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ABSTRACT: Immune system and renin-angiotensin-aldosterone system dysregulation with associated cytokine release syndrome
may be a key feature of early stage of SARS-CoV-2 organotropism and infection. Following viral mediated brain injury, dysregulated
neurochemical activity may cause neurogenic stress cardiomyopathy, which is characterized by transient myocardial dysfunction and
arrhythmias. Cardiomyopathy along with acute acute inflammatory thromboembolism and endotheliitis (fragile endothelium) might
at least partially explain the underlying mechanisms of rapidly evolving life-threatening COVID-19. Further studies are clearly
required to explore these complex pathologies.
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■ INTRODUCTION

Recently, devastating brain injuries including stroke, intra-
cerebral hemorrhage, and acute disseminated encephalomye-
litis (ADEM) have been reported for the novel SARS-CoV-2
disease (COVID-19).1,2 This injury has been linked to the
ability of the virus to gain cell entry via subunits of its spike
protein that after being primed by the cellular serine protease
TMPRSS2 could bind to the angiotensin-converting enzyme 2
(ACE2) receptor, thus causing endothelial inflammation.3,4

The pathophysiologic repertoire of SARS-CoV-2 integrates
direct viral toxicity, endotheliitis, and thromboembolic
phenomena, as well as a dysregulated immune response and
renin−angiotensin−aldosterone system (RAAS). The immune
pathogenesis may be further linked to the virus related
cytokine release syndrome (CRS)5 and associated micro-
circulatory dysfunction, which in turn is clearly documented as
small vessel angiopathy with associated microthrombosis in
autopsies.6,7 Although recently published studies have
suggested an increased prevalence of neurogenic stress
cardiomyopathy (NSC) in patients with COVID-19,8−10 the
histopathologic findings in autopsies of deceased COVID-19
patients have not confirmed definitively the occurrence of
myocarditis.7 Moreover, in the natural course of severe
COVID-19, there appears to be an early stage during which
the virus may choose to attack any system (organotropism),
and a late stage that is usually featured by diffuse lung injury (in
the majority of cases).11 We have previously demonstrated the
natural course of COVID-19 lung injury by means of point-of-
care lung ultrasound in a cohort of critically ill patients.12

Herein, we are analyzing data regarding the early stage of
COVID-19 focusing on endothelial injury and the associated
neurochemical dysfunction.

■ FRAGILE ENDOTHELIUM AND DYSREGULATED
NEUROCHEMICAL ACTIVITY

The hallmark of the SARS-CoV-2 pathology appears to be
endothelial damage. Apart from the aforementioned mecha-
nisms of direct cell entry, dysregulation of RAAS and the
immune system is considered to be important. The high
affinity of SARS-CoV-2 for the ACE2 receptor, and possibly
other receptors that are still to be identified, could result in
severe dysfunction of the RAAS, as ACE2 is a pivotal counter-
regulator in this pathway. RAAS is integrated in controlling
essential homeostatic processes such as electrolyte/fluid
balance, blood pressure, and vascular permeability. ACE2
cleaves angiotensin II into angiotensin I, which has vasodilator,
antiproliferative, and antifibrotic properties.13 The organo-
tropism of SARS-CoV-2 could be at least partially explained by
the hypothesis that the virus is using the RAAS as a vehicle of
its unpredictable early stage attack on human cells. During this
early stage of infection, lymphocytopenia, a key laboratory
marker of COVID-19 and an early predictor of disease severity,
may develop rapidly within days (as compared to years
required by other viruses to cause immune system
dysregulation, i.e., human immunodeficiency virus). Interest-
ingly, viral ACE2-dependent toxicity has been one of the
proposed mechanisms of lymphocytopenia, integrating abnor-
mally high levels of D-dimer, neutrophilia, and the presence of
atypical lymphocytes and megacaryocytes, signaling thus,
according to previous studies, immune system dysregulation
and associated CRS.14 Subsequently, the increased expression
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of ACE2 in endothelial cells post SARS-CoV-2 infection may
disseminate a malicious cycle of endothelial inflammation, and
associated thromboembolic phenomena (fragile endothelium,
Figure 1). However, this cannot explain the elusive myocardial
inflammation in histopathology findings of COVID-19
patients.7 Surely, the pathophysiology of COVID-19 related
cardiac injury could be multifactorial, integrating NSC,
coronary artery disease, arrhythmias, right ventricular strain
due to acute respiratory syndrome, and putative pulmonary
embolism. Among the potential mechanisms, the suggested
occurrence of NSC seems to be a rational thought. The fact
that the virus may cause direct or indirect brain inflammatory
injury has been underlined in the aforementioned paragraphs.
The brain−heart interplay in the NSC pathophysiology has
been studied previously. Catecholamine-mediated direct
myocardial injury remains the mainstream hypothesis. Brain
injury may elicit a catecholamine storm, which in turn may
cause coronary artery dysfunction, epicardial vessel spasm,
transient left ventricular outflow tract obstruction, and
generation of coronary clots with spontaneous recanalization.
The massive release of catecholamines has been also linked to
a specific genetic basis such as polymorphisms of b1, b2, a2
receptors, Gs or Gi proteins, adenyl-cyclase, and other
constituents of the adrenergic pathways.15−17 Notably, the
histopathology findings of ischemic heart disease versus NSC
are different: in the former, cells die in an almost relaxed state
characterized by polymorphonuclear cell response and
necrosis; while, in the latter, cells may die in a hypercontracted
state with contraction bands, which is usually visible adjacent
to the cardiac nerves. However, in NSC, the myocardial
abnormalities can also be reversible. Hence, this might be a
focus of COVID-19 histopathology studies.
The pertinent neuroendocrine changes resulting in the

catecholamine storm post brain injury are mediated via the
hypothalamic−pituitary−adrenocortical and sympatho−adre-
nomedullary axes. Moreover, a network within the insular
cortex, the anterior cingulate gyrus, and the amygdala has also
been suggested to play an essential role in brain−heart
interactions. This network is connected with the cerebral
cortex, the basal ganglia, and the limbic structure. Interestingly,
a lateralization model for cardiovascular function with
sympathetic tone predominantly regulated in the right insula

and parasympathetic effects situated in the left insula has been
previously suggested.18−20 Nevertheless, the cardioregulatory
sympathetic pathways also integrate the cortex, the amygdala,
the periaqueductal gray, the locus coeruleus, the rostral and
caudal ventrolateral medulla, the cingulate, the spinal lateral
horn, and the nucleus tractus solitarii, which have been
previously suggested to be prone to direct SARS-CoV-2
invasion.21 We speculate that the documented ADEM in
severe COVID-19 along with its pertinent structural brain
distribution may further imply that the pathological involve-
ment of the insula along with the hypothalamic−pituitary−
adrenocortical and sympatho−adrenomedullary axes cannot be
excluded in evolving SARS-CoV-2 infection with a brain
tropism. This hypothesis may at least partially explain the fact
of rapidly evolving clinical pictures and sudden death in
critically ill patients with COVID-19.22,23

■ CONCLUSION
Immune system and RAAS dysregulation with associated CRS
may be key features of the early stage of SARS-CoV-2
organotropism and infection. Dysregulated autonomic dis-
charges, post brain viral injury, may cause NSC, which is
characterized by transient myocardial dysfunction and heart-
rate variabilities and could run a subclinical course. However,
this dysregulated neurochemical activity along with the acute
inflammatory thromboembolism and endotheliitis (fragile
endothelium) might at least partially explain the underlying
mechanisms of life-threatening COVID-19. Surely, further
studies are clearly required to shed more light on these
complex pathologies.
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Figure 1. Theory of fragile endothelium (endotheliitis and thromboinflammation) and the dysregulated brain neurochemical activity in the early
stages of SARS-CoV-2 infection (with brain tropism), resulting in neurogenic stress cardiomyopathy.
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