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Abstract

Motivation: Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health
and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is
impeded by the extensive computational and statistical knowledge required to perform such analysis.

Results: To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application
for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an
R/Bioconductor package for estimating phase, amplitude and statistical significance using four popular approaches
to rhythm detection (Cosinor, JTK Cycle, ARSER and Lomb-Scargle). We optimized these algorithms for speed,
improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time.
Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling and
incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity.

Availability and implementation: The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/
packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under
a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for
use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying
the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm).

Contact: art.petronis@camh.ca or gabriel.oh@camh.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological rhythmicity, including circadian and other cycles
(Schibler and Naef, 2005), are fundamentally important to life on
Earth (Bell-Pedersen et al., 2005). Numerous lines of evidence have
indicated that disturbance of biological rhythms is a risk factor for
human morbidities, including psychiatric, metabolic and malignant
diseases (Roenneberg and Merrow, 2016). Several approaches can
be used to estimate the phase, amplitude and statistical significance
of these rhythms in time-series data, where each methodology has
strengths and weaknesses under various conditions (Deckard et al.,
2013). Current implementations of these algorithms in R (e.g.
JTK Cycle, ARSER and Lomb-Scargle) tend to be slow and difficult
to use. Additionally, no unified toolkit exists for performing
pre-processing, dimensionality reduction, period detection and visu-
alization of oscillation statistics, all of which require specialized
knowledge and expertise. To address these challenges, we developed

DiscoRhythm (Discovering Rhythmicity), a web application and
accompanying R/Bioconductor package for analyzing rhythmicity in
temporal biological datasets. DiscoRhythm provides a unified inter-
face to execute four methods of rhythm estimation, and heuristically
selects suitable approaches for the data being analyzed. By providing
interactive modules for outlier detection, analysis of replicates and
periodicity profiling, DiscoRhythm offers a framework for access-
ible analysis of periodic datasets in a web browser or in R.

2 Results

DiscoRhythm is implemented as a package in the R programming
language (ver. 3.6þ) with the web interface based on the R Shiny
platform (Chang et al., 2018), capable of reproducing findings in
transcriptomic (Li et al., 2013), epigenomic (Oh et al., 2019), metab-
olomic (Krishnaiah et al., 2017), proteomic (Hurley et al., 2018)
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and other similar datasets. A workflow in DiscoRhythm begins with
a matrix of temporal data (Fig. 1), where two metrics are computed
to filter outlier samples, followed by a feature selection procedure
based on the ratio of biological signal to technical noise. Dominant
periods are determined using dataset-wide period evaluation proce-
dures, and finally, multiple rhythm detection methods are executed
on each feature to infer the presence of rhythms. Results of the web
session may be emailed or downloaded upon completion as a zip file
also containing the R data and code required for future
reproducibility.

2.1 Input
Input for the web interface is a single table in a CSV (comma separated
values) format. Columns contain samples named according to their
time of collection, and rows contain values of observed features.
Experimental design specifications regarding technical replicates, units
of time and the main period of interest are also required. A circadian
gene expression dataset simulated using simphony (Singer et al., 2019)
is provided in order to highlight the available features and demonstrate
the sample naming scheme. In addition to the tabular input of the
graphical interface, the DiscoRhythm R package also accepts
SummarizedExperiment objects commonly returned by other R pack-
ages in Bioconductor (Gentleman et al., 2004).

2.2 Outlier detection and feature selection
Sample quality is assessed using two commonly utilized metrics for
outlier detection. The first metric is the average inter-sample correl-
ation, computed as a mean pairwise correlation between a given
sample and all other samples (Oldham et al., 2008), while the se-
cond metric(s) is the sample score returned by principal component
analysis (PCA). For both metrics, samples that deviate considerably
from the rest (beyond a user-defined threshold) are flagged as out-
liers for removal from further analysis.

If present, technical replicates can be used to determine the
signal-to-noise ratio for each feature (i.e. F statistic of biological ver-
sus technical variation). For further analysis, the user is able to only
select the features exhibiting high signal-to-noise ratio, determined
either by effect size or statistical significance. Technical replicates
can then be combined by taking the mean, median or by choosing
one replicate at random to prevent inflated sample size stemming
from non-independent measurements.

2.3 Period detection
Two approaches are available for identifying the dominant period of
rhythmicity. First, a goodness of fit can be evaluated for each period
using a cosinor model across all selected features, returning the me-
dian coefficient of determination (R2) of the fits. Alternatively,
global rhythmic patterns may be investigated using PCA scores.
If ‘circular time’ is used for sample collection [e.g. time of day,

in hours, is recorded over multiple days as 2, 4, . . ., 24, 2, 4, . . .,
where samples with the same collection times are assumed to be bio-
logical replicates (Hughes et al., 2017)], DiscoRhythm will limit the
candidate periods for rhythm detection to p/k where p is the length
of the cycle and k is a positive integer (Cornelissen, 2014).

2.4 Estimating rhythm characteristics
Oscillations can be detected for each feature using a user-specified
period. The period should be chosen by an a priori hypothesis or
detected by the procedures in Section 2.3. An interface is provided to
four commonly used approaches to oscillation detection [Cosinor
(Cornelissen, 2014), ARSER (Yang and Su, 2010), JTK Cycle (Hughes
et al., 2010) and Lomb-Scargle (Glynn et al., 2006)]. Each is heuristic-
ally made available if the input dataset satisfies algorithm-specific crite-
ria, such as: the presence (or absence) of missing values, biological
replicates, uneven sampling frequencies or non-integer intervals. To
make DiscoRhythm suitable for -omic-scale and real-time analysis,
high-performance implementations of each algorithm were developed,
with runtime improvements of up to 30-fold [Supplementary Table S1
and Fig. S1; parallelized ARSER, JTK Cycle and Lomb-Scargle were
contributed directly to MetaCycle version 1.2 (Wu et al., 2016)]. Each
method returns estimated phases, amplitudes, and P-values, both raw
and adjusted for multiple testing (Benjamini and Hochberg, 1995).
These feature-specific rhythm characteristics can be interactively visual-
ized and downloaded for further exploration.

3 Discussion

Rhythmicity is a common topic of discussion for most biological
researchers. Yet the quantitative analysis is difficult and, therefore, al-
most exclusively performed by researchers with specialization in statis-
tics and computation. To democratize the field of chronobiology, we
developed DiscoRhythm—a suite of standardized analytical procedures
made approachable through interactivity, informative visualizations
and key statistics for characterizing rhythmic patterns of temporal
datasets. This new tool will enable even non-computational researchers
to extract insights on the rhythmicity of biological data in a highly effi-
cient manner. While our workflow is optimized for -omic-scale experi-
ments, future versions of DiscoRhythm will also tailor to lower
throughput datasets. Lastly, to maintain and extend accessibility to
relevant periodic analysis approaches, we plan to adopt new methods
as they become available in R/Bioconductor.
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Fig. 1. Overview of the analysis procedures performed by DiscoRhythm. The illustration shows the step-wise operations being performed on the input circadian data matrix.
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