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Abstract: Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe
morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs
their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and
the few therapies that are available do not dramatically delay disease progression. Thus, there is a
need to better understand the mechanisms underlying DMD which may ultimately lead to improved
treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD
disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized
metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics
we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice.
Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally,
metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show
can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations
in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated
metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.
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1. Introduction

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by mutations
in the gene responsible for dystrophin production. Dystrophin is expressed primarily in muscle;
however, several isotypes are also known to be moderately expressed in subsets of cells in the brain [1].
Patients with DMD typically experience progressive loss of skeletal muscle; leaving them symptomatic
by age 5, wheelchair bound by age 12, and often deceased within the second decade of life [2].
Approximately 1 out of 7250 males age 5 to 24 years in the United States [3] are affected by DMD,
as well as the milder dystrophinopathy, Becker muscular dystrophy. There is currently no cure or
effective treatment for this genetic disorder despite decades of research using animal models with
analogous pathology [4].

Since its generation in 1984 [5], the X-linked muscular dystrophy (MDX) mouse has become
widely established as a valuable tool for understanding DMD. Similar to patients with muscular
dystrophy, MDX mice are dystrophin deficient and display signs of cardiomyopathy and muscle
fibrosis [6,7]. In contrast to the human disorder, MDX mice only exhibit slightly reduced lifespans
when compared to wildtype (WT) mice [7] and the mice also retain skeletal muscle functionality
throughout life. This discrepancy (or milder disease phenotype) is thought to be due to compensation
by the related structural protein utrophin in mice [8,9].
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There are few comprehensive metabolic studies of muscular dystrophy using mouse models [10]
and even fewer focusing on metabolic alterations in individual cell types, such as muscle satellite cells
(SCs), previously implicated in the disease [11,12]. Some studies of samples from patients and MDX
mice describe subsets of metabolic alterations in skeletal [13–16] and cardiac muscle [17], brain [18],
and serum [19]. However, the extent of these metabolic deficiencies within skeletal muscle and in
surrounding tissues is unclear.

Of note, little is known about metabolic alterations in dystrophic tissue progenitor cell populations,
which is a key knowledge gap considering the importance of tissue progenitor cells to the lifelong
maintenance of many adult organ systems. In this study we examined metabolic changes in two
different tissue-specific adult stem cell compartments: skeletal muscle SCs and primary adipocyte
precursors. We used nontargeted metabolomics to assess global metabolite abundance and composition
in MDX cells compared to WT controls. Consistent with previously published studies, we found
widespread dysregulation of many metabolic pathways in MDX serum and skeletal muscle progenitor
cells. Interestingly, we observed cell autonomous defects in dystrophic adipose progenitor cell (APC)
function. Metabolomic analyses of APCs revealed aberrant accumulation of fatty acid metabolism
intermediates, which we show can negatively impact primary cell growth. Together, this study
highlights the extent to which dystrophic skeletal muscle alters the systemic metabolic milieu, and
underscores the importance of metabolic imbalances in the maintenance and function of adult tissue
progenitor cells.

2. Results

2.1. Satellite Cells (SC) Isolated from Dystrophic Mice Exhibit Metabolite Imbalances

Accumulating evidence suggests that defects in muscle SCs contribute to the dystrophic state
by limiting skeletal muscle repair and regeneration [20,21]. While many studies have examined
dystrophic SC signal transduction and gene expression [22,23], opportunities to explore dystrophic
SC metabolism remain. We isolated primary SCs from the hind limb muscles of WT control and
dystrophic (MDX) mice using an antibody/magnetic bead-based approach that enriches for integrin
α-7-positive cells (SCs) (Figure S1). We then performed nontargeted metabolomic analyses using a
liquid chromatography–mass spectrometry (LC–MS) based approach (see Methods for experimental
details). On the basis of intracellular metabolite differences, principal component analyses (PCA)
showed clear separation of WT SCs from dystrophic SCs (Figure 1A). The first and second PCA
components explained 29.1% and 18.3% of variations, respectively. Hierarchical clustering (method:
complete linkage; distance measurement: Euclidean) corroborated the PCA and showed robust
separation of MDX SCs from WT SCs (Figure 1B). Statistical analyses (t-test) revealed 755 significant
differentially abundant features (metabolites) from 11,151 total features (6.7%) (Figure 1C).

Among the top differential metabolites with annotations in the Human Metabolome Database
(HMBD) were fatty acid derivatives, including several long-chain carnitine species (elaidic carnitine,
linoleyl carnitine, palmitoyl-L-carnitine, and stearoyl-L-carnitine), and amino acid compounds
(Table S1). MetaboAnalyst-guided pathway enrichment analysis revealed alterations in multiple
metabolic pathways including linoleic acid metabolism, glycerophospholipid metabolism, taurine
metabolism, branched-chain amino acid biosynthesis, and nicotinamide metabolism (Figure 1D).
Together, these data support previous observations that dystrophic SCs exhibit functional metabolic
deficiencies [24], particularly with respect to beta oxidation and mitochondria function.
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Figure 1. Metabolomic analysis of muscle satellite cells. (A) A principal component analysis (PCA)
plot derived from nontargeted metabolite profiling of muscle satellite cells isolated from four WT
control and four MDX mice. (B) A dendrogram depicting hierarchical clustering results of samples
from (A). Clustering method: complete linkage. Distance measurement: Euclidean. (C) A volcano
plot depicting differentially abundant metabolites (DAMs) between WT and MDX satellite cells
(SCs). Horizontal and vertical dashed lines represent a threshold of p-value 0.05 and fold change 1.5,
respectively. Seven-hundred-and-fifty-five features were identified to be significant from 11,151 features.
(D) Pathway analysis of SC DAMs. Italics: pathways with multiple metabolites implicated. Red:
metabolic pathways identified in both serum and muscle satellite cell analyses.

2.2. Dystrophic Mice Have Serum Metabolite Alterations

Prior studies examining serum metabolites from dystrophic mouse models and patients have
largely consisted of targeted studies of relatively small metabolite panels. We sought to perform
a controlled and unbiased assessment of the dystrophic serum metabolome using nontargeted
metabolomics. PCA of WT control versus MDX mouse serum samples revealed clear separation
between the two groups (Figure 2A). The first and second PCA components explained 29.4% and 18.2%
of variations, respectively. Hierarchical clustering (method: complete linkage; distance measurement:
Euclidean) similarly separated MDX mouse serum compared to control serum (Figure 2B). Statistical
analyses (t-test) revealed 1125 significant differentially abundant features (metabolites) from 9562 total
features (11.8%) (Figure 2C).
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Figure 2. Serum metabolomic analysis. (A) A principal component analysis (PCA) plot derived
from nontargeted metabolite profiling of serum isolated from four WT control and four MDX mice.
(B) A dendrogram depicting hierarchical clustering results of samples from (A). Clustering method:
complete linkage. Distance measurement: Euclidean. (C) A volcano plot depicting DAMs between
WT and MDX serum. Horizontal and vertical dashed lines represent a threshold of p-value 0.05 and
fold change 1.5, respectively. One-thousand-one-hundred-and-twenty-five features were identified
to be significant from 9562 total features. (D) Pathway analysis of serum DAMs. Italics: pathways
with multiple metabolites implicated. Red: metabolic pathways identified in both serum and muscle
satellite cell analyses.

Among the top overrepresented metabolites in MDX serum with annotations in the Human
Metabolome Database (HMBD) were purine/pyrimidine metabolites (including hypoxanthine,
oxypurinol, and adenosine) and fatty acid metabolites. Metabolites selectively depleted in MDX
serum included amino compounds (D-alanine, thymidine, and D-glutamate) and tricarboxylic acid
(TCA) associated metabolites (including succinic acid, lactic acid, and oxoglutaric acid) (Table S2).
MetaboAnalyst-guided pathway enrichment analysis confirmed alterations in multiple metabolic
pathways including citrate (TCA cycle), alanine, aspartate and glutamate, and purine and pyrimidine
metabolism (Figure 2D). Several metabolic pathways including glucose metabolism, amino acid (valine,
leucine, isoleucine, arginine, proline, and lysine) metabolism, and unsaturated fatty acid metabolism
were also identified as differentially abundant in SCs from MDX mice (see pathways labeled with red
color in Figure 2D and Venn diagram in Figure S2). Together these studies (1) show that dystrophic
serum exhibits marked changes in circulating metabolites, (2) confirm prior studies that report
circulating amino acid deficits [25,26], and (3) highlight novel metabolic changes, such as elevated
purine/pyrimidine metabolites that may represent deficiencies in skeletal nucleotide metabolism.



Metabolites 2018, 8, 61 5 of 14

2.3. Dystrophic Mice Exhibit Adipose Tissue Abnormalities

DMD patients often exhibit alterations in adipose tissue, with increased incidence of obesity
observed in younger DMD patients, followed by dramatic adipose tissue loss with advanced age [27,28].
Similar to human muscular dystrophy patients, MDX mice experience irregular increases in weight
early in life [29]. Gross inspection of epididymal fat pads from 4 to 6 month old male mice revealed
reduced fat in MDX mice (Figure 3A). Indeed, epididymal fat pad wet weights in MDX mice were
statistically smaller than control fat pad weights (normalized to total body weight; p = 0.0224; n = 5
mice in each group) (Figure 3B). We then performed whole-body dual-energy X-ray absorptiometry
(DEXA) to assess total body composition. The average percent body fat calculations revealed less total
body fat in MDX mice compared to control mice (~22.5% fat in control mice versus ~15% total fat in
MDX mice; p = 0.0291) (Figure 3C,D).

Figure 3. MDX mice exhibit decreased adipose tissue mass. (A) Images depicting WT and MDX
epididymal fat pads. (B) A bar graph depicting epididymal fat pad weight normalized to total mouse
weight. * p < 0.05. n = 5 mice in each experimental group. (C) Representative dual-energy X-ray
absorptiometry (DEXA) images of WT and MDX mice. (D) Quantification of fat percentage based on
DEXA image analysis. * p < 0.05. n = 4 mice in each experimental group.

Based on the observation that MDX mice displayed less adipose tissue mass, we next asked
whether primary APCs isolated from MDX mice exhibited defects upon in vitro culture. Control or
MDX adipose tissue was mechanically and enzymatically processed (see Methods), and single cell
preparations enriched in APCs plated for live-cell imaging analyses. APC purity was assessed by
staining enriched cells with the APC marker, Sca1 (Figure S3). Visual inspection of WT and MDX
APCs did not reveal gross alterations in APC morphology (Figure 4A), however we did observe
proliferation defects in MDX APCs compared to WT controls (Figure 4A,B). These differences were
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observed at several plating densities and were most apparent when APCs were plated at a density of
5000 cells/well (96 well plate) (Figure 4B). Together, these data confirm adipose tissue dysfunction in
MDX mice and highlight persistent cell-autonomous expansion defects in MDX APCs cultured ex vivo.

Figure 4. Primary adipose progenitor cells (APCs) from MDX mice exhibit in vitro expansion defects.
(A) Representative images of APC cultures derived from WT and MDX mice at 3d and 5d post-isolation.
Shown are phase contrast images and corresponding mask overlays used for proliferation quantification
analyses. (B) Line graphs depicting proliferation curves of WT (blue curves) and MDX (red curves)
APCs over a 5d time-course. Shown are proliferation curves based on initial seeding densities of 2.5 K
(light coloring), 5 K (medium coloring), and 10 K (dark coloring) APCs/well of a 96-well plate.

2.4. MDX Adipose Progenitor Cells (APCs) Have Altered Metabolite Profiles

Considering observed changes in (1) serum metabolite levels, (2) adipose tissue stores, and (3)
in vitro APC expansion, we next asked if MDX APCs exhibited steady state metabolite imbalances
compared to WT control APCs. As in our SC and serum analyses, isolated APCs were subjected to
nontargeted metabolomic analyses. PCA did not reveal clear separation of WT APCs from dystrophic
APCs (Figure 5A). The first and second PCA components explained 22.7% and 19.1% of variations,
respectively. Hierarchical clustering analyses were able to better distinguish WT from MDX APCs,
with three of four MDX samples clustering away from WT controls (Figure 5B). Statistical analyses
(t-test) revealed 153 significant differentially abundant features (metabolites) from 11,151 total features
(1.4%) (Figure 5C).
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Figure 5. APC metabolomic analysis. (A) A principal component analysis (PCA) plot derived
from nontargeted metabolite profiling of APCs isolated from four WT control and four MDX mice.
(B) A dendrogram depicting hierarchical clustering results of samples from (A). Clustering method:
complete linkage. Distance measurement: Euclidean. (C) A volcano plot depicting DAMs between
WT and MDX APCs. Horizontal and vertical dashed lines represent a threshold of p-value 0.05 and
fold change 1.5, respectively. One-hundred-and-fifty-three features were identified to be significant
from 11,151 total features. (D) Pathway analysis of serum DAMs. Italics: pathways with multiple
metabolites implicated. Red: metabolic pathways identified in common with both serum and muscle
satellite cell analyses. (E) A bar graph quantifying the relative abundance of five acylcarnitine species.
* p < 0.05, ** p < 0.01. n = 4 mice in each experimental group.

MetaboAnalyst-guided pathway enrichment analysis revealed alterations in valine, leucine,
and isoleucine metabolism, pantothenate and CoA biosynthesis, aminoacyl-tRNA biosynthesis, and
purine metabolism—all of which were also identified in SC and serum analyses (Figure 5D and
Figure S2). Closer examination of the top differentially abundant metabolites in MDX APCs with
HMBD annotations revealed a cluster of carnitine-containing fatty acid metabolism compounds that
were upregulated in MDX samples (Figure 5E, Table S3). Interestingly, we also observed accumulation
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of several carnitine metabolites in dystrophic SCs (Figure S4), implicating fatty acid metabolism defects
in multiple dystrophic progenitor cell populations. Together, these data show that APCs in MDX mice
exhibit steady state metabolic alterations and suggest that carnitine accumulation in MDX APCs may
contribute to the observed functional deficits.

2.5. Long-Chain Acylcarnitines Inhibit APC Expansion

Using live-cell imaging to monitor APC expansion, we next asked if individual acylcarnitines
could modulate APC proliferation. We tested the acylcarnitine derivatives that were identified to
be upregulated in MDX APCs (propionyl-L-carnitine, butyryl-L-carnitine, octanoyl-L-carnitine, and
stearoyl-L-carnitine), as well as palmitoyl-L-carnitine, which was upregulated in MDX SCs. APCs
cultured in the presence of propionyl-L-carnitine, butyryl-L-carnitine, and octanoyl-L-carnitine did
not exhibit alterations in primary APC expansion over a 10-day period (Figure 6A). Supplementation
with longer chain acylcarnitines (palmitoyl-L-carnitine and stearoyl-L-carnitine), however, resulted in
marked impairment of APC expansion (Figure 6A). Indeed, stearoyl-L-carnitine was able to suppress
APC proliferation in a dose-dependent manner (Figure 6B). Overall we show that longer chain
acylcarnitines can impair APC proliferation, thus demonstrating that metabolic alterations associated
with muscular dystrophy can extend beyond skeletal muscle to other non-muscle cell types.

Figure 6. Exposure to selected acylcarnitines inhibits in vitro APC expansion. (A) A line
graph depicting APC proliferation over a >10-day timecourse. Shown are representative
proliferation traces of APCs treated with a vehicle control (water or MeOH), propionyl-L-carnitine
(yellow), butyryl-L-carnitine (orange), octanoyl-L-carnitine (brown), palmitoyl-L-carnitine (light blue),
or stearoyl-L-carnitine (dark blue). (B) A line graph depicting APC proliferation when exposed to
increasing concentrations of stearoyl-L-carnitine.

3. Discussion

A cardinal feature of DMD is metabolic dysfunction. Decades of research into specific metabolic
deficiencies have implicated a host of dysregulated metabolic processes including glycogenolysis [30],
glucose metabolism [31], free fatty acid and ketone body metabolism [31], acyl CoA metabolism [32],
mitochondrial metabolism [33], and amino acid metabolism [34]. We performed unbiased, nontargeted
metabolomic analyses on isolated murine muscle SCs and confirmed defects in many of these
previously implicated metabolic pathways while also highlighting lesser known metabolites and
metabolic pathways including purine metabolism and amino-acyl tRNA metabolism. These data
show that metabolic alterations observed at the level of whole muscle also extend to tissue resident
SCs (i.e., muscle stem cells). Whether these alterations contribute to known deficits in dystrophic SC
behavior [11,20,21] would be an interesting avenue to pursue in further studies.
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A notable feature in our SC metabolomics data set was the upregulation of numerous long
chain acylcarnitine (LC-AC) species. Altogether, we observed statistically significant accumulation
of four LC-AC compounds: elaidic carnitine (C18), linoleyl carnitine (C18), palmitoyl-L-carnitine
(C16), and DL-stearoylcarnitine. Indeed, a number of fatty acid metabolism deficits are linked to
the dystrophic state and include carnitine uptake deficiencies, mitochondrial defects, and alterations
to lipid composition [24] all suggesting that dystrophic muscle has a reduced fatty acid oxidation
capacity. That we observe LC-AC accumulation—along with alterations in sphingolipid and sulfolipid
metabolism—in SCs, suggests that impaired fatty acid metabolism may contribute to deficits in
skeletal muscle regeneration. Indeed, several studies report that long-chain fatty acids and long-chain
acylcarnitines interfere with satellite cell differentiation and provoke cell stress [35–37]. Whether these
metabolite-driven defects act independently or in concert with signaling alterations (i.e., Notch [38],
polarity proteins [12], heparin sulfate proteoglycans [39], and p38MAPK [23]) linked to dystrophic SCs
is an important unanswered question.

Adipose tissue disequilibrium is a hallmark of DMD, with high levels of obesity observed in
younger DMD patients, followed by dramatic adipose tissue loss [27,28]. Consistent with observations
of altered adipose tissue equilibrium in patients with DMD, we noted significant adipose depletion in
MDX mice. Accordingly, APCs exhibited reduced proliferation capacity, an observation that prompted
us to perform metabolomic analyses on these cells. Similar to muscle SCs, we observed significant
acylcarnitine accumulation suggesting that the dystrophic environment elicits conserved metabolic
alterations in cell types outside of the skeletal muscle niche. Importantly, we noted that several LC-ACs
were capable of slowing in vitro APC expansion. While our data do not prove that LC-ACs are the
primary drivers of APC defects, they underscore the potential importance of dystrophy-associated
metabolites as possible contributors to muscle and non-muscle tissue dysfunction in MDX mice.

4. Conclusions

Using high content metabolomic analyses and the MDX mouse model of Duchenne muscular
dystrophy, we demonstrate substantial metabolic alterations in dystrophic serum, muscle SCs, and
APCs. We also acknowledge several study limitations and highlight corresponding opportunities for
future work. First, our nontargeted analyses, while ideal for assessing the broader metabolite landscape,
are not ideal for quantitative assessments of specific metabolite classes. To that end, targeted metabolite
profiling would be important to perform in the future, especially before rigorously pursuing individual
metabolites as putative drivers of tissue dysfunction in DMD. Second, our analysis only captured a
single time-point along a continuum of disease progression. While we do observe notable differences
at this time-point, a more extensive analysis of tissue-specific metabolic alterations over time would
greatly improve our understanding of disease etiology. Third, we acknowledge that ectopic treatment
of primary cells with acylcarnitines (or any metabolite) is not an accurate representation of normal or
disease-associated physiology, but rather a proof-of-concept, preliminary study demonstrating the
potentially growth-suppressing capabilities of long-chain acylcarnitine accumulation. Despite these
limitations, this exploratory study lays the groundwork for future studies aiming to query metabolic
deficiencies in progenitor cells in the context of disease.

5. Methods

5.1. Satellite Cell Isolation

Satellite cells (SCs) were isolated from hind limb muscles using Satellite Cell Isolation Kit (Miltenyi
Biotec; Bergisch Gladbach, Germany) as previously described [40] with the following modifications.
The muscle tissues were digested with 0.2% (w/v) collagenase II (Gibco; Waltham, MA, USA) in
37 ◦C for 90 min. After isolation of the cells using Satellite Cell Isolation Kit (Miltenyi Biotec; Bergisch
Gladbach, Germany), the cells were further purified with anti-integrin α-7 MicroBeads (Miltenyi Biotec;
Bergisch Gladbach, Germany) according to the manufacturer’s protocol.
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5.2. Adipose Progenitor Cell Isolation

Epididymal, inguinal, and axillary fat pads were dissected immediately after mice were sacrificed.
The fat pads were incubated in Hank’s Balanced Salt Solution (Gibco) containing 3% (w/v) bovine
serum albumin (Gold Biotechnology; St. Louis, MO, USA) for 15 min at room temperature, followed by
centrifugation at 200× g for 7 min. The fat pads were digested with 0.1% (w/v) collagenase II (Gibco;
Waltham, MA, USA) in 37 ◦C for 60 min followed by filtering through 70 µm cell strainer. Adipose
progenitor cells (APCs) were then enriched using Adipose Tissue Progenitor Isolation Kit (Miltenyi
Biotec; Bergisch Gladbach, Germany) according to the manufacturer’s protocol.

5.3. Nontargeted Metabolomics

Four biological replicates of serum, SCs, and APCs were prepared from Dmdmdx-4Cv (MDX)
mice and wildtype (WT) control mice as follows. Blood was collected by submandibular bleeding with
a lancet, as previously described [41]. After 20 to 30 min at room temperature, the collected blood
was centrifuged at 1500× g for 15 min at 4 ◦C. Then, serum was collected by taking the resulting
supernatant. SCs and AP Cs were isolated as described above. Approximately 100,000 cells (SCs) and
150,000 cells (APCs) were centrifuged at 400× g for 10 min at 4 ◦C, and the cell pellets were frozen
immediately in liquid nitrogen. Serum, SCs, and APCs were submitted to Metabolomics Core at Mayo
Clinic (Rochester, MN, USA) for nontargeted metabolomics profiling by liquid chromatography–mass
spectrometry (LC–MS) using 6550 iFunnel Quadrupole Time of Flight (Q-TOF) mass spectrometer
(Agilent; Santa Clara, CA, USA) coupled with an ultra-high pressure liquid chromatography (Agilent;
Santa Clara, CA, USA) as previously described [42–44] with the following minor modifications.
The samples were lysed in PBS and deproteinized with 1:1 acetonitrile/methanol, kept in ice with
intermittent vortexing for 30 min, followed by centrifugation at 18,000× g. Three microliters
of 13C6-phenylalanine (250 ng/µL) was added prior to deproteinization as internal standards.
Mass spectrometer was operated in positive and negative electrospray ionization conditions using a
scan range of 100 to 1700 m/z. Metabolite separation was performed using hydrophilic interaction
column (HILIC) (ethylene-bridged hybrid 2.1 × 150 mm, 1.7 mm; Waters; Milford, MA, USA) and
reversed-phase C18 column (high-strength silica 2.1 × 150 mm, 1.8 mm; Waters; Milford, MA,
USA). The run times for HILIC and for C18 column were 18 min and 27 min, respectively. Putative
identification of each metabolite was done based on accurate mass (m/z) against the Metlin database
using a detection window of 7 ppm or less, as previously described [43].

5.4. Statistical Analysis and Metabolic Pathway Analysis

T-test was applied on intensities of metabolites in each type of sample to compare MDX mice
and WT control mice. Metabolites with fold change greater than 1.5 fold and p-value lower than 0.05
were called significantly different metabolites. Principal component analysis (PCA) and hierarchical
clustering were performed using TIBCO Spotfire Analyst 7.11.1 (TIBCO Software Inc.; Palo Alto, CA,
USA). Clusters in hierarchical clustering were formed by complete linkage method with Euclidean
distance. Metabolic pathway analysis was performed on significantly different metabolites using
MetaboAnalyst [45] based on Mus musculus metabolic pathways. Since only a small fraction of the
differentially abundant metabolites were able to be utilized by MetaboAnalyst for pathway analyses,
less stringent p-values, as opposed to adjusted p-values, were used in these comparisons.

5.5. Animals and Imaging

All animal protocols were reviewed and approved by the Institutional Animal Care and Use
Committee at Mayo Clinic (Rochester, MN, USA) (A3291-01). Four to six month old Dmdmdx-4Cv

(MDX) mice [46] were used for mice with muscular dystrophy phenotypes. C57BL/6J mice (Jackson
Labs; Bar Harbor, ME, USA) were used for WT controls. Animal imaging was performed by dual
energy X-ray absorptiometry (DEXA) scanning (Lunar PIXImus; Madison, WI, USA) on a restrained
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mouse anesthetized by ketamine/xylazine. Total amount of lean and fat was determined with the
manufacturer’s software.

5.6. Cell Culture and Analysis

For proliferation experiments, equal numbers of WT or MDX APCs from a single mouse were
plated in several wells of a 96 well plate. The cells were plated with growth media: DMEM containing
10% Fetal Bovine Serum (FBS), 1% penicillin-streptomycin (10,000 U/mL), and 0.01 µg/mL FGF2.
Growth media was replaced every three days. To observe proliferation of WT APCs with and without
carnitines, cells were first plated in growth media. After three days cells were change to growth media
with vehicle control or growth media with a carnitine (propionyl-L-carnitine, butyryl-L-carnitine,
octanoyl-L-carnitine, palmitoyl-L-carnitine, or stearoyl-L-carnitine from Sigma-Aldrich; St. Louis, MO,
USA). Every three days thereafter the media was replaced. To measure proliferation, four images from
each well were captured every four hours with an IncuCyte ZOOM (Essen Biosciences, Ann Arbor, MI,
USA). The average confluence (cell occupying area) of all replicates was calculated and plotted over
time using the IncuCyte ZOOM 2016B.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/4/61/s1,
Figure S1: Flow cytometry analysis of SC marker integrin α-7 staining of column-isolated SCs. Figure S2: Metabolic
pathways commonly identified in SCs, serum, and APCs. Figure S3: Flow cytometry analysis of APC marker
Sca1 staining of column-isolated APCs. Figure S4: A bar graph quantifying the relative abundance of SC carnitine
species. Table S1: SC differentially expressed metabolites, Table S2: Serum differentially expressed metabolites,
Table S3: APC differentially expressed metabolites.
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