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Abstract

AlphaFold2 and RoseTTAfold are able to predict, based solely on their sequence whether

GFP-like proteins will post-translationally form a chromophore (the part of the protein

responsible for fluorescence) or not. Their training has not only taught them protein structure

and folding, but also chemistry. The structures of 21 sequences of GFP-like fluorescent pro-

teins that will post-translationally form a chromophore and of 23 GFP-like non-fluorescent

proteins that do not have the residues required to form a chromophore were determined by

AlphaFold2 and RoseTTAfold. The resultant structures were mined for a series of geometric

measurements that are crucial to chromophore formation. Statistical analysis of these mea-

surements showed that both programs conclusively distinguished between chromophore

forming and non-chromophore forming proteins. A clear distinction between sequences

capable of forming a chromophore and those that do not have the residues required for chro-

mophore formation can be obtained by examining a single measurement—the RMSD of the

overlap of the central alpha helices of the crystal structure of S65T GFP and the AlphaFold2

determined structure. Only 10 of the 578 GFP-like proteins in the pdb have no chromophore,

yet when AlphaFold2 and RoseTTAFold are presented with the sequences of 44 GFP-like

proteins that are not in the pdb they fold the proteins in such a way that one can unequivo-

cally distinguish between those that can and cannot form a chromophore.

Introduction

AlphaFold2 [1, 2] and RoseTTAfold [3] are two freely available programs that can predict

three-dimensional protein structures from their amino acid sequence with atomic accuracy.

Both programs were created by machine learning and the ~180,000 structures in the protein

data bank (pdb) [4, 5] were used as an important training set. The three-dimensional struc-

tures of many of the protein structures in the pdb have been influenced by the proteins binding

ligands and post-translation modifications. Agirre and co-workers have shown that
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AlphaFold2 predicts the folding of glycosylated proteins solely from the amino acid sequence

of the proteins because the program was trained on the pdb in which the glycosylated proteins

are found in their full or partially glycanated forms [6]. In the absence of its heme cofactor

AlphaFold2 will fold a hemoglobin subunit so that it has a cavity complementary with a heme

subunit [6, 7] and it will identify iron-sulfur cluster and zinc binding sites [8]. Finally, Alpha-

Fold2 has been shown to generate protein-peptide complex structures without multiple align-

ments of the peptide fragment [9].

Fluorescent Proteins (FPs) are commonly used molecular tracer molecules. A Nobel Prize

was awarded in 2008 for the development of GFP as a “tagging tool in bioscience” [10] and, in

2014, for the use of fluorescent proteins in “the development of super-resolved fluorescence

microscopy” [11]. Four books [12–15] and numerous reviews [16–21] have been written about

fluorescent proteins. It is their post-translational autocatalytic chromophore formation that

makes these genetic tracer molecules so useful. They are all folded into a β-barrel composed of

eleven β sheets surrounding the chromophore that is located in a central alpha helix. Some

Green Fluorescent Proteins-like (GFP-like) proteins fold into the characteristic β-barrel shape

but do not form a chromophore. The training set (pdb) is heavily weighted towards structures

with a chromophore, less than 2% of the GFP-like structures in the pdb have no chromophore.

There are 578 GFP-like proteins in the pdb, 568 of these structures have a fully formed chro-

mophore, they are the GFP-like fluorescent proteins (GFP-FPs) and 10 have no chromophore.

The commonly accepted mechanism for chromophore formation in GFP-like proteins is

shown in Fig 1. In order for the autocatalytic chromphore formation to occur the immature

GFP-like protein has to be in the tight-turn conformation (Fig 1I) [22]. This tight turn breaks

the canonical i to i+4 hydrogen bonding arrangement found in alpha helices [23], forming a

kink that removes the intra main-chain hydrogen bonds that are commonly associated with an

α-helix (S1 Fig). It is presumed that this aids in chromophore formation because the hydrogen

bonds would otherwise have to be broken during maturation. Tyr66, Gly65, Arg96 and

Glu222 (GFP numbering) are involved in chromophore formation and are highly conserved

in all naturally occurring GFP-like FPs [24, 25]. The central tyrosine of the chromophore,

Tyr66, is conserved in all naturally-occurring GFP-like FPs, although any aromatic residue in

that position will auto-catalytically form a chromophore [24]. Thus, we have chemical knowl-

edge that can be used to predict whether a GFP-like protein will form a chromophore or not.

A GFP-like protein has to have a glycine65, an aromatic residue in position 66 and an argi-

nine96 to form a chromophore. This is chemical knowledge that was not directly provided to

AlphaFold2 or RoseTTAFold.

We have used AlphaFold2 and RoseTTAFold to generate the structures of two series of

GFP-like sequences; one that can form a chromophore and the other that can’t. And have

shown that both programs fold the chromophore forming GFP-like sequences into a distinctly

different conformation compared to the sequences that cannot form a chromophore. The

structures in the training set taught the AI programs chemistry to distinguish which proteins

will be post-translationally modified from those that will not. This was highly unexpected.

Materials and methods

Sequence selection

Standard structures. Three GFP-like proteins with known solid-state structures were

selected: 1EMA, 2AWJ, 1H4U (pdb codes).

1EMA is the crystal structure of the S65T mutant of GFP. Together with 1GFL [27] it was

the first crystal structure of GFP to be solved [28]. It is the structure of a fluorescent protein

that has a mature chromophore formed from the 65TYG67 triad of residues (Fig 1V).
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2AWJ is an immature precyclized GFP-like protein structure. It is the R96M mutant that

takes about 3 months to form the chromophore [29]. Arginine and methionine have similar

sizes, allowing us to safely assume that the conformation of immature wild-type GFP and its

R96M mutant would be the same. The crystal structure of the R96M mutant is the closest

solid-state structure to the immature GFP precyclized structure (Fig 1I).

1H4U is the structure of the G2 domain of mouse nidogen. It is a GFP-like structure with a

central alpha helix in an 11 stranded beta barrel. It has no chromophore and cannot form a

chromophore [30].

Sequences of chromophore forming GFP-like proteins. Amino acid sequences of GFP-

like fluorescent proteins that do not appear in the pdb were obtained from FPbase [31]. The

Fig 1. The cyclization-dehydration-oxidation pathway for chromophore formation. [26] Structure I is known as the immature precyclized form of the protein. The

tight-turn distance depicted in structure I was measured for all sequences and is presented in S1 Data. Structure V shows the fully formed mature chromophore (green).

https://doi.org/10.1371/journal.pone.0267560.g001
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chromophore forming GFP-like FP sequences were chosen from the FPBase in a way that they

spanned as much phylogenetic space possible and had not been crystalized i.e. they did not

appear in the pdb. Protein sequences were selected from each FP lineage, starting from the par-

ent protein. If the parent protein’s crystal structure was already solved, then the next protein

sequence in the lineage closest to the parent was selected. No sequence was used from lineages

in which all structures have been solved (DrCBD) and far-red FPs with a tetrapyrroloid

chromphores as these FPs are not GFP-like β-barrels.

Sequences of GFP-like proteins that cannot form a chromophore. Sequences of GFP-

like non-fluorescent proteins were taken from Haddock’s “Non-excitable fluorescent protein

orthologs found in ctenophores” paper [32] and a series of nidogen-G2 domains were obtained

from a standard protein BLAST search (BLASTP) using the 1H4U FASTA sequence as a pro-

tein query (The KAB1270852.1 Nidogen-1 Camelus dromedarius sequence was chosen to

honor the fact that the Connecticut College mascot is the camel). Only the G2 fragment region

of the nidogen sequences were used in the AI alignments and the subsequent analyses. See S1

Table for sequences studied and their sequence similarity to S65T GFP (1EMA).

AI predictions

RoseTTAFold was accessed via the RosettaCommons web-interface server Robetta [33] and

simplified AlphaFold(v2.1.0) was accessed through AlphaFold’s Colab notebook [34].

Alignments

MAFFT DASH [35] was used for the multiple alignment and Clustal Omega [36] to find the

percent identity matrix of all of the proteins relative to 1EMA, see S1 Table. All residues aligned

with residues 60 to 74 of 1EMA were considered part of the central alpha-helix (S2 Fig).

Measurements

Maestro Version 12.9.123 [37] was used to perform hydrogen bond measurements of the

structures obtained from pdb [5], Alphafold2 and RoseTTAFold. RMSD values for the alpha

helical overlaps were obtained by determining the pairwise distances between structures, using

the rms displacement after optimal rigid-body superposition between pairs of non-hydrogen

backbone atoms of residues highlighted in the alignment shown in S2 Fig of the supplementary

material [38, 39]. All the measurements are presented in S1 Data.

Results and discussion

Structures examined

AlphaFold2 and RoseTTAFold were used to predict the 3-dimensional structure of a series of

GFP-like proteins—a set of 3 standard structures with known solid state structures; a group of

21 GFP-like fluorescent proteins that will post-translationally form a chromophore and whose

solid state structures have not been determined; as well as a group of 23 GFP-like non-fluores-

cent proteins that do not have the residues required to form a chromophore and whose solid

state structures have not been determined. S1 Table lists all the sequences and how they were

obtained.

How does AI deal with the chromophore?

Since the chromophore formation involves post-translational modification of the 65TYG67

triad we can’t expect the AI programs to model the structure of GFP-like FPs with a fully

formed chromophore (Structure V in Fig 1). The central alpha-helical strand (residues 60 to
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74) of the structure obtained from the AI predicted folding of the S65T GFP sequence (as

found in 1EMA) was overlapped with the pdb structure of 1EMA. Both AlphaFold2 and

RoseTTAFold predict a structure closest to the immature precyclized form (structure I in Fig

1, a structure similar to the one obtained if one was to graphically mutate the chromophore

back to 65TYG67 and then minimize), a conformation most closely represented by crystal

structure of the R96A mutant 2AWJ (RMSD for AF2 = 0.32Å and RF = 0.40Å). The alpha heli-

cal overlaps with the regular alpha helix observed in the nidogen G2 domains (RMSD vs 1H4U

for AF2 = 1.65Å and RF = 1.68Å) or even vs. its own crystal structure (RMSD vs 1EMA for

AF2 = 0.78Å and RF = 0.80Å) are much higher, see S1 Data.

Can AI folding programs predict whether GFP-like proteins will form a

chromophore or not?

AlphaFold2 and RoseTTAFold were used to predict the 3-dimensional structures of 21 GFP-

like fluorescent proteins that will post-translationally form a chromophore as well as a group

of 23 GFP-like non-fluorescent proteins that do not have the residues required to form a chro-

mophore. All sequences folded into GFP-like 11 stranded β-barrels with a central alpha helix.

The resultant structures were analyzed to establish whether according to the chromophore

forming mechanism discussed in the introduction and shown in Fig 1, they were in conforma-

tions geometrically primed for chromophore formation or whether they could not form a

chromophore. We overlapped their central alpha helical strands with the strands obtained

from the crystal structures of 1EMA (has chromophore), 2AWJ (has no chromophore but is in

the right conformation to form one) and 1H4U (has no chromophore and is in the wrong con-

formation to form chromophore); their tight-turns were measured, as were the i to i+4 hydro-

gen bonding distances in their alpha helices.

Statistical analysis of the AlphaFold2 predictions. From the boxplot, Fig 2, as well as the

data presented in S1 Data and S2 Table, it is apparent that the RMSD for α-helix overlap of the

AlphaFold2 predicted structures with 1EMA-crystal is much higher for those that will not form a

chromophore than those that do. Moreover, the Welch two sample t-test shows there is a signifi-

cant difference in the mean values of α-helix overlap with 1EMA-crystal between GFP-like

Fig 2. RMSD overlap of the α-helix of the 1EMA-crystal structure with the α-helix of 1EMA as determined by

AlphaFold2 for GFP-like proteins that will form a chromophore (SYG) and those that do not (no SYG).

https://doi.org/10.1371/journal.pone.0267560.g002
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proteins that will form a chromophore and those that do not (t-value = 10.646 and p-value = 7.77

x 10−12). The average RMSD for GFP-like proteins that will not form a chromophore is 1.372Å
while the average value for GFP-like proteins that will form a chromophore is 0.799Å.

For the structures predicted by AlphaFold2 one only needs to compare the predicted alpha

helical structure with that of the S65T GFP pdb structure to know whether the GFP-like pro-

tein will form a chromophore or not.

A LASSO regression model was built using “can form chromophore” (= 1) and “cannot

form chromophore” (= 0) as the response variable with all the measurements including Alpha

helix overlap, tight turn distance, as well as H-Bond distances in angstrom. The final model

includes the following predictors—the alpha helix overlap with 1EMA-crystal as well as H-

bond distances in Angstrom between residues 61–65 (HD2), 62–66 (HD3), 70–74 (HD11).

The model shows there is a clear distinction between the sequences capable of chromophore

forming and those that don’t have the residues required for chromophore formation, see S3

Fig and S3 Table. A model built on just the measurements of the hydrogen bonding distances

is also able to distinguish between chromophore and non-chromophore forming structures.

Statistical analysis of the RoseTTAFold predictions. The RMSD for the α-helix overlap

of the RoseTTAFold predicted structures with 1EMA-crystal structures is generally higher for

those structures that will not form a chromophore than those that do. However the appropriate

boxplot (S4 Fig) as well as the data presented in S1 Data and S4 Table, show that while RoseT-

TAFold can distinguish between posttranslationally modified and non-posttranslationally

structures it is not as distinctive as AlphaFold2.

The Welch two sample t-test shows that there is a significant difference in the mean values

for alpha helix overlap with 1EMA-crystal between GFP-like proteins that will form a chromo-

phore and those that do not (t-value = 4.699 and p-value = 3.526 x 10−5). The average value for

GFP-like proteins that will not form a chromophore is 1.317 while the average value for GFP-

like proteins that will form a chromophore is 1.003.

For data collected using RoseTTaFold, we built a LASSO regression model using “can form

chromophore” (= 1) and “cannot form chromophore” (= 0) as the response variable. The

selected predictors of final model are: the RMSD of the alpha helix overlap with 1EMA-crystal

and 2AWJ-crystal, the tight turn distances, as well as H-bond distances in Angstrom between

residues 61 and 65 (HD2), 62–66 (HD3), 63–67 (HD4), 64–68 (HD5), see S5 Table and S5

Fig. From the prediction results, we can see there is a clear distinction between the sequences

capable of forming a chromophore and those that can’t. A model built on just the measure-

ments of hydrogen bonding distances is also able to distinguish between chromophore and

non-chromophore forming structures.

Conclusions

Only 10 of the 578 GFP-like proteins in the pdb have no chromophore, yet when AlphaFold2

and RoseTTAFold are presented with the sequences of 44 GFP-like proteins that are not in the

pdb they fold the proteins in such a way that one can unequivocally distinguish between those

that can and cannot form a chromophore. They predict the conformation of the immature pro-

tein with a kink in the α-helix (as expected from machine learning vs. memorization) and have

used their training set to learn some chemistry, they can distinguish between GFP-like proteins

that will form a chromophore and those that do not. We suspect that the pdb training set and

multiple sequence alignments enable AlphaFold2 and RoseTTAFold to “think” like chemists

and look for the presence of residues equivalent to Arg96, Gly65 and an aromatic residue at

position 66 in GFP–the residues required for chromophore formation–and use those to fold the

sequence in a chromophore forming or non-chromophore forming conformations.
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Supporting information

S1 Fig. Main chain i to i+4 “hydrogen bonding” alpha helical interactions measured and

presented in S1 Data.

(DOCX)

S2 Fig. Alignment of all sequences used.

(DOCX)

S3 Fig. Predicted possibility that structure forms a chromophore or cannot form a chro-

mophore using LASSO model from S2 Table on AlphaFold2 data.

(DOCX)

S4 Fig. RMSD overlap of the α-helix of the 1EMA-crystal with the α-helix of 1EMA as

determined by RoseTTAFold for GFP-like proteins that will form a chromophore and

those that do not.

(DOCX)

S5 Fig. Predicted possibility that structure forms a chromophore or cannot form a chro-

mophore using LASSO model from S4 Table, which is based on RoseTTAFold data.

(DOCX)

S1 Data. RMSD overlap of the α-helix of the 1EMA, 2AWJ, 1H4U crystal structures

with the α-helix of the RoseTTAFold and AlphaFold determined structures, tight

turn distances of RoseTTAFold and AlphaFold determined structures and the main

chain i to i+4 “hydrogen bonding” alpha helical interactions. These are the geometric

measurements that are crucial to chromophore formation. The structures are divided

into two groups, GFP-like proteins that will form a chromophore and those that do not.

(XLSX)

S1 Table. Description of all sequences used in this study [28–30, 32, 40–62].

(DOCX)

S2 Table. Summary statistics of the RMSD overlap (in Angstrom) of the α-helix of the

1EMA-crystal with the α-helix of 1EMA as determined by AlphaFold2 for GFP-like pro-

teins that will form a chromophore and those that do not.

(DOCX)

S3 Table. LASSO model results for the alpha helix overlap with 1EMA-crystal as well as H-

bond distances in angstrom between residues 61–65 (HD2), 62–66 (HD3), 70–74 (HD11)

collected using AlphaFold2.

(DOCX)

S4 Table. Summary statistics of the RMSD overlap (in Angstrom) of the α-helix of the

1EMA-crystal with the α-helix of 1EMA as determined by RoseTTAFold for GFP-like pro-

teins that will form a chromophore and those that do not.

(DOCX)

S5 Table. LASSO model results for the RMSD of the alpha helix overlap with 1EMA and

2AWJ-crystal structures, the tight turn distances, as well as H-bond distances in Angstrom

between residues 61 and 65 (HD2), 62–66 (HD3), 63–67 (HD4), 64–68 (HD5) collected

using RoseTTAFold simulations.

(DOCX)
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