0.46 0.44 0.50 0

ILSTS019 Not reported 142–162 6 0.78 0.78 0.72 2
SRCRSP5 21 156–178 7 0.64 0.76 0.57 0

Total (±SD) 116 ± 2.29 0.65 ± 0.16 0.61 ± 0.17 0.60 ± 0.15

†: After Benjamini and Hochberg (1995) correction.

3.2. Genetic Differentiation

Pairwise genetic differentiation indexes (FST) were found significant (p < 0.001) for all the breeds
(Table 4). In this study, the lowest (0.0729, IC95% 0.042–0.141) and the highest (0.0928, IC95% 0.060–0.109)
pairwise FST values were detected between SAA and CAM and between FAC and SAA, respectively,
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with a mean of 0.084 (IC95% 0.061–0.113). Additionally, the FST value between FAC and CAM was
high (0.0897, IC95% 0.038–0.131), indicating a clear-cut genetic differentiation between FAC and the
cosmopolitan breeds. A previous study [21] reported similar mean FST value (0.085) in Small East
African goats, while a lower mean FST value (0.07) was reported in eight Italian goat breeds [42]. The
results of correspondence analysis further highlighted the genetic differentiation between the breeds
(Figure 1) and sharply distinguished FAC individuals from those of the other breeds. A clear-cut
differentiation between local goat breeds was shown by FCA analyses in other studies [20,42]. In the
DAPC analysis, 25 principal components were retained as input for discriminant analysis, accounting
for 84.5% of the total genetic variability. The Bayesian information criterion (BIC) statistic generated by
discriminant analysis of principal components (DAPC) indicates that the optimal number of clusters in
the data set is K = 2 (Figure 2A). On the scatterplot of the first two components of the DA (Figure 2B),
FAC appeared distinct from both SAA and CAM. Hence, these results reinforce the evidence from the
pairwise FST values and the factorial correspondence analysis, as observed in other studies [45,46].

Table 2. Sample size of each population/breed (N), mean number of alleles (MNA), allelic richness
per population/breed (Rt), number of private alleles (PA), and mean observed (HO) and expected
heterozygosity (HE).

Population/Breed N MNA ± SD Rt (1) PA HO ± SD HE ± SD

FAC 24 6.67 ± 2.10 5.17 25 0.68 ± 0.03 0.74 ± 0.03
CAM 10 4.58 ± 1.62 4.36 4 0.59 ± 0.05 0.63 ± 0.06
SAA 10 4.92 ± 1.38 4.56 5 0.64 ± 0.04 0.64 ± 0.04

(1) Based on eight individuals. FAC, Facciuta della Valnerina; CAM, Camosciata delle Alpi; SAA, Saanen.

Table 3. Private alleles (frequencies in brackets) found in the three goat populations/breeds. Alleles in
bold are present in CAM and SAA and absent in FAC.

Locus
Population/Breed

FAC CAM SAA

INRA5 113 (0.1000)

BM8125
109 (0.0217) 123 (0.0500) 119 (0.0500)
121 (0.0217)
127 (0.0217)

CSRD247
216 (0.1304) 228 (0.3125) 228 (0.1111)
232 (0.2174) 234 (0.1875) 242 (0.1250)

HAUT27 145 (0.0500) 145 (0.1000)
TGLA122 147 (0.0455) 133 (0.1000)

HSC

268 (0.0217) 266 (0.0500)
276 (0.0435) 270 (0.0500) 270 (0.2000)
278 (0.0435)
296 (0.0217)

MCM527 160 (0.1304)

SRCRSP8
218 (0.0217) 224 (0.0500)
230 (0.0217) 242 (0.1000)
238 (0.0435)

BM1329
174 (0.1087)
180 (0.0870)

MAF65

117 (0.0870)
119 (0.0435)
125 (0.1957)
127 (0.0435)
129 (0.2391)

MAF209
105 (0.7708) 101 (0.0500) 101 (0.0500)
107 (0.1042)

SRCRSP5
161 (0.1250)
179 (0.0313)

FAC, Facciuta della Valnerina; CAM, Camosciata delle Alpi; SAA, Saanen.
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Table 4. Pairwise and global FST distance (with confidence intervals at 95%—IC95%) between the three
goat populations/breeds studied with 12 markers.

Population/breed N FAC CAM SAA

FAC 24 0.0000
CAM 10 0.0897 (0.038–0.131) 0.0000
SAA 10 0.0928 (0.060–0.109) 0.0729 (0.042–0.141) 0.0000

Global FST = 0.084 (0.061–0.113)

FAC, Facciuta della Valnerina; CAM, Camosciata delle Alpi; SAA, Saanen; N, sample size of each population/breed.
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Figure 2. Results of discriminant analysis of principal components (DAPC). (A) Bayesian information
criterion (BIC) values plotted for the number of clusters ranging from K = 1 to 10. (B) Scatterplot of the
first two principal components of DAPC using populations as an a posteriori cluster. The individuals
are assigned to populations a posteriori, that is, after automated determination of the number of
clusters, instead of forcing them into known populations. Populations are labeled inside their 95%
inertia ellipses, and dots represent individuals. The inset above indicates the eigenvalues of the first
two principal components. The inset below represents the total variance explained by the principal
components. FAC, Facciuta della Valnerina; CAM, Camosciata delle Alpi; SAA, Saanen.

4. Conclusions

The present study represents a first attempt to show the genetic distinctiveness of the local goat
population of Facciuta della Valnerina in comparison to two cosmopolitan goat breeds (Saanen and
Camosciata delle Alpi) using as little as 12 microsatellite markers. Four private alleles were detected
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for this local population, which can be used to trace monobreed products. Although the scope of
this work was limited in terms of the number of populations/breeds and sample size, the results are
sufficiently clear-cut to propose that these markers could be used for product traceability and market
protection of products derived from Facciuta della Valnerina. The same methodology could be applied
to other local goat breeds, with the objective of providing a molecular tool that could help to protect
and valorize local genetic diversity in goats.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/4/601/s1
Table S1: Description of the “Facciuta della Valnerina” population.
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