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Abstract: Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost
renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability
at the industrial scale. In this work, we report the domain engineering of endoglucanase (cel6A) of
Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity
and thermostability of the most efficient variant named as cel6A.CBC was analyzed by molecular
dynamics simulations. This variant demonstrated profound activity against soluble and insoluble
cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC),
and bacterial microcrystalline cellulose. The variant cel6A.CBC showed the highest catalysis of
carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature
of 60 ◦C. Furthermore, a sound rationale was observed between experimental findings and molecular
modeling of cel6A.CBC which revealed thermostability of cel6A.CBC at 26.85, 60.85, and 74.85 ◦C as
well as structural flexibility at 126.85 ◦C. Therefore, a thermostable derivative of cel6A engineered in
the present work has enhanced biological performance and can be a useful construct for the mass
production of bioethanol from plant biomass.

Keywords: endoglucanase (cel6A); domain engineering; Thermobifida fusca; molecular dynamics
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1. Introduction

Cellulose is the most abundant plant biomass found on earth and is extremely important
for mankind due to its diverse applications. The evolving use of renewable non-food cellulosic
plant biomass is a very attractive option for biofuel production. Biological depolymerization
of cellulose biomass is accomplished by various types of cellulases, particularly endoglucanases,
exoglucanases, and β-glucosidases. Endoglucanase cleaves cellulose polymer into oligopolymers of
varying lengths, while exoglucanases attack reducing and/or non-reducing ends of cellulose yielding
glucose or cellobioses, finally β-glucosidases convert cellobioses into fermentable sugar monomers.
Despite the tremendous potential of cellulases in the conversion of plant biomass into useable bioethanol,
their widespread application is restricted by their high cost and low efficacy, especially under harsh
industrial conditions [1–5]. Enzymes with high thermostability are advantageous in saccharification
processes owing to their better penetrating ability into lignocellulosic biomass for disorganization [6].
Furthermore, plant biomass degradations at elevated temperatures reduce the risk of microbial
contamination and cooling costs after biomass pretreatment [7]. Therefore, tailor-made cellulases by
molecular engineering with improved catalytic activity and thermostability is a prerequisite in order to
be used in industrial applications.

Thermobifida fusca is a moderately thermophilic, major lignocellulolytic soil bacterium. It has been
well known for its potential to produce various types of cellulases that can penetrate cellulose and
lignocellulose residues to yield simple saccharide units [8]. Among various glycosyl hydrolase family
6 endoglucanases, endoglucanase (cel6A) of T. fusca is considered to be the most efficient reducing
sugar producer, hence has the potential to be used in the biofuel industry [9]. Structurally, cel6A is a
modular enzyme with a non-catalytic family 2 carbohydrate-binding module (CBM-II) at C-terminal.
CBMs facilitate the adsorption of catalytic domain with the substrates [10], help in the alignment of
enzyme-substrate in close proximity [11,12], and carry out hydrolysis by modification of substrate
surfaces [13,14].

There are very few reports on enzyme engineering for industrial applicability, particularly to
improve the thermostability of cellulases [1,15,16]. Thermostable multimodular cellulases provide
an excellent template for modification to enhance their suitability for industrial applications.
The accessory roles of non-catalytic domains (CBMs) on thermal stability and insoluble substrate
degrading efficiencies have been extensively reported by removing or grafting from respective
catalytic domain/s [17–22]. MD simulations (molecular dynamics, is used to analyze physical
movements of atoms and molecules by using computational tools) have been used in several
studies to evaluate the factors regulating thermostability of enzymes [11,23–30] and to investigate
the stability of the biomolecular complex and interaction attributes [31,32]. These include the
thermal stable mechanisms of rubredoxin [33], nuclease [34], barnase [35], nitrile hydratase [36],
adenylate kinase [37], carbonic anhydrase [38], carboxylesterase from Geobacillus stearothermophilus [39],
psychrophilic esterase from Pseudoalteromonas haloplanktis [40], hyperthermophilic esterase from
Archaeoglobus fulgidus [41], thermostable para-nitrobenzyl esterase from Bacillus subtilis [42], and CBMs
from Clostridium cellulovorans [43,44].

In this study, we designed a group of cel6A variants, by deletion, insertion, and rearrangement
of CBM-II as well as a catalytic domain (GH6). The engineered variants were expressed and
characterized for different properties such as thermal stability and catalytic activity at different
temperatures. Furthermore, catalytic functionality of cel6A variant was confirmed by application of
multi-template homology modelling by using MODELLER v9.15. Thermostability of cel6A construct
was investigated structurally to get an insight into the dynamic influence at different comparable
temperatures. MD simulations were performed at four different temperatures (26.85, 60.85, 74.85,
and 126.85 ◦C) to develop a most effective rationale for the assessment of the impact of the factors
governing enzyme’s thermostability. The dynamic consequences of the enzyme construct were explored
by calculating the root mean square deviation (RMSD) and root mean square fluctuation (RMSF)
values for all Cα backbone atoms to identify the thermal sensitive regions as performed in some earlier
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studies [35–37,43]. The result obtained showed that cel6A is most active on soluble and insoluble
cellulosic substrates. cel6A.CBC exhibited highest catalysis of carboxymethyl cellulose (CMC) at a
pH 6.0 and 60 ◦C. Furthermore, cel6A.CBC showed a good thermostability at 26.85, 60.85, and 74.85 ◦C
as well as structural flexibility at 126.85 ◦C by molecular modelling assay. Therefore, a thermostable
derivative of cel6A engineered in the present work showed a better performance and can be a useful
variant for the production of bioethanol from cellulose.

2. Materials and Methods

2.1. Reagents and Chemicals

Plasmid and gene purification kits were purchased from GeneAll (Seoul, Korea).
Restriction enzymes, T4 DNA ligase, and DNA/Protein markers were purchased from Thermo
Scientific (Mississauga, Ontario, Canada). All other chemicals and reagents used in this study were
purchased from Sigma Aldrich.

2.2. PCR Amplification of cel6A Variants

Construction scheme of cel6A derivatives is shown in Figure S1. All derivatives were amplified
from cel6A gene as template [45] using the respective primers (Table S1). A PCR reaction mixture
of 50 µL was prepared as 1X Taq buffer, 0.4 mM dNTPs, 1 µM concentration of forward and reverse
primers, ~100 ng template DNA and 2 IU of Taq DNA polymerase. Gene amplification was done on
Thermocycler Star 96, IRMECO with thermal conditions of 95 ◦C for 3 min as initial denaturation,
followed by 30 cycles of 95 ◦C for 30 s denaturation, annealing at 58 ◦C for 30 s, and extension at
72 ◦C. Final extension of 20 min at 72 ◦C was also done. Amplified gene segments were gel purified
and cloned into pTZ57R/T by InsT/A cloning kit. Preparation of E. coli DH5α competent cells and
transformation was done according to the standard protocols [46].

2.3. Sub Cloning of cel6A Variants in Expression Vector

Recombinant plasmids [pTZ-cel6A.C, -cel6A.BC, -cel6A.BCB, -cel6A.CBC, -cel6A.CBCB,
and pET22b(+)] were extracted by GeneAll plasmid extraction kit, digested with respective restriction
enzymes, and purified from 0.8% agarose gel by gel extraction kit (GeneAll). Sequential cloning
(Figure S1) was done to ligate different gene segments into the expression vector pET22b(+) to generate
truncated, CBM-II transposition, addition, catalytic domain addition, and duplication of cel6A variants.
The E. coli (DH5α) cells were chemically made competent according to the standard protocol [46].
These cells were transformed with cel6A variants, spread on ampicillin agar plates and incubated
overnight at 37 ◦C. Transformants were confirmed by colony pick PCR and endonuclease digestion.

2.4. Expression Analysis of cel6A Variants

E. coli (BL21-CodonPlus (DE3)-RIPL) cells were chemically made competent and transformed
with pcel6A.C, pcel6A.BC, pcel6A.BCB, pcel6A.CBC, pcel6A.CBCB. A single transformed colony was
resuspended in 10 mL LB broth containing ampicillin (100 µg.mL−1) and incubated at 37 ◦C for 16 h.
Fresh LB broth (100 mL) containing antibiotic was inoculated with 0.5 mL overnight grown transformed
BL21 cells and placed at 37 ◦C with 250 rpm shaking in an orbital shaker. Cells were induced with
0.5 mM IPTG when OD600 reached 0.4–0.6 and expression was analyzed on SDS-PAGE after 8 h of
induction. For partial purification of cel6A engineered enzymes, induced cells were harvested at
6500 rpm for 10 min and resuspended in 50 mM phosphate buffer (pH 6) to final OD600 1.0. Cells were
lysed by ultra-sonication (Sonics vcx500, newtown, Connecticut, USA). Samples were processed at
30% amplitude for 30 min with 2.5 sec pulse and 1 min interval. The lysate was heated at 60 ◦C
for 30 min and centrifuged at 6500 rpm for 15 min. The supernatant was taken for enzymatic and
physiological characterization.
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2.5. Enzymatic Activity Assay

Endoglucanase activity of cel6A variants was measured by incubating appropriately diluted
enzyme solution (0.5 mL) with 1% carboxymethyl cellulose (CMC) as soluble substrate solution in
0.05 M phosphate buffer having pH 6.0 at 60 ◦C for 10 min. The reaction was halted by adding 0.5 mL
Na2CO3 (1M). Reducing sugars released by reaction was measured by adding 3 mL 3,5-Dinitrosalicylic
acid (DNS) reagent (5.3 g of DNS, 9.9 g NaOH, 15.3 g Na-K-tartarate and 4.15 g Na metabisulphite in
708 mL of water and adding 3.8 mL of phenol). The OD was measured at 600 nm against a blank [47].
Enzyme activity (U) is the number of micromoles (µm) of reducing sugars equivalent produced per
minute under experimental conditions.

For hydrolytic activity assay on insoluble substrates, pre-treated bagasse, filter paper (FP),
regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose (BMCC) were used.
BMCC was prepared by adding 5 g BMCC in distilled water containing 0.02% sodium azide and
stirring overnight at 4 ◦C. Bagasse was prepared by autoclaving (15 lb.in−2) grounded bagasse powder
with 0.5% NaOH for 3 h. Alkali treated bagasse was washed with distilled water to neutrality and dried.
Activity assay was done by taking 10 mg each of the substrates in an aliquot containing enzyme in 1 mL
of 50 mM phosphate buffer (pH 6.0). Reducing sugars were measured after 12 h incubation in shaking
water bath (60 ◦C) by DNS method. Blanks were prepared by the same procedure but without adding
the enzyme. The concentration of the protein was determined using BSA (bovine serum albumin) as
standard by the dye-binding method [48]. Assays were performed in triplicates. All enzymatic assays
were performed as reported in previous studies [49,50].

2.6. pH Stability Determination

Optimum pH for cel6A variants was determined by suitably diluting enzymes with 50 mM acetate,
phosphate, Tris-Cl, and borate-NaOH buffers, pH 3.0–5.0, 5.5–7.5, 8.0–9.0, and 9.5–10.0, respectively.
The pH stability was determined by incubating endoglucanase variants at pH 3.0–10.0 for 120 min at
room temperature (25 ◦C), and residual activity were assayed at regular intervals (20 min).

2.7. Thermal Stability Determination

Thermostability of cel6A variants was determined by incubating enzymes at different thermal
conditions ranging from 50 to 75 ◦C for varying intervals up to 120 min and residual activity was
assayed by incubating 500 µl enzyme with 500 µL of carboxymethyl cellulose (1% w/v) as substrate
dissolved in 50 mM phosphate buffer (pH 6.0) and resulting reducing sugars were determined by
DNS method.

2.8. Molecular Modeling Study

Based on results of enzymatic assays, only the best thermostable construct was examined for
better insight into the structural stability of domains on different comparable temperatures, namely,
26.85, 60.85, 74.85, and 126.85 ◦C. For the structural study, engineered cel6A variants were modelled
through multi-template homology modelling by using MODELLER v9.15 [51,52]. The generated
models were optimized and refined using a short 20-ns molecular dynamics (MD) simulation at
standard temperature (26.85 ◦C) and pressure (1 atm). The stereochemical assessment of modelled
structures and residue-by-residue geometry were validated by Molprobity [53]. All MD simulations
were carried out using AMBER 18 simulation package [54]. The same MD simulation protocol was set
up using the AMBER ff99SB force field [55], TIP3 water molecule model system [56], and neutralizing
ions by creating an octahedral box extended 12.0 Å around the solute. The same initial energy
minimization, equilibration of the simulation system, and the following standard production run
was utilized as described elsewhere [31,57,58]. To run MD simulation at different temperatures,
the minimized systems of cel6A construct were equilibrated for 100 ps each at four temperatures
(26.85, 60.85, 74.85, and 126.85 ◦C) by position restrained molecular dynamics simulation to relax the
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solvent. The equilibrated systems were then subjected to a production run of 100 ns each at four
different temperatures. The CPPTRAJ module of AMBER 18 was utilized for the trajectory analysis.
The representative model was extracted after MD simulation and analyzed through Chimera v1.13 [59].
Molecular docking was performed using AutoDock Vina [60] to analyze the binding conformation
of CMC substrate in respective catalytic domain. Binding pocket information was extracted by
superimposing the co-crystalized catalytic domain of endo-1,4-glucanase cel6A from Thermobifida
fusca in complex with methyl cellobiosyl-4-thio-β- cellobioside (PDB ID: 2BOG) [61] and docking
grid was exclusively build around the binding pocket. Details of protein preparation, optimization,
and minimization are described in previous studies [57,62].

In order to access the quantitative description of binding affinity of cel6A constructs with bound
CMC substrate, molecular mechanics-generalized born surface area (MM-GBSA) binding free energy
calculations were performed using the AMBER 18 mmgbsa module. Binding free energy calculations
by MMGBSA has been extensively discussed [63,64]. Total of 1000 snapshots from the whole MD
trajectory of the complex was generated and binding free energy (∆Gtotal), was calculated, ∆Gtotal is
the sum of molecular mechanics energy (∆EMM), solvation free energy (∆Gsol) contributions. ∆EMM is
further divided into internal energy (∆Eint), electrostatic (∆Eele), van der Waals (∆Evdw) energy in the
gas phase, whereas and ∆Gsol is divided into polar (∆Gp) and non-polar (∆Gnp) contributions to the
solvation free energy, as follows:

∆EMM = ∆Eint + ∆Eele + ∆Evdw

∆Gsol = ∆Gpolar + ∆Gnonpolar

∆Gtotal = ∆EMM + ∆Gsol

3. Results and Discussion

Non-catalytic family 2 carbohydrate-binding module (CBM-II) and catalytic domain glycosyl
hydrolase-6 of endoglucanase cel6A were either deleted, inserted, or rearranged to engineer a
suitable variant of cel6A that can withstand harsh conditions of pH and temperature for industrial
applications. Then engineered cel6A variants were expressed and assessed for their enzymatic activity.
The cel6A construct with higher thermostability was investigated structurally through long-run
molecular dynamics simulations to get an insight of the thermostable behavior of enzyme at different
comparable temperatures.

3.1. Construction of Plasmids for Domain Engineered cel6A Variants

Endoglucanase variants were constructed from catalytic and non-catalytic domains by addition,
truncation, and transposition (Figure S2). All gene fragments after PCR amplification were gel purified,
TA-cloned in pTZ57R/T vector and E. coli DH5α cells were then transformed with recombinant
vectors. The first construct encoding catalytic domain (cel6A.C) without CBM-II was sub-cloned
after restriction from a pTZ-cel6A.C plasmid into T7 promoter-based pET22b(+) expression vector
(Figure S1). Successful integration of the catalytic domain was confirmed by digesting pcel6A.C
plasmid with NdeI and HindIII endonucleases, which released a fragment of 0.86 kb of cel6A.C.

To evaluate the positional/spatial effect of CBM-II, transposition of CBM-II from C-terminal of
cel6A.CB to N-terminal was done by sequential cloning of CBM-II (272 bp), linker (110 bp), and then
cel6A.Cn into pET22b(+) expression vector to generate pcel6A.BC (Figure S1). Restriction digestion
of pcel6A.BC with NdeI and HindIII generated a 1.3 kb fragment corroborating the transposition of
CBM-II from C-terminal to the N-terminal.

Later, three other variants; cel6A.BCB, cel6A.CBC, and cel6A.CBCB were constructed. A gene
fragment was nicked from pTZ-cel6A.CBn with BamHI and HindIII with an accurate size of 1.3 kb ligated
to the pCBM-II-L vector digested with same endonucleases to generate pcel6A.BCB. The successful
insertion was confirmed by the presence of 1.7 kb fragment after digesting with NdeI and HindIII
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enzymes. Similarly, additional catalytic domains and complete gene were inserted by removing stop
codon and insertion of NcoI site at C-terminal of cel6A gene to generate pcel6A.CBCB. Inserts to be
added were amplified with NcoI and HindIII sites at N-terminal of the catalytic domain and cel6A
construct. Both cel6A.CBC and cel6A.CBCB was digested with NdeI and HindIII endonucleases to
generate 2.2 and 2.7 kb restricted fragments, respectively, which substantiated the successful insertion
(Figure S3). All constructs were sequenced in order to determine their inframe insertion and sequence
fidelity. Other researchers had adopted similar domain rearrangement strategies for xylanase and
endoglucanase genes of C. thermocellum [49,50,65].

3.2. Expression Analysis and Enzymatic Activities of cel6A Variants

Recombinant expression of cel6A variants in E. coli BL21 CodonPlus (RIPL) was analysed
in LB broth using IPTG as an inducer. All the variants were successfully expressed in E. coli
BL21 CodonPlus (RIPL). Samples were taken after 8 h of 0.5 mM IPTG induction, and the
expression percentage of each variant was densitometrically calculated using Gene Tools software
(G-box, Syngene). Protein expression levels of cel6A.C and cel6A.CBC was higher than all other
constructs, while cel6A.BCBC showed minimum expression level (Table 1). The cells were lysed to
evaluate the subcellular localization of cel6A variants. All variants were expressed in the soluble
cytoplasmic fraction (Figure 1).

The enzymatic activity on soluble substrate CMC for cel6A.C, cel6A.BC, cel6A.BCB, cel6A.CBC,
and cel6A.CBCB were 320, 290, 170, 600, and 250 U l−1 OD600−1, respectively, while specific
activities of these variants were 4.2, 4.3, 3.0, 7.2, and 6.9 U mg−1 enzymes, respectively (Table 1).
Irwin et al., 1993 [66] carried out enzymatic activities of native cel6A and cel6A catalytic domain on
different soluble and insoluble substrates, which supports our results of native cel6A.C and Cel6.BC.
In a similar study, a fusion of CBM-II from Cel6B of T. fusca to the C- terminal of Cel5A of T. maritima and
Cel9A of Alicyclobacillus acidocaldarius catalytic domains resulted in the improved hydrolytic activity
of these engineered enzymes as compared to the native enzymes [28]. Our results showed enhanced
endoglucanase activity by domain variant cel6A.CBC in comparison with native cel6A.C and cel6A.BC.
Catalysis enhancement of the catalytic domains fused with CBMs on insoluble substrates has been
reported previously due to many factors, including enzyme-substrate proximity [10]. Hydrolytic effect
of cel6A variants on insoluble substrates was more pronounced. cel6A.C, cel6A.BC, cel6A.BCB,
cel6ACBC, and cel6A.CBCB liberated 0.7, 1.0, 1.7, 2.0, and 1.5 µM reducing sugars per µM−1 enzyme,
respectively, from filter paper (FP). A similar pattern of hydrolysis was observed on other insoluble
substrates as well. cel6A.BCB and cel6A.CBC was found more active on all insoluble substrates.
cel6A.BCB produced 1.4, 2.6, and 0.28 µM, reducing sugars per µM−1 enzyme and cel6A.CBC produced
3.4, 5.4, and 0.9 µM, reducing sugars per µM−1 enzyme from bagasse, RAC, and BMCC, respectively
(Table 1). Enzymatic activities of native cel6A were almost similar to that of cel6A.BC construct on
soluble and insoluble substrates, which we reported previously [49,50], Similar results were reported
in a study in which an extra catalytic domain was added to the CelA of C. thermocellum [65]. In another
study, the addition of CBMs to different endoglucanases increased their hydrolytic activities on
Avicel [16].
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Table 1. Expression levels of cel6A endoglucanase variants in E. coli and their relative activities against soluble and insoluble substrates.

Endoglucanase
(cel6A) Variants

Cell Soluble
Protein

(mg l−1 OD600−1)

Expression
Level of Variant
in Soluble Cell

Protein (%)

cel6A Yield
(mg l−1 OD600−1)

Activity on 1% Carboxymethyl
Cellulose (CMC)

Activity on Insoluble Substrates a

(µmol Reducing Sugar µM−1 Enzyme)

Endoglu-Canase
Activity a

(U l−1 OD600−1)

Specific Activity
(U mg−1 Enzyme)

Filter Paper
(FP) Bagasse

Regenerated
Amorphous

Cellulose
(RAC)

Bacterial
Microcrystalline

Cellulose
(BMCC)

cel6A.C 170 ± 8.7 45 ± 2.9 76.5 ± 3.9 320 ± 12.5 4.19 ± 0.05 0.7 ± 0.02 0.9 ± 0.06 1.3 ± 0.06 0.24 ± 0.03
cel6A.BC 168 ± 9.2 40 ± 3.5 67.2 ± 1.4 290 ± 10.2 4.32 ± 0.05 1.0 ± 0.05 1.4 ± 0.03 2.6 ± 0.12 0.28 ± 0.01

cel6A.BCB 190 ± 8.4 30 ± 2.1 57.0 ± 0.6 170 ± 9.9 2.98 ± 0.03 1.7 ± 0.09 2.2 ± 0.14 3.2 ± 0.18 0.60 ± 0.03
cel6A.CBC 185 ± 8.0 45 ± 3.0 83.3 ± 1.3 600 ± 14.8 7.20 ± 0.13 2.0 ± 0.11 3.4 ± 0.11 5.4 ± 0.25 0.90 ± 0.02

cel6A.CBCB 180 ± 10.3 20 ± 1.4 36.0 ± 0.3 250 ± 10.7 6.94 ± 0.31 1.5 ± 0.13 2.0 ± 0.10 1.7 ± 0.14 0.56 ± 0.09
a Endoglucanse activities were performed at 60 ◦C (pH 6.0) in triplicates.



Biology 2020, 9, 214 8 of 18

Biology 2020, 9, x FOR PEER REVIEW 6 of 19 

and HindIII endonucleases to generate 2.2 and 2.7 kb restricted fragments, respectively, which 
substantiated the successful insertion (Figure S3). All constructs were sequenced in order to 
determine their inframe insertion and sequence fidelity. Other researchers had adopted similar 
domain rearrangement strategies for xylanase and endoglucanase genes of C. thermocellum [49,50,65]. 

3.2. Expression Analysis and Enzymatic Activities of Cel6A Variants 

Recombinant expression of Cel6A variants in E. coli BL21 CodonPlus (RIPL) was analysed in LB 
broth using IPTG as an inducer. All the variants were successfully expressed in E. coli BL21 
CodonPlus (RIPL). Samples were taken after 8 h of 0.5 mM IPTG induction, and the expression 
percentage of each variant was densitometrically calculated using Gene Tools software (G-box, 
Syngene). Protein expression levels of Cel6A.C and Cel6A.CBC was higher than all other constructs, 
while Cel6A.BCBC showed minimum expression level (Table 1). The cells were lysed to evaluate the 
subcellular localization of Cel6A variants. All variants were expressed in the soluble cytoplasmic 
fraction (Figure 1) 

 
Figure 1. SDS-PAGE (12%) analysis of total E. coli BL-21 CodonPlus (RIPL) proteins expressing 
Cel6A.C, Cel6A.BC, Cel6A.BCB, Cel6A.CBC and Cel6A.CBCB after induction with 0.4 mM IPTG. M: 
Protein Marker, U: Uninduced sample. 

The enzymatic activity on soluble substrate CMC for Cel6A.C, Cel6A.BC, Cel6A.BCB, 
Cel6A.CBC, and Cel6A.CBCB were 320, 290, 170, 600, and 250 U l−1 OD600−1, respectively, while 
specific activities of these variants were 4.2, 4.3, 3.0, 7.2, and 6.9 U mg−1 enzymes, respectively (Table 
1). Irwin et al., 1993 [66] carried out enzymatic activities of native Cel6A and Cel6A catalytic domain 
on different soluble and insoluble substrates, which supports our results of native Cel6A.C and 
Cel6.BC. In a similar study, a fusion of CBM-II from Cel6B of T. fusca to the C- terminal of Cel5A of 
T. maritima and Cel9A of Alicyclobacillus acidocaldarius catalytic domains resulted in the improved 
hydrolytic activity of these engineered enzymes as compared to the native enzymes [28]. Our results 
showed enhanced endoglucanase activity by domain variant Cel6A.CBC in comparison with native 
Cel6A.C and Cel6A.BC. Catalysis enhancement of the catalytic domains fused with CBMs on 
insoluble substrates has been reported previously due to many factors, including enzyme-substrate 
proximity [10]. Hydrolytic effect of Cel6A variants on insoluble substrates was more pronounced. 
Cel6A.C, Cel6A.BC, Cel6A.BCB, Cel6ACBC, and Cel6A.CBCB liberated 0.7, 1.0, 1.7, 2.0, and 1.5 µM 
reducing sugars per µM−1 enzyme, respectively, from filter paper (FP). A similar pattern of hydrolysis 
was observed on other insoluble substrates as well. Cel6A.BCB and Cel6A.CBC was found more 
active on all insoluble substrates. Cel6A.BCB produced 1.4, 2.6, and 0.28 µM, reducing sugars per 
µM−1 enzyme and Cel6A.CBC produced 3.4, 5.4, and 0.9 µM, reducing sugars per µM−1 enzyme from 
bagasse, RAC, and BMCC, respectively (Table 1). Enzymatic activities of native Cel6A were almost 
similar to that of Cel6A.BC construct on soluble and insoluble substrates, which we reported 
previously [49,50], Similar results were reported in a study in which an extra catalytic domain was 
added to the CelA of C. thermocellum [65]. In another study, the addition of CBMs to different 
endoglucanases increased their hydrolytic activities on Avicel [16]. 

Figure 1. SDS-PAGE (12%) analysis of total E. coli BL-21 CodonPlus (RIPL) proteins expressing cel6A.C,
cel6A.BC, cel6A.BCB, cel6A.CBC and cel6A.CBCB after induction with 0.4 mM IPTG. M: Protein Marker,
U: Uninduced sample.

3.3. Physiological Characterization of cel6A Variants

3.3.1. Effect of Temperature on cel6A Variants

The endoglucanase activity of engineered cel6A constructs showed almost similar hydrolytic
activity pattern by retaining more than 80% endoglucanase activity at 60–70 ◦C. The optimum
temperature for endoglucanase activity was 60 ◦C for all the cel6A variants where they showed 100%
enzymatic activity. There was a significant difference between the enzymatic activities of native cel6A
and engineered domain variants. The variant cel6A.CBC showed the most thermophilic property.
The cel6A.CBC depicted enhanced endoglucanase activity in comparison with native cel6A at 70
(87% vs. 84%), at 75 (73% vs. 67%), and at 80 (45% vs. 33%). (Figure 2).
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Figure 2. Effect of Temperature on hydrolytic activity of cel6A variants against CMC.

Thermostability assays of the recombinant constructs were performed at six pre-incubation
temperatures (50, 55, 60, 65, 70, and 75 ◦C), for 2 h. At 50, 55, and 60 ◦C pre-incubation temperatures,
all recombinant enzymes as well as native enzyme maintained more than 85% of residual activity after
2 h of incubation showing no appreciable difference in their activity. On the other hand, in a reaction
assay at a pre-incubation temperature of 65 ◦C, a slight difference was observed in the residual activity
of different recombinant constructs. The observed residual activities after 2 h incubation were 64, 71,
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64, 58, 78, and 61 of recombinant enzymes cel6A.CB (cel6A.CB is native cel6A), cel6A.C, cel6A.BC,
cel6A.BCB, cel6A.CBC, and cel6A.CBCB, respectively. There was a substantial difference between the
residual activities of cel6A.CBC and other enzymes at pre-incubation temperatures of 70 and 75 ◦C.
The cel6A.CBC maintained a residual activity of 62% at 70 ◦C after 60 min while all other enzymes
decreased to less than 30%. On pre-incubation at 75 ◦C, cel6A.CBC and cel6A.C showed residual
activity of 24% and 20%, respectively, after 60 min and 10% and 0% after 90 min, whereas all other
enzymes lost catalytic activity at 75 ◦C in less than 60 min (Figure 3).Biology 2020, 9, x FOR PEER REVIEW 9 of 19 
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3.3.2. Effect of pH on cel6A Variants

Optimum enzymatic activity of endoglucanase variants was measured on a broad pH range of 3.0
to 10.0. All variants retained more than 80% hydrolytic activity between pH 5.0–8.0. The hydrolytic
assay was performed after incubating each of cel6A variants at any of this pH at room temperature for
2 h. Enzymatic activity gradually decreased below pH 5.0 and above pH 8.0, with optimum activity
at pH 6.5 for all cel6A variants (Figure 4). cel6A. cel6A.CBC retained more enzymatic activity in
comparison with native cel6A at pH 9.0 (66% vs. 61%), at pH 9.5 (58% vs. 55%), and at pH 10.0
(53% vs. 51%).
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3.4. Molecular Modeling Analysis

Among all thermostable engineered cel6A constructs, cel6A.CBC showed enhanced enzymatic
activity and was found to be more stable at a higher temperature (Figures 2 and 3). It was interesting
to explore the temperature influence on the dynamics of cel6A.CBC. Homology model of cel6A.
CBC construct was generated by a multi-template approach using MODELLER. To build cel6A.CBC
model, an X-ray resolved endoglucanase structure from Thermobifida fusca was retrieved (PDB ID:
2BOG) [61] to generate N (residues 1–287) and C-catalytic domain (residues 407–692), whereas a
carbohydrate-binding type-2 (CBM-II) domain (PDB ID: 3NDZ; Identity: 42%; Probability: 98%;
E-value: 2.3 × 10−5) was used to build the binding domain (residues 288–406). The wild-type
cel6A.CB model was merely generated by truncating the C-catalytic domain from cel6A.CBC model.
Both models were optimized and refined using a short 20 ns MD simulation. Then, these models
were validated using MolProbity to check all-atom contacts and geometry (Table 2). The MolProbity
score, which combines the clash score, rotamer, and Ramachandran estimations into a single score
(normalized to be on the same scale as X-ray resolution), was 1.68 and 1.70 (99th percentile) for
cel6A.CBC and cel6A.CB respectively. The MD optimized cel6A.CBC model showed 90.27% (622/689)
residues, while cel6A.CB exhibited 90.9% (370/407) residues in Ramachandran favoured (>98%) regions.
Furthermore, cel6A.CBC model showed 97.9% (674/689) residues placed in Ramachandran allowed
region (>99.8%) with 11 (1.59%) outliers, whereas cel6A.CB model showed 96.8% (394/407) residues
with 7 outliers (1.71%) (Table 2). After model generation, molecular docking studies were also carried
out to explore the protein-ligand associations. Due to the presence of the same catalytic unit in both
models having the same binding site residues, the docking affinities of CMC were similar (docking
score: −6.9 Kcal/mol) in both constructs.
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Table 2. Summary statistics of all-atom contacts and stereochemistry of cel6A.CB and cel6A.CBC after
refinement through molecular dynamics (MD) simulations.

All-Atom
Contacts

Summary Statistics cel6A.CB
(20 ns)

cel6A.CBC
(20 ns)

Clash Score, All Atoms: 0.94 1.13

Protein
Geometry

Poor rotamers 8/407 1.96% 16/689 2.32%
Favored rotamers 372/407 91.4% 632/689 91.72%

Ramachandran outliers 7/407 1.71% 11/689 1.59%
Ramachandran favored 370/407 90.9% 622/689 90.27%
Ramachandran allowed 394/407 96.8% 674/689 97.9%

MolProbity score 1.70 1.68
Cβ deviations >0.25Å 23 5.65% 51 7.4%

Bad bonds: 30/2194 1.37% 62/5038 1.23%
Bad angles: 74/3014 2.45% 105/6939 1.51%

Peptide
Omegas

Cis Prolines: 0/20 0.00% 0/52 0.00%
Cis nonProlines: 1 0.24% 3 0.42%

3.5. Global Structural Stability

Since protein denaturation usually arises in microsecond time scale [67,68], it is difficult to
investigate the protein unfolding at normal temperatures using molecular dynamic simulations.
To analyze denaturation process in cel6A constructs within the reasonable time limits, much higher
temperatures are used. MD simulations procedures have been performed at higher temperatures
previously to study the thermostability in various enzymes [15,36,38,69,70]. To investigate the global
structural stability of cel6A.CBC, a comparative molecular dynamics (MD) simulation, was carried out
at different temperatures. Based on the endoglucanase activity results, four temperatures were selected,
including room temperature (26.85 ◦C), the optimal temperature for endoglucanase activity by all
constructs (60.85 ◦C), the highest temperature where cel6A.CBC still showed slight thermostability
with more than 80% CMCase activity (74.85 ◦C), and one extreme temperature (126.85 ◦C; to explore the
thermal sensitive regions). MD simulations for a total of 100 ns were carried out at each temperature
range to observe deviations and fluctuations implicated in conformational changes of cel6A.CBC.

Structural thermal fluctuations of proteins are intrinsically related to their functions [71]. Therefore,
we initially investigated the temperature influence on global structure stability in terms of root mean
square deviations (RMSD) of the cel6A.CBC Cα-backbone atoms during the simulation. All MD
simulations analysis is illustrated in Figure 5. Figure 5A evaluates the backbone RMSD trajectories from
the corresponding initial structure as a function of time at four different temperatures. As expected,
cel6A.CBC remained stable during the entire simulation period of 100 ns at 26.85 ◦C and 60.85 ◦C,
and converged between 1 to 1.5Å and showed close resemblance with the initial structures (Figures 5A
and 6). Throughout the simulation, both catalytic domains pulled inward over the CBM-II domain
and adopted a closed conformation over time (Figure 6A–C). At 74.85 ◦C, where cel6A.CBC showed
CMCase activity, and all other constructs lost their activities, the cel6A.CBC Cα-backbone atoms
remained stable for first 20 ns and reached equilibrium at about 4Å and attained a value of 5Å which
showed stable RMSD for the rest of the simulation. Although it fluctuated slightly in that period but
remained converged within 1.5Å radius, demonstrated more favourable conformation. At 126.85 ◦C
(400 K) simulations, cel6A.CBC Cα-backbone atoms increased in the beginning, slightly stable at 4Å,
and attained a high value of 7.5 Å (Figure 5A). Thus, increasing temperature up to 126.85 ◦C (400 K)
showed little stability and significant structural distortions were examined only at a higher temperature
of 126.85 ◦C.
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Figure 5. (A) Time dependent all backbone atom root mean square deviation (RMSD) of cel6A.CBC,
(B) Root mean square fluctuation (RMSF) as a function of residue number of cel6A.CBC at different
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and 126.85 ◦C (red).
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Figure 6. Molecular surface representation of cel6A.CBC construct with catalytic domains are colored
as orange at N-terminal (CD-N) and cauliflower at C-terminal (CD-C), while CBM-II connecting the
catalytic domains is colored green. (A) The initial conformation of cel6A.CBC before MD simulation.
(B) The conformation of cel6A.CBC at an optimum temperature of 60.85 ◦C after 50 ns. (C) The
conformation of cel6A.CBC at an optimum temperature of 60.85 ◦C after 100 ns. (D) The conformation
of cel6A.CBC at an extreme temperature of 126.85 ◦C after 100 ns.

3.6. Structural Flexibility

To confirm the stability of cel6A.CBC at different temperatures, the average
root-mean-square-fluctuations (RMSF) were also calculated, which could give us the qualitative
comparison of the fluctuations of different regions of cel6A.CBC construct. Figure 5B compares the
RMSFs of each residue for every temperature simulations for cel6A.CBC. At 26.85 and 60.85 ◦C,
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most regions of cel6A.CBC showed slight fluctuations at increasing temperature, indicated cel6A.CBC
is rather thermostable at these temperatures. At 74.85 ◦C, although the N-terminal catalytic domain
showed less fluctuations, CBM-II domain connecting to the C-terminal catalytic domain experienced
significant fluctuations, which directed larger fluctuations up to ~4Å in C-terminal catalytic domain.
These results agreed with the experimental thermostability assays, where cel6A.CBC still showed slight
thermostability at 74.85 ◦C with more than 80% CMCase activity. When the temperature was elevated
to 126.85 ◦C, most of the residues became highly mobile due to the denaturing of secondary structural
at extreme temperature. Whereas, the linker displayed systematically less fluctuations throughout
simulation at other temperatures (Figure 5B). Figure 6D clearly illustrated the loss of β-sheet content
in CBM-II domain, which initiated the unfolding process and both catalytic domains moved apart
at a higher temperature (at 126.85 ◦C). Contrary to that, both catalytic domains remained closer in a
compact confirmation at other temperatures (26.85, 60.85, and 74.85 ◦C) throughout 100-ns simulations
(Figures 5 and 6).

3.7. Binding Free Energy Calculations

In order to provide quantitative descriptions, i.e., the absolute binding free energies of cel6A.CBC to
the CMC substrate binding, MM-GBSA module of Amber 18 was utilized to analyze the intermolecular
contributions with bound CMC. In order to compare the binding free energy, cel6A.CBC was compared
to its wild-type cel6A.CB., as cel6A.CBC contained two catalytic domains. Therefore a docked complex
was obtained bound with two CMC molecules in both catalytic domains, as shown in Figure 7.
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For wild-type cel6A.CBC, a simulation system was configured with both CMC molecules, and MD
simulation was performed for 20 ns. For wild-type cel6A.CB, a best-docked conformation bound with
CMC molecule was processed for the same time duration. A total of 1000 snapshots were obtained
from the whole 20 ns MD trajectory of each complex, and average binding free energy (∆Gtotal) was
calculated (Table 3). Although there was no direct comparison for the MM-GBSA results obtained from
this study, the reliability of MM-GBSA method in the calculation of substrate binding free energies has
been descriptively studied for the recognition of cellulose by the CBM [43,44]. The calculated binding
free energy of cel6A.CBC/CMC complex (∆Gtotal = −20.6 kcal/mol) was lower than cel6A.CB/CMC
(∆Gtotal = −12.0 kcal/mol), suggested favorable binding affinity in comparison. Such a difference in
binding free energies was evident due to the presence of an additional catalytic domain in cel6A.CBC,
which established additional intermolecular interactions with the second CMC molecule. These results
were in fairly good agreement with the experiment, where higher endoglucanase activity (600 U l−1

OD 600−1) and specific CMCase activity (7.2 U mg−1 enzyme) were observed for cel6A.CBC construct
as compared to the other constructs (Table 1). MM-GBSA values of cel6A.CBC/CMC complex was
also observed at different temperatures (using the same procedure as described above) to further
insight into the binding energy differences. The MM-GBSA values remained consistent for the first
three temperatures [∆Gtotal = −20.6 kcal/mol at 26.85 ◦C (300 K); −21.5 kcal/mol at 60.85 ◦C (334 K);
−19.2 kcal/mol at 74.85 ◦C (348 K)] but gradually reduced to −8.9 kcal/mol at 126.85 ◦C (Table 3).
The energy difference at the extreme 126.85 ◦C temperature was obvious from the dramatic distortion
of C-terminal catalytic domain due to the loss of β-sheet content in the CBM-II domain (Figure 6D),
which triggered higher fluctuations in the catalytic domain bound to CMC substrate, thus diminished
catalytically important electrostatic and van der Waals interactions.

Table 3. Molecular mechanics generalized Born surface area (MMGBSA) binding free energy results
for cel6A.CB at standard temperature (26.85 ◦C) and cel6A.CBC at different temperatures.

Contributions cel6A.CB
(kcal/mol)

cel6A.CBC (kcal/mol)

26.85 ◦C 60.85 ◦C 74.85 ◦C 126.85 ◦C

∆Eele −5.55 −8.94 −7.85 −8.24 −2.15
∆Evdw −14.57 −23.87 −22.84 −20.26 −13.2
∆EMM −20.12 −32.81 −30.69 −28.5 −15.35
∆Gp 10.2 15.63 13.96 13.45 7.98
∆Gnp −2.09 −3.45 −4.82 −4.21 −1.62
∆Gsol 8.11 12.18 9.14 9.24 6.36
∆Gtol −12.01 −20.63 −21.55 −19.26 −8.99

4. Conclusions

All cel6A variants showed a broad range of pH optima with a pH range of 5.0 and 8.0 retaining
more than 80% activity, except cel6A.CBC, which retained more than 90% endoglucanase activity in
this range. The optimum pH for all of the cel6A variants was 6.5. All the cel6A variants showed
more than 80% endoglucanase activity at a temperature range of 55 and 70 ◦C with optimum CMCase
activity at 65 ◦C. cel6A.C without CBM and cel6A.CBC with a new catalytic domain showed slightly
higher thermostability with more than 80% CMCase activity at 75 ◦C after 15 min of incubation and
more than 60% activity after 30 min incubation. These results suggested that inclusion of an extra
catalytic domain plays an important role in the thermostability of enzyme, while additional CBM
reduces its thermostability. Moreover, the MD simulations study showed an excellent rationale with
the experimental results and emphasized the thermostable region at higher temperatures. The present
study focused on the thermostable cel6A construct, which can potentiate the mass production of
bioethanol from plant biomass. On the other side, this study also identified the factors responsible
for thermostability of endoglucanase (cel6A) variants from Thermobifida fusca that may endeavour to
design enzymes with enhanced thermostability.
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Figure S1: Schematic representation of engineering of T. fusca endoglucanase cel6A; Figure S2: Schematic
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