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Abstract: No genetic basis is currently established that differentiates hypermobility spectrum dis-
orders (HSD) from hypermobile Ehlers–Danlos syndrome (hEDS). Diagnosis is entirely based on
clinical parameters with high overlap, leading to frequent misdiagnosis of these two phenotypes.
This study presents a landscape of DNA mutations through whole-exome sequencing of patients
clinically diagnosed with generalized HSD. In this study, three genes (MUC3A, RHBG, and ZNF717)
were mutated in all five patients evaluated. The functional enrichment analysis on all 1162 mutated
genes identified the extracellular matrix (ECM) structural constituent as the primary overrepresented
molecular function. Ingenuity pathway analysis identified relevant bio-functions, such as the or-
ganization of ECM and hereditary connective tissue disorders. A comparison with the matrisome
revealed 55 genes and highlighted MUC16 and FREM2. We also contrasted the list of mutated genes
with those from a transcriptomic analysis on data from Gene Expression Omnibus, with only 0.5% of
the genes at the intersection of both approaches supporting the hypothesis of two different diseases
that inevitably share a common genetic background but are not the same. Potential biomarkers for
HSD include the five genes presented. We conclude the study by describing five potential biomarkers
and by highlighting the importance of genetic/genomic approaches that, combined with clinical data,
may result in an accurate diagnosis and better treatment.

Keywords: joint hypermobility; exome; genes

1. Introduction

Joint hypermobility (JH) is defined as a condition in which the synovial joints move
beyond the normal range of movement. Previously, when JH was associated with muscu-
loskeletal problems, it was simply referred to as joint hypermobility syndrome (JHS). If JH
occurs in multiple joints involving the limbs and the axial skeleton, it is then classified as
Generalized Joint Hypermobility (GJH) [1]. The prevalence of GJH has been reported to
be around 11% to 25% worldwide. However, this prevalence varies significantly between
ages, genders, and ethnicities, and GJH is more common in children and young adults.
The standard method of assessment for GJH is the Beighton score [2]. In clinical practice,
JH alone does not necessarily lead to clearly identifiable symptoms; it is not considered a
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disease and, therefore, is not set for diagnosis [3]. Currently, if GJH is combined with sys-
temic manifestations of generalized connective tissue disorder; musculoskeletal problems,
such as pain, subluxation, dislocation, and premature osteoarthritis; or a positive family
history, it is clinically diagnosed as hypermobile Ehlers–Danlos syndrome (hEDS) [4].

hEDS is one of the thirteen different types of Ehlers–Danlos syndrome, a heterogeneous
group of hereditary disorders of connective tissue with specific ways of affecting the body.
Each type is characterized by specific clinical criteria. However, the cause at the molecular
level and the genetic characterization are unknown for hEDS, which is commonly confused
with JHS. The most recent information (from 2021) on the updated EDS classification with
the inheritance patterns, genes, and proteins associated with each EDS subtype is presented
in [5]. Still, no candidate genes or proteins have been associated with hEDS.

The origin of the formal name of EDS dates back to 1936 [6] after Edvard Ehlers (1901)
and Henri-Alexandre Danlos (1908) [7] identified people with noticeable variations in the
mechanical properties of their skin. It was not until 1986, after a meeting in Berlin, that a
new nosology was proposed. The Berlin nosology recognized eleven subtypes numbered I
to XI. More research led to the Villefranche nosology (1997) [8], which simplified the eleven
classifications into six in 1997. Further clinical and molecular characterizations, as well
as the lack of genetic diagnosis, raised concerns about EDS nosology again. Another EDS
meeting in New York in May of 2016 led to the current nosology. The latest meeting of the
International Consortium on the Ehlers–Danlos syndromes [9] revised the classification
that replaced the Villefranche nosology with EDS and the Brighton criteria with JH. It
introduced a new classification of hypermobility spectrum disorders (HSD), which JHS
falls into [10]. It was established in Malfait’s work that JHS became HSD. Hence, it is now
official—cases are classified as hEDS or HSD, and the latter is diagnosed in patients with
symptomatic joint hypermobility who do not satisfy the current hEDS diagnostic criteria.
Whether hEDS and HSD are the same is still not final; the overlap in clinical manifestations
of HSD and hEDS requires complementing it with molecular descriptions and genomic
studies to characterize both diseases further. Today, we are down to two hypotheses from
the previous three presented by Castori and Colombi in 2015 [11]. Whether HSD and hEDS
are entirely unrelated or whether their phenotypes share a common genetic background
remains unknown (Figure 1).
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HSD is a group of clinically relevant and different conditions related to joint hypermo-
bility, whilst hEDS, characterized by JH and fewer, less severe cutaneous manifestations,
tends to be more limited to musculoskeletal manifestations. Both conditions have been
associated with various other conditions, such as functional gastrointestinal disorders,
dysautonomia, and mast cell activation syndrome. However, what is common to them
is that currently, there are no associated genes for these conditions and no accurate diag-
nosis leading to proper treatment. We aim to find genetic biomarkers that characterize
HSD but are also able to distinguish it from hEDS. This work presents a landscape of
genetic mutations through whole-exome sequencing in samples from patients clinically
diagnosed with HSD (previously GJH). To contrast mutated genes in HSD to transcriptional
changes in another group of patients diagnosed with hEDS/JHS (prior to 2017 nosology),
we used a whole-transcriptomic case–control microarray dataset downloaded from Gene
Expression Omnibus.

2. Materials and Methods
2.1. Data

DNA from blood samples of 5 patients, two of them with a familial relationship,
mother (patient S2) and daughter (patient S1), were processed for whole-exome sequencing.
The referring physician established the clinical diagnosis as generalized HSD by thoroughly
reviewing the clinical information to ensure an accurate phenotype. In addition, all other
symptoms were recorded in the patient’s clinical profile. The details of the clinical data are
shown in Table 1, and the pedigrees are shown in Supplementary Figure S1.

Table 1. Clinical data of patients involved in the study. The "+" sign indicates positive for
the parameter.

Phenotype S1 S2 S3 S4 S5

Sex F F M F M
Age 13 49 25 19 70
Family history + + + + +
The Five-Point
Questionnaire, 5PQ [1] + + + + +

Beighton Score 6/9 6/9 7/9 7/9 6/9

The genomic DNA was extracted from 100 µL of whole blood from the affected in-
dividuals using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). Genomic
DNA was quantified using Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, CA, USA).
Quality was determined spectrophotometrically using a Nanodrop One (Thermo Fisher
Scientific, Waltham MA, USA). Sequencing libraries were prepared using Library Prepara-
tion EF 2.0 with Enzymatic Fragmentation and the Twist Universal Adapter System (Twist
Bioscience, San Francisco, CA, USA) according to the manufacturer’s instructions, and
exome hybridization was achieved following the Twist Fast Hybridization Target Enrich-
ment Protocol coupled with the Twist Comprehensive Exome Panel (Twist Bioscience, San
Francisco, CA, USA). All libraries were quantified with the Qubit dsDNA BR Assay Kit
(Invitrogen, Carlsbad, CA, USA), library size was analyzed in a QSep 400 (BiOptic, New
Taipei City, Taiwan), and sequencing was performed using an SP flow cell in a NovaSeq
6000 (Illumina, San Diego CA, USA) in a 101 bp paired-end reads configuration.

The DNA sequence was mapped to the published human genome build UCSC
hg38/GRCh38 reference sequence using the latest internally validated version of Burroughs
Wheeler Aligner (BWA) BWA-Mem v0.7.8 [12]. The hg38 reference genome was down-
loaded from the UCSC Genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/chromosomes/, accessed on 13 October 2021).

The whole-transcriptome Affymetrix Human Gene St 1.0 data of five hEDS/JHS
human skin fibroblasts and six healthy individuals with accession number GSE77753 is

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/
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publicly available in the NCBI Gene Expression Omnibus database. Raw.CEL files were
pre-processed and analyzed to complement this study.

2.2. WES Analysis Workflow

Following a pipeline of best practices for variant calling in clinical sequencing [13],
raw sequence data in FASTQ format were aligned to the reference genome sequence using
BWA-Mem. A binary alignment/map (BAM) file was then created within the SAMtools
package [14].

The workflow used in this study is based explicitly on best practices for variant
calling with the Broad Institute GATK [15,16], as shown in Figure 2. This pipeline in-
volves several steps to ensure that the alignment files are high-quality to guarantee variant
calling accuracy.
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2.2.1. Quality Control and Pre-Processing

Quality control metrics for all fastq files were analyzed using FastQC [17] and filtered
with trimmomatic [18] before being aligned to the reference genome. The .sam file output
from the alignment was converted to a compressed .bam file, marking the PCR duplicates.
The sorting and indexing of the .bam file were performed with SAMtools and Picard [19].

2.2.2. Variant Calling

The GATK HaplotypeCaller [20] conducted a base-quality score recalibration and
local realignment around insertion–deletion sites and regions with poor mapping qual-
ity. In addition, variant calls were identified, and complex filtering also used the
GATK HaplotypeCaller.

2.2.3. Variant Annotation and Visualization

Variants were annotated using ANNOVAR [21]. The RefGene database specifies
known human protein-coding and non-protein-coding genes. The Clinvar_20210501
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database was used to search for disease-specific variants. The dbnsfp41a database focuses
on the functional prediction of variants in whole-exome data (this dataset already includes,
among others, SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, MutationTaster, MutationAsses-
sor scores), and finally, the gnomad exome and 1000 Genomes databases (1000g2015aug)
were used to determine the frequency of variants in whole-exome data. Annotation files
were converted to Mutation Annotation Format (MAF) files to analyze and visualize
variants from large-scale sequencing studies. The analysis charts were created using the
Bioconductor library Maftools [22].

2.3. Functional Enrichment Analysis

The functional enrichment analysis was performed using g:GOSt from g:Profilerß (ver-
sion e105_e52_p16_82e8f10) with the g:SCS multiple testing correction method, applying a
significance threshold of 0.05 [23] and uploading the list of genes with at least one mutation.
The nomenclature of the molecular functions (MFs), biological processes (BPs), and cellular
components (CCs) used the terms of the Gene Ontology Consortium [24]. In addition,
the enriched canonical pathways were identified using KEGG [25], Reactome [26], and
WikiPathways [27].

2.4. Ingenuity Pathway Analysis

The core analysis generated with the use of QIAGEN IPA (QIAGEN Inc., https:
//digitalinsights.qiagen.com/IPA, accessed on 6 March 2022) identified the enriched
bio-functions (p-value < 0.01 using the right-tailed Fisher’s exact test) as well as the net-
works [28] using the list of genes with at least one mutation.

2.5. Gene Expression Profiling

Only mRNA data were downloaded from GEO Accession Number GSE77753. Sam-
ples were classified into two main groups: skin fibroblast cultures from five hEDS/JHS
female patients and six unrelated healthy donors. Raw data were background-corrected
using Robust Multiarray Average (RMA) [29] and normalized using Quantile Normal-
ization [30]. Differential expression was determined using linear statistical models with
arbitrary coefficients; contrasts of interest were analyzed using the Bioconductor library
limma [31,32]. Correction for multiple hypotheses was applied using a false discovery
rate (FDR). Genes were selected as differentially expressed on the basis of two summary
statistics: a fold-change >1.68 and <7.62 in magnitude and a p-value < 0.09.

3. Results

Single-nucleotide DNA variants of the five patients diagnosed with HSD and variant-
containing genes are reported. In addition, the differentially expressed genes from the
dataset downloaded from GEO are also presented as their correlation or lack thereof.

3.1. Whole-Exome Sequencing

WES generated an average of 11 GB of sequencing data per sample. The mean coverage
of the targeted regions was 140× per sample, with >98% covered with at least 30× coverage.
The base-calling accuracy had, on average, a Phred quality score of 36. Variant calling on
the entire genome produced ~100,000 variants per sample. Filtering out common SNPs
(>10% frequency present in 1000 Genomes database) resulted in ~5000 variants per proband
sample. The median number of results requiring human evaluation for each automated
search ranged from 5 to 70. The total number of genes with at least one mutation (1162) is
listed in (Supplementary File S1:A).

3.1.1. Analysis of Variants

To identify candidate disease-associated variants, databases and other metadata
were used to filter putative variant calls to enhance the assessment of variants likely
to impact function. Besides the usual workflow, which involves population analysis

https://digitalinsights.qiagen.com/IPA
https://digitalinsights.qiagen.com/IPA
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through allele frequencies and prediction of deleterious effects, we also assessed
variants according to genes, transcripts, and enrichment analysis. Figure 3 presents
the landscape of annotations for the genomic location and the variant class. Exonic
missense, nonsense, stop-loss, frameshift, and splice-site variants are listed due to their
potential effect on protein function.
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Figure 3. Mutation summary by variant classification, type of variant, and class (top plots).
The number of mutations per sample, boxplots for variant classification, and the top 10 mutated genes
(bottom plots). Color representations are green for missense mutations, red for nonsense mutations,
purple for frameshift insertions, blue for frameshift deletions, yellow for in-frame deletions, dark
pink for in-frame insertions, cyan for nonstop mutations and orange for translation start site. The red
dotted line in the variants per sample plot indicates the median of variants for all samples.

Missense mutations are of particular interest since they are commonly related to
pathological conditions influencing susceptibility to disease or resistance to drug therapies.
Significantly mutated genes according to an FDR < 0.1 along with the mutation rate,
mutation type, and nucleotide changes are shown in Figure 4.
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Figure 4. Mutation characterization of most mutated genes. Each column represents a patient; rows
are genes. Here, green represents missense mutations, purple represents frameshift insertions, red
represents nonsense mutations, and black represents multi-hit mutations. Gray is interpreted as no
mutations found.

The results showed three genes that were mutated in all samples. The MUC3A gene
with the same nonsynonymous missense mutation c.C7484T in exon 2 of chromosome 7
led to the amino acid change p.S2495L. The same frameshift insertion c.1265dupC in exon 9
of the RHGB gene located in chromosome 1 followed the amino acid change p.D425Rfs*18.
Of the three, the ZNF717 gene located on chromosome 3 was the only one with various
mutations, all of which were nonsynonymous; see Table 2.

Table 2. Mutations in genes MUC3A, RHBG, and ZNF717.

Gene Sample Exon Ref Alt txChange aaChange Variant Class

MUC3A All exon 2 C T c.C7484T p.S2495L Missense_Mutation

RHBG All exon9 - C c.1265dup p.D425Rfs*18 Frame_Shift_Ins

ZNF717 All exon 4 T C c.A191G p.Y64C Missense_Mutation
S1, S4 exon 5 G C c.C2146G p.Q716E Missense_Mutation
S1, S4 exon 5 C A c.G1832T p.R611I Missense_Mutation
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3.1.2. Other Variants of Potential Interest

The Human Phenotype Ontology (HPO) uses the medical literature and other
databases such as Orphanet, DECIPHER, and OMIM and has created 13,000 terms
and over 156,000 annotations to hereditary diseases. According to the HPO database,
we found a list of other mutations of potential interest using joint hypermobility as a
keyword. These, along with details on our exome study, are shown in Table 3.

Table 3. Mutations of genes associated with joint hypermobility according to the Human
Phenotype Ontology.

Sample Ref > Alt Genotype Gene Function Reference Gene Exonic Function avsnp150

S1

A > G het exonic DPYD nonsyn SNV rs1801265
C > T het exonic ATP6V0A2 syn SNV rs138886791
C > T het exonic FBLN5 syn SNV rs746630839
C > T het exonic FBN1 nonsyn SNV rs146726731

S2 G > A het exonic SON syn SNV rs61746013

S3

- > A het splicing COL12A1 -
C > T het exonic C1S syn SNV rs148573885
G > A het exonic CREBBP nonsyn SNV rs772991403
G > T het exonic SON nonsyn SNV rs142482063
A > G het exonic SON syn SNV rs144018038

S4
A > G het exonic DPYD nonsyn SNV rs1801265
C > T het exonic NOTCH3 nonsyn SNV rs199620476

S5 C > T het exonic CREBBP syn SNV rs61754523

3.2. Functional Enrichment Analysis

Functional enrichment analysis identified the extracellular matrix structural con-
stituent as the primary overrepresented molecular function (MF) based on our list of
1162 genes with at least one mutation. Similarly, the collagen-containing extracellular
matrix was among the most statistically associated cellular components (CCs). On the other
hand, the biological processes (BPs) identified were related to the DNA-dependent DNA
replication maintenance of fidelity. The extracellular matrix (ECM)–receptor interaction was
the only canonical pathway (CP) enriched and defined by KEGG. The extracellular matrix
organization and degradation pathways were Reactome´s most statistically significant CPs.
In addition, the resolution of D-loop Structures through Holliday Junction Intermediates
was enriched (Supplementary File S1:B).

3.3. Ingenuity Pathway Analysis
3.3.1. Core Analysis by IPA

IPA core analysis identified relevant bio-functions, such as the organization of ECM
and hereditary connective tissue disorders, and DNA damage pathways. (Supplementary
File S1:C). In addition, networks that included the highest number of genes with at least
one mutation were those related to hereditary disorders, highlighting connective tissue
disorders (Supplementary File S1:D).

3.3.2. Network Analysis

Using the IPA disease search engine, we conducted a network analysis on the genes
associated with Ehlers–Danlos syndrome (Figure 5) or joint hypermobility (Figure 6).
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No matches were found in a more specific search, including type III (or type 3), which
is hEDS. However, we can see from the network that the transcription regulator NOTCH1,
represented in purple in the top left of Figure 5, has been previously associated with hEDS.
In addition, the genes ZNF469 and PRDM5 have been previously associated with joint
hypermobility but are mainly characterized by brittle cornea syndrome.

A second and sparser network (Figure 6) was generated by only 11 proteins. Here,
four out of five transcription regulators (purple) coincided in the two networks, but MED12
was more specifically associated with Lujan–Fryns syndrome, and a new gene, GZF1,
emerged; see Figure 6. Interestingly, a study on a Saudi family reported mutations in
this gene associated with joint laxity, short stature, and severe myopia with prominent
eyes. In addition, two affected members from different families exhibited multiple joint
dislocations involving the elbows, hips, knees, ankles, as well as pectus carinatum and
talipes equinovarus.

It is important to highlight that we observed the FLNB gene in the HSD network and
found the FLNA gene in the hEDS network. It is evident that both genes are highly relevant.
The FLNA gene encodes the protein filamin A, which participates in the development of the
cytoskeleton. It also binds to integrins known to be responsible for spanning cell membranes
and anchoring cells to the extracellular matrix. In addition, it has been previously associated
with EDS. Similarly, the FLNB gene also encodes a protein called filamin B, which is
involved in the development of the skeleton before birth. It is expressed in many cells and
tissues in the body, including chondrocytes, a type of cell involved in cartilage formation.
None of the enzymes or other genes appeared in both networks.

3.4. Comparison of Exome Results in HSD with Published Studies
3.4.1. Comparison with the Matrisome

Functional profiling and the IPA results involving the ECM prompted us to compare
our list of genes mutated in HSD vs. the matrisome, a list of more than 1000 proteins
that represent the definition of the complete repertoire of ECM proteins, on the basis of
homologies with known ECM proteins [33,34]. The number of shared genes between both
lists was 55 (Supplementary File S2:A), and MUC16 had the highest number of mutations,
followed by FREM2 (six and four, respectively). The functional profiling (Supplementary
File S2:B) showed that both genes participated in the BPs of cell and biological adhesion as
well as the CCs of the extracellular region and vesicles. Still, only FREM2 was identified
within the CP of the ECM–receptor interaction. COL22A1 and LAMA5 had three mutations
and were involved in the MF of structural constituents of the ECM and the CP of ECM
organization. However, the first one participated in the CP of collagen biosynthesis and
modifying enzymes, while the latter was involved in the CP degradation of the ECM and
laminin interactions (Supplementary File S2:C).

3.4.2. Comparison with Differentially Expressed Genes in Skin Fibroblasts of Patients with
JHS/hEDS

Transcriptome and proteome studies can help reveal specific biological signatures,
thus providing information for the understanding of the pathomechanisms and poten-
tial biomarkers for clinical diagnosis and therapeutic interventions to inform precision
medicine-based decision-making [35,36]. Data were downloaded from GEO for this
analysis. They consisted of five female patients clinically diagnosed with hEDS/JHS.
The differential analysis resulted in 133 differentially expressed genes (DEGs) with fold-
changes ranging from 1.68 to 7.62 in magnitude and supported by p-values of 8.7 × 105,
0.09. From this list, 83 genes (62%) were downregulated and 50 (38%) were upregulated.
The pattern of expression levels between the two groups is represented in an unsupervised
hierarchical cluster showing the patients in steel blue and the controls in green. The z-score
color key displays upregulation in red and downregulation in blue (Figure 7).
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The Venn diagram in Figure 8 shows the shared genes in the two lists: the mutated
genes from the whole-exome sequencing analysis in HSD and the DEGs in skin fibroblasts
of patients with JHS/hEDS (Supplementary File S2:D).
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Figure 8. Venn diagram showing the intersection level between the list of genes found to be significant
in both approaches: WES mutated genes and differentially expressed genes (DEGs). Genes at the
intersection are LIMCH1, ACSL5, FLG, DSP, EDIL3, PRUNE2, and ZFPM2.

3.4.3. Comparison with the Proteome Profiling in Dermal Myofibroblast of Patients
with hEDS

The proteome profiling of hEDS patients´ dermal myofibroblast identified the differ-
ential expression of proteins principally implicated in cytoskeleton organization, energy
metabolism and redox balance, proteostasis, and intracellular trafficking [37]. Our list
of 1162 genes with at least one mutation in HSD patients and these 183 differentially ex-
pressed proteins shared only five genes (MYO1C, TXNDC5, KFT10, PEPD, and CKAP4)
(Supplementary Files S2:E).

4. Discussion

Despite the constant efforts for an accurate diagnosis, the struggle to DIFFERENTIATE
hypermobility spectrum disorder (HSD) from the hypermobility type of Ehlers-Danlos
syndrome (hEDS) persists. The approaches have been mostly based on clinical and ob-
servational parameters. However, these have proven insufficient to separate HSD from
hEDS or determine if they are the same. There is a clear need for genetic and molecu-
lar characterizations of patients carefully diagnosed with either phenotype. Malfait and
collaborators, in their recent publication in Nature (2020), argued that next-generation
sequencing (NGS) has facilitated the genetic diagnosis of EDS. Nevertheless, hEDS is the
only one with neither genetic nor molecular associations. A potential argument is that
since hEDS is commonly confused with HDS, genetic changes in patients from either group
could be averaged out. In agreement with the argument of Malfait and collaborators, we
also think that a future direction of this research should include multi-omics approaches,
such as NGS technologies, and new analytical strategies to identify different classes of
biomarkers capable of providing a more accurate description of the disease underlying
molecular mechanisms.

In this work, we present a mutation landscape of patients clinically diagnosed with
generalized HDS through whole-exome sequencing. Clinical details of patients can be
found in Supplementary Table S1. We present gene mutation rates and patient-specific
variants. Since the latest classification in 2017, no other studies have specifically focused on
separating patients with HDS from those with hEDS by clinical diagnosis. To the best of our
knowledge, this is the first study of this kind using NGS technologies such as whole-exome
sequencing. We found two more genomic-based studies, one on gene expression data
and another also using WES with a large cohort of patients. However, both studies were
conducted before 2017, so a natural mixture of HDS and hEDS is expected. We used the raw
data as the expression data since it was available to download from GEO and compared
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the list of DEGs to our list of mutated genes to find that only 0.5% of genes were shared.
The WES data from the other study are still not available, perhaps due to the fact that no
publication of that data has been released yet.

Three genes appeared to be mutated across all five patients in our analysis. MUC3A
encodes membrane-bound mucins possessing two epidermal growth factor-like domains.
The gene MUC3A is mainly expressed in the intestine [38]; it encodes membrane-bound
mucins possessing two epidermal growth factor-like domains. Previous research high-
lighted that MUC3A variants were associated with inflammatory bowel disease and that
this gene also promoted the progression of colorectal cancer [39]. It was reported that
up to 62% of hEDS patients suffer from irritable bowel syndrome [40], and with respect
to our study, three out of five cases presented gastrointestinal symptoms. In the case of
RHBG, this gene encodes an ammonia transporter and is expressed in distal renal epithe-
lial cells [41]. As far as we know, HSD as an independent phenotype is not associated
with renal diseases [42], but urinary biomarkers have been proposed for other types of
Ehlers–Danlos syndromes. Further investigation of this gene may lead to a non-invasive
diagnostic urinary biomarker. Gene ZNF717 encodes a transcription factor that appears to
play a role in osteogenic differentiation [43]. Recently, a WES study identified variants in
this gene, highlighting its potential involvement in autistic spectrum disorders (ASD) in
the pediatric population [44]. In this sense, ASD and HSD share several clinical manifesta-
tions in adulthood [45], including proprioceptive impairment (three out of five patients in
our study) and autonomic dysfunction (four out of five in our research), highlighting the
theoretical involvement of ZNF717 as a potential etiological factor behind the association
between ASD and HSD in the adult population.

In the Venn diagram, only seven genes (0.5%) fall at the intersection of mutated genes
from WES and DEGs from the transcriptomics data from GEO. Since the transcriptomics
data were generated prior to 2017 when the new classification was established, the samples
are a mixture of hEDS and HSD. The WES data comprised only HSD samples, and therefore,
a low correlation was expected. However, the results suggest that new phenotype-specific
studies conducted with the current classification are needed in order to compare multi-
omics data. We should consider that the results are from different samples and sources with
different omics technologies. We hypothesize that the transcriptome included a mixture of
HSD and hEDS samples since the study was conducted before the latest classification was
established in 2017.

In conclusion, we report genes and mutations as potential biomarkers for HSD.
These include MUC3A, RHBG, and ZNF717. Our findings support the idea of two
similar diseases that inevitably share a common genetic background but are not the
same. From the perspective of the current status of both diseases, we lean toward
Hypothesis B, described in the diagram in Figure 1. We conclude our discussion by
highlighting the importance of genetic/genomic approaches to move forward with
creating complementing information that, combined with clinical parameters, will result
in accurate diagnoses and better treatment.

Mutation patterns within the context of what is known about EDS and HSD indicate
that genes will be found to be associated with either phenotype, different genes perhaps
but with similar functions. Such is the case of FLNA and FLNB. The first one encodes
an actin-binding protein, which participates in cytoskeleton formation, anchors various
proteins in the cytoskeleton, and regulates cell adhesion and migration [46]. A mutation
in the FLNA is the most common cause of periventricular nodular heterotopia. However,
some patients with an FLNA mutation have also been shown to have Ehlers–Danlos-like
collagenopathy [47]. FLNB, on the other hand, encodes a cytoplasmic protein that regulates
the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional
networks. This gene is expressed in growth plate chondrocytes and the development of
vertebral bodies. It has been reported that a heterozygous missense mutation in FLNB
disrupts vertebral segmentation, joint formation, and skeletogenesis [48]. Furthermore, this
is associated with the human skeletal disorder known as Larsen syndrome, characterized
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by congenital dislocations of the hip, knee, and elbow [49]. In any event, the discovery of
one is necessary for the discovery of the other.

The matrisome is a list of more than 1000 proteins that represent the definition of
the complete repertoire of ECM proteins (33, 34). The comparison of our list of mutated
genes in patients with HSD vs. the matrisome that MUC16 had the highest number
of mutations, followed by FREM2. The first gene, MUC16, encodes a high-molecular-
weight glycoprotein expressed by the human body´s epithelial cell surfaces [50]. It is a
well-established serum biomarker of ovarian cancer and is a potential therapeutic target
for this disease [51]. However, the signaling pathways via the MUC16 cytoplasmic do-
main are mainly unknown, which could partially explain the unaccountable association
of pathogenic predicted variants in this gene with HSD [52]. The second gene, FREM2,
encodes an ECM protein involved in the structural adhesion of the skin epithelium to its
underlying mesenchyme [53]. Mutations in this gene are associated with Fraser syndrome,
an autosomal recessive disease, secondary to the failure of the apoptosis program and the
disruption of the epithelial–mesenchymal interactions during embryonic development [54].
Furthermore, FREM2 mutations may be potential prognostic markers in colorectal can-
cer [55], a disease modified by MUC3A, a gene that was mutated in our five patients
with HSD.

The transcriptome-wide expression profiling in skin fibroblasts of patients with
JHS/hEDS indicated perturbation of different signaling cascades required for homeostatic
regulation either during development or in adult tissues. Furthermore, altered expression
of several genes involved in the maintenance of ECM architecture and homeostasis and
cell–cell adhesion was also observed [56]. In this regard, we identified the ECM as a gene
ontology (GO) term, canonical pathway, and bio-function enriched with genes with at
least one mutation in HSD patients. This finding is relevant because ECM synthesis and
remodeling regulation have been associated with heritable connective tissue disorders [57].
In addition, other GO terms, such as cell adhesion molecule binding and cytoskeleton
motor activity, were overrepresented. Recently, it has been proposed that aberrations in cell
adhesion and cytoskeleton dynamics could drive the abnormal properties of the connective
tissue and be responsible for the pathogenesis of HSD/EDS [58]. In this sense, DSP, an
adhesion molecule-encoding gene identified with only one mutation in our list of mutated
genes in patients diagnosed with HSD became relevant. Its encoded protein, desmoplakin,
is involved in forming desmosomes, a specialized cell–cell junction complex essential
for maintaining tissue architecture [59]. Therefore, this gene may represent a potential
biomarker of HSD according to the hypothesis of Castori that establishes that a single
inherited variant may serve as a predisposing factor or “susceptibility locus”. Nevertheless,
this factor results in the expression of the JHS/hEDS only when supplemented with other
inherited or acquired factors [60]. Although it is worth following up on this gene, the
association in our study was weak.

The comparison of our list of mutated genes in HSD vs. DEGs in skin fibroblasts
of patients with JHS/hEDS [61] identified less than one percent in common. However,
this finding does not necessarily mean that the genes are not somehow correlated. We
should consider that the results are from different samples and sources with different omics
technologies. We hypothesize that the transcriptome included a mixture of HSD and hEDS
samples since the study was conducted before the latest classification was established
in 2017. Furthermore, a comparison of our list vs. the proteome profiling in dermal
myofibroblasts of patients with hEDS [62] identified only five genes. One of them, prolidase
(peptidase D), encoded by PEPD, is a ubiquitously expressed cytosolic metalloproteinase
essential in protein metabolism, collagen turnover, and matrix remodeling [63], representing
a potential candidate to be evaluated in larger cohorts of patients with HSD. On the other
hand, a key factor identified by proteomic analysis in hEDS fibroblasts was S1004A, a
calcium-binding protein involved in the fibroblast-to-myofibroblast transition, supporting
a proinflammatory milieu characterized by an excessive matrix metalloproteinase-mediated
ECM degradation [62]. This protein is a potential target for therapeutic strategies in hEDS,
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highlighting the necessity to complement our whole-exome studies with a proteomic
approach in fibroblasts of patients with HSD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071269/s1, Figure S1: Pedigrees of four families with a
proband with HSD diagnosis, Table S1: Clinical data of patients involved in the study, File S1:A. The
1162 mutated genes in HSD, File S1:B. Functional profiling HSD, File S1:C. IPA Bio-functions in HSD,
File S1:D. IPA Networks in HSD; File S2:A. The 55 genes HSD vs. matrisome, File S2:B. Functional
profiling HSD, File S2:C. FP Genes with >2 mutations, File S2:D. Seven genes HSD vs. hEDS JHS, File
S2:E. Five genes HSD vs. proteome.
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