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Extracellular signal-regulated kinases
mediate the enhancing effects of
inflammatory mediators on resurgent
currents in dorsal root ganglion neurons

Bin Wu1, Jeff S McDermott2, Jeffrey L Krajewski2, Kelly L Knopp2,
Eric S Nisenbaum2, Theodore R Cummins1,3, and Zhi-Yong Tan1

Abstract

Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root

ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of

extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent

currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126

completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and

Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced

repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of

resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects

on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results

indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane

excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular

signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain.
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Background

Resurgent sodium currents are activated during the

repolarization phase of action potentials where classic

sodium channels become inactivated.1,2 Therefore, resur-

gent currents can provide a depolarizing drive for the

generation of subsequent action potentials and can

contribute to the repetitive firing of neurons. For exam-

ple, co-expression of Nav1.6 and sodium channel b4
subunits, which increases Nav1.6-mediated resurgent

currents, caused spontaneous firing and increased multi-

ple evoked firing in dorsal root ganglion (DRG) neurons

compared to expression of Nav1.6 only.3 An Nav1.7

sodium channel mutant associated with paroxysmal

extreme pain disorder (PEPD) enhanced resurgent

currents in cultured DRG neurons and increased the

frequency of action potentials in simulated DRG neu-
rons.4 On the other hand, reduced resurgent currents
caused by knocking down sodium channel b4 subunits
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decreased membrane excitability of cerebellar neurons.5

and of DRG neurons.6 Therefore, modulation of
resurgent currents can be a useful approach to modulate
neuronal excitability.

Since its first description, resurgent currents have
been found in a variety of neuronal tissues in central
and peripheral nervous system.7 The Tetrodotoxin–
sensitive (TTX-S) resurgent current has been reported
in a variety of neuronal tissues including cerebellum,8

perirhinal cortex,9,10 hippocampal area,11 and DRG.12

In addition to this TTX-S resurgent current, we recently
found that a Tetrodotoxin-resistant (TTX-R) resurgent
current expressed in DRG neurons.13 The TTX-R resur-
gent currents are slower than TTX-S resurgent currents,
are mediated by Nav1.8, and contribute to membrane
excitability of DRG neurons in the presence of TTX.
We also found that both TTX-S and TTX-R resurgent
currents were enhanced by an inflammatory soup of
classic inflammatory mediators.13 Inflammatory media-
tors released during tissue injury can often increase
membrane excitability of DRG neurons and cause
peripheral sensitization14,15; therefore, it is likely that
both TTX-S and TTX-R resurgent currents can contrib-
ute to enhanced membrane excitability and increased
pain sensitivity induced by inflammatory mediators
under inflammatory pain conditions.

It is well known that multiple intracellular signal
pathways are activated by inflammatory mediators.16,17

Extracellular signal-regulated kinases (ERK) and pro-
tein kinase C (PKC) are two important protein kinases
activated by inflammatory mediators.18,19 In the current
study, we examined the role of ERK and PKC activation
in the enhancing effects of inflammatory mediators on
TTX-S and TTX-R resurgent currents in small and
medium DRG neurons. We found that the ERK inhib-
itor U0126 completely prevented the enhancing effects of
inflammatory mediators on both TTX-S and TTX-R
resurgent currents in small and medium DRG neurons.
In addition, to a lesser extent, we found PKC inhibitor
Bisindolylmaleimide I (BIM I) also partially prevented
the enhancement in resurgent currents caused by the
same inflammatory mediators.

Materials and methods

Cell culture

DRG neurons were dissociated from adult rats and were
cultured as previously described.13,20 Animal procedures
were approved by the Indiana University School of
Medicine Institutional Animal Care and Use
Committee. Briefly, adult male Sprague Dawley rats
weighing 120 to 180 g were rendered unconscious by
exposure to CO2 and decapitated. Lumbar DRG
(L1-L6) were collected and then incubated in

Dulbecco’s Modified Eagle Medium (DMEM) contain-
ing collagenase (1 mg/ml) and protease (1 mg/ml) for
40 min at 37�C. The ganglia were then triturated with
fire-polished Pasteur pipets in DMEM supplemented
with 10% fetal bovine serum (FBS). Dissociated cells
were seeded on glass coverslips coated with poly-
D-lysine and laminin for 10 min before DMEM/FBS
supplemented with 30 ng/ml nerve growth factor was
introduced. Cell cultures were maintained in
regular 95% air and 5% CO2 in an incubator at 37�C.

Electrophysiology

DRG neurons were recorded after culturing for 16 to
28 h as previously described.13 Briefly, small (<30 mm)
and medium (30–45 mm) diameter DRG neurons were
chosen for whole-cell patch clamping at room tempera-
ture of about 22�C. The extracellular solution for
voltage-clamp recordings of sodium currents consisted
of: 130 mM NaCl, 30 mM TEA chloride, 1 mM
MgCl2, 3 mM KCl, 1 mM CaCl2, 0.05 mM CdCl2,
10 mM HEPES, and 10 mM D-glucose, pH 7.3. DRG
neurons were recorded with fire-polished, wax-coated
glass patch pipettes (0.6–1.0 MX) fabricated from
1.7 mm capillary glass using a Sutter P-97 puller
(Novato). The pipette solution for voltage-clamp record-
ings contained 140 mM CsF, 10 mM NaCl, 1.1 mM
EGTA, and 10 mM HEPES, pH 7.3. The junction
potential, fast capacitance, slow capacitance, 80% to
90% of series resistance were compensated. Electrical
signals were amplified, digitized, stored using a
HEKA EPC-10 amplifier, Pulse software (version 8.80;
HEKA Elektronik), and a Window-based Pentium
IV computer.

For voltage-clamp recordings, DRG neurons were
held at �100 mV. Membrane currents were sampled at
20 kHz, filtered online at 5 kHz, and further filtered at 1
kHz digitally in Pulsefit. Leak currents were canceled by
a P/5 subtraction protocol. Sodium currents were
recorded 10 to 15 min after formation of whole-cell to
ensure equilibration between pipette solution and cyto-
plasmic milieu and to allow adequate rundown of
Nav1.9-mediated persistent TTX-R sodium currents.
Resurgent currents were recorded using a two voltage
step protocol. A 20 ms, þ30 mV voltage pulse was first
used to inactivation transient sodium currents. Then, a
series of repolarization pulses were used for activation of
resurgent currents. The repolarization pulses were
400 ms long and decreased from þ15 to �70 mV in
5 mV decrements.

Resurgent currents were recorded from small
(<30 mm) and medium (35–45 mm) DRG neurons
using standard extracellular solution without addition
of TTX. The peak resurgent currents were also normal-
ized to peak transient current amplitude, recorded using

2 Molecular Pain



a standard steady-state inactivation protocol, to calcu-
late the ratio value for resurgent currents. This measure
of the ratio resurgent current value allows the size of the
resurgent current relative to the peak transient current to
be readily compared between treatment groups. For the
medium neurons that expressed only fast resurgent cur-
rents, single component steady-state inactivation curves
were obtained indicating those neurons were only
expressing TTX-S fast sodium currents. For the
medium neuron that only expressed TTX-R resurgent
currents, as well as small DRG neurons, two component
steady-state inactivation curves were recorded suggest-
ing that those neurons expressed both TTX-S fast, and
TTX-R slow sodium currents. In those neurons,
a prepulse inactivation was used to separate the
TTX-R and TTX-S current components and to calculate
the peak transient TTX-S currents.21

Perforated whole-cell patch clamp was used to con-
duct current-clamp recording of membrane excitability
of DRG neurons. Amphotericin B (240 mg/mL) was
included in the pipette solution for membrane perfora-
tion. The extracellular solution for current-clamp
recordings of sodium currents consisted of 140 mM
NaCl, 3 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM
HEPES, pH 7.3. DRG neurons were recorded from
using fire-polished, Borosilicate glass patch pipettes
(4–6 MX). The pipette solution contained 30 mM KCl,
110 mM potassium gluconate, 0.5 mM EGTA, 5 mM
HEPES, and 3 mM Mg-ATP, pH 7.3.

Inhibitors of ERK and PKC and control chemicals
(U0126, U0124, BIM I, dimethyl sulfoxide (DMSO))
were pre-treated in culture media for 15 min and
were continuously kept in the recording chamber.
An inflammatory soup including a group of inflamma-
tory mediators (1 mM bradykinin, 10 mM 5-HT, 10 mM
histamine, 10 mM PGE2, and 5 mM ATP),13 phorbol
myristate acetate (PMA), and 4a-PMA were pretreated
for 5 min in the recording chamber before the operation
of patch clamping starts. The total time of each coverslip
of cells stayed in the recording chamber was less than
90 min.

Results

In this study, we tested the effects of ERK and PKC
inhibitors on the enhancing effects of the inflammatory
soup on TTX-S and TTX-R resurgent currents. In the
small neurons (Figure 1(a)), fast resurgent currents
(TTX-S) were not observed and only slow resurgent cur-
rents (TTX-R) were recorded in these cells. For the
medium neurons, about half expressed only fast resur-
gent currents (Figure 1(b)). Among the other half,
>80% only displayed slow resurgent currents (Figure 1
(c)), while <20% expressed a combination of fast and
slow resurgent currents (Figure 1(d)). The medium

neurons that expressed a combination of fast and slow

resurgent currents were excluded from further quantita-

tive analysis in this study due to their small number and

the difficulty accurately measuring the fast and slow

resurgent current components separately in these cells.

TTX-S resurgent currents in medium DRG neurons

We tested the effects of the ERK inhibitor U0126 on the

TTX-S resurgent currents in medium diameter DRG

neurons that showed a single fast component in their

steady-state inactivation curve which indicated expres-

sion of TTX-S sodium channels only (Figure 1(b)).

The TTX-S resurgent currents are mostly mediated by

Nav1.6, the dominant sodium channel isoform in the
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Figure 1. Expression pattern of resurgent currents in DRG
neurons. Resurgent and regular sodium current were recorded
from small (diameter: 20 to 30 mm) and medium (diameter: 35 to
45 mm) DRG neurons dissociated from adult rats. In all the small
neurons, both fast (TTX-S) and slow (TTX-R) regular sodium
currents were expressed (a, inset). However, only a slow (TTX-R)
resurgent current was recorded from small DRG neurons. In the
medium DRG neurons that expressed only fast (TTX-S) regular
sodium currents ((b), inset), a fast (TTX-S) resurgent current was
recorded (b). In the medium DRG neurons that expressed both
fast (TTX-S) and slow (TTX-R) regular sodium currents ((c) and
(d) insets), two types of expression pattern of resurgent currents
were recorded. In the majority (>80%) of such neurons, a single
slow (TTX-R) resurgent current was recorded (c). In other cells
(<20%), both a fast (TTX-S) and a slow (TTX-R) components of
resurgent currents were recorded (d). The voltage protocol for
recording resurgent currents (Bottom, left) includes a series of
repolarization voltage steps (þ15 to �70 mV decreased by 5-mV
steps, 450 ms) from a depolarization step (�100 mV to þ30 mV,
20 ms). The regular sodium currents were recorded using a
standard steady-state inactivation protocol that depolarized neu-
rons to 0 mV after 500 ms pre-holding at �130 to �5 mV with an
increment of 5 mV (Bottom, right). Scales for the regular sodium
currents: horizontal scale, 5 ms; vertical scale, 20 nA.
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medium-to-large DRG neurons.12 To compare the resur-
gent currents, both ratio resurgent currents (ratio of
resurgent currents normalized to peak transient cur-
rents) and resurgent current density (resurgent currents

normalized to cell capacitance) are shown in Figure 2
and Table 1, respectively. In the presence of U0124 (pre-
treatment in culture wells for 15 min and maintained in
the recording chamber), the inactive control for U0126,
the inflammatory soup significantly increased TTX-S,
ratio resurgent currents in medium diameter DRG neu-
rons (Figure 2(a), (b), and (e)). This increase was
completely prevented by U0126 (Figure 2(c) to (e)).

This complete preventative effect suggests that ERK
activation during inflammatory soup application is nec-
essary for inflammatory mediators to increase TTX-S
resurgent currents in medium diameter DRG neurons.
A similar preventative effect of U0126 on the density
of TTX-S resurgent currents is shown in Table 1.
Moreover, U0126 significantly inhibited baseline density
of TTX-S resurgent currents (Table 1). Inflammatory

mediators did not produce significant differences in the
half activation voltage, half inactivation voltage, and
current density of the peak transient TTX-S sodium cur-
rent under either U0124 or U0126 conditions (Table 1).

We then tested the effects of PKC inhibitor BIM I on
the TTX-S resurgent currents in medium diameter DRG
neurons. In the control DMSO condition, the inflamma-
tory soup significantly increased TTX-S resurgent currents

in medium diameter DRG neurons (Figure 3(a), (b),
and (e), Table 2). This increase seemed to be partially
prevented by pretreatment with 1 mM BIM I (Figure 3(c)
to (e), Table 2). The partial prevention of this enhancement
of TTX-S resurgent currents suggests that PKC activation
during inflammatory soup application is involved in
the modulation of inflammatory mediators on TTX-S
resurgent currents in medium diameter DRG neurons.
Inflammatory mediators negatively shifted the half activa-
tion voltage of TTX-S currents in the presence of DMSO,
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Figure 2. Effects of ERK inhibition on TTX-S resurgent currents in DRG neurons. Representative TTX-S, fast resurgent currents were
recorded from medium DRG neurons ((a) to (d)). The resurgent currents were elicited by a series of repolarization voltage steps (þ15 to
�70 mV decreased by 5-mV steps, 450 ms) from a depolarization step (�100mV to þ30 mV, 20 ms). ERK inhibitor U0126 (10 mM) and its
inactive control U0124 (10 mM) were pretreated for 15 min in culture medium and were maintained in the recording chamber. (a and b) In
the presence of U0124, the TTX-S resurgent currents were enhanced by a group of inflammatory mediators (IMs) including 1 mM
bradykinin, 10 mM 5-HT, 10 mM histamine, 10 mM PGE2, and 5 mM ATP. (c and d) U0126 completely prevented the enhancing effects of
inflammatory mediators on the TTX-S resurgent currents. Note that U0126 also significantly reduced TTX-S resurgent currents com-
pared to U0124. (e) Statistical data of ratio resurgent currents were compared between groups with or without inflammatory mediators.
Ratio resurgent currents were defined as peak resurgent currents normalized to peak TTX-S transient currents (maximal steady-state
inactivation currents) in the same cells (the same below). The data were presented as mean� standard error of the mean. Student’s t-test
was used to compare the difference, *P< 0.05 (vs. U0124).

Table 1. Effects of ERK inhibition on TTX-S resurgent and tran-
sient sodium currents in medium neurons.

U0124 U0216 IMþU0124 IMþU0126

INaR

n (N)

(pA/pF) 39.6�3.0

18 (3)

21.8�2.0#

15 (3)

48.6�3.6*

17 (3)

26.9�3.9

13 (2)

V0.5_m

n (N)

(mV) �38.6�2.2

18 (3)

�33.2�2.0

15 (3)

�39.9�1.5

17 (3)

�37.0�1.9

13 (2)

V0.5_h

n (N)

(mV) �58.7�1.0

18 (3)

�51.4�3.2#

15 (3)

�59.3�1.6

17 (3)

�59.5�1.8

13 (2)

INaT

n (N)

(nA/pF) 1.13�0.09

18 (3)

0.95�0.07

15 (3)

1.18�0.12

17 (3)

0.95�0.08

13 (2)

Data are expressed as mean� SEM. Significant level was set at P< 0.05.

A level of P< 0.1 is regarded as a high probability event and might indicate a

trend change. INaR: resurgent current; n (N): cell number (culture

number); V0.5_m: half activation voltage; V0.5_h: half inactivation voltage;

INaT: transient current; ANOVA: analysis of variance.

*P< 0.1; Student’s t-test, IMþU0124 versus U0124.
#P< 0.05; post hoc Tukey’s test, one-way ANOVA.
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the negative control for BIM I. BIM I prevented this shift
in the half activation voltage induced by inflammatory
mediators (Table 2). On the other hand, inflammatory
mediators did not produce significant differences in the
half inactivation voltage, or in the current density of the
peak transient TTX-S sodium current under either DMSO
or BIM I conditions (Table 2).

TTX-R resurgent currents in medium DRG neurons

The effects of the ERK inhibitor U0126 on the TTX-R
resurgent currents were tested in medium diameter DRG
neurons that showed fast and slow components in their
steady-state inactivation curve which indicated expres-
sion of both TTX-S and TTX-R sodium channels

(Figure 1(c)). The TTX-R resurgent currents are medi-
ated by Nav1.8, the dominant TTX-R sodium channel
isoform in the small-to-medium diameter DRG neu-
rons.13 In the presence of U0124, the inflammatory
soup significantly increased TTX-R resurgent currents
in medium diameter DRG neurons (Figure 4(a), (b),
and (e), Table 3). This increase was completed blocked
by U0126 (Figure 4(c) to (e), Table 3). This complete
prevention suggests that ERK activation during inflam-
matory soup application is necessary for inflammatory
mediators to increase TTX-R resurgent currents in
medium DRG neurons. Inflammatory mediators did
not produce significant differences in the half activation
voltage, half inactivation voltage (both TTX-S and
TTX-R components), or the current density of the
peak transient sodium currents (both TTX-S and TTX-
R components) under either U0124 or U0126 conditions
(Table 3).

We next tested the effects of PKC inhibitor BIM I on
the TTX-R resurgent currents in medium diameter DRG
neurons. In the presence of DMSO, the inflammatory
soup increased TTX-R resurgent currents in medium
diameter DRG neurons (Figure 5(a), (b), and (e),
Table 4). This increase seemed to be partially prevented
by BIM I (Figure 5(c) to (e), Table 4). The partial pre-
vention of the enhancing effects suggests PKC activation
during inflammatory soup application is involved in the
modulation of inflammatory mediators on TTX-R resur-
gent currents in medium diameter DRG neurons.
Inflammatory mediators did not produce significant dif-
ferences in the half activation voltage, half inactivation
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Figure 3. Effects of PKC inhibition on TTX-S resurgent currents in DRG neurons. Representative TTX-S, fast resurgent currents were
recorded from medium DRG neurons (a–d). The resurgent currents were elicited by the same voltage protocol as described in Figure 1.
PKC inhibitor BIM I (1 mM) and its control DMSO (1:1000) were pretreated for 15 min in culture medium and were maintained in the
recording chamber. (a and b) In DMSO control condition, the TTX-S resurgent currents were enhanced by inflammatory mediators (IMs).
(c and d) BIM I seemed to partially prevent the enhancing effects of inflammatory mediators on the TTX-S resurgent currents. (e) The data
were presented as mean� standard error of the mean. Student’s t-test was used to compare the difference, *P< 0.05 (vs. DMSO). DMSO:
dimethyl sulfoxide; BIM I: bisindolylmaleimide I.

Table 2. Effects of PKC inhibition on TTX-S resurgent and
transient sodium currents in medium neurons.

DMSO BIM I IM IMþBIM I

INaR

n (N)

(pA/pF) 40.3�2.7

11 (4)

45.1�6.8

10 (3)

55.8�5.5**

19 (4)

52.1�4.2

9 (4)

V0.5_m

n (N)

(mV) �37.4�2.5

11 (4)

�40.2�2.4

10 (3)

�44.7�1.9**

19 (4)

�38.9�2.9

9 (4)

V0.5_h

n (N)

(mV) �58.9�0.6

11 (4)

�58.4�1.3

10 (3)

�58.6�0.8

16 (4)

�59.9�1.5

8 (4)

INaT

n (N)

(nA/pF) 1.44�0.08

11 (4)

1.37�0.13

10 (3)

1.30�0.08

19 (4)

1.48�0.13

9 (4)

INaR: resurgent current; n (N): cell number (culture number); V0.5_m: half

activation voltage; V0.5_h: half inactivation voltage; INaT: transient current;

DMSO: dimethyl sulfoxide; BIM I: bisindolylmaleimide I. Data are expressed

as mean� SEM.

**P< 0.05; Student’s t-test, IM versus DMSO.
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voltage (both TTX-S and TTX-R components), or the
current density of the peak transient sodium current
(both TTX-S and TTX-R components) under either
DMSO or BIM I conditions (Table 4) in medium diam-
eter DRG neurons that express both TTX-S and TTX-R
sodium currents.

TTX-R resurgent currents in small DRG neurons

The effects of the ERK inhibitor U0126 on the TTX-R
resurgent currents were also tested in small diameter
DRG neurons, all of which expressed fast and slow com-
ponents in their steady-state inactivation curves but only
expressed TTX-R resurgent currents (Figure 1(a)). TTX-
S resurgent currents were not observed in small diameter
DRG neurons in the present study. In the presence of
U0124, the inflammatory soup significantly increased
TTX-R resurgent currents in small diameter DRG neu-
rons (Figure 6(a), (b), and (e), Table 5). This increase
was completely blocked by U0126 (Figure 6(c) to (e),
Table 5). The complete prevention of the enhancing
effects suggests ERK activation during inflammatory
soup application is necessary for inflammatory media-
tors to increase TTX-R resurgent currents in small
diameter DRG neurons. Inflammatory mediators signif-
icantly shifted the half activation voltage negatively in
the presence of U0124 (Table 5). U0126 prevented the
effect of inflammatory mediators on the half activation
voltage (Table 5). On the other hand, inflammatory
mediators did not produce significant differences in the
half inactivation voltage (both TTX-S and TTX-R com-
ponents), or the current density of the peak transient
sodium currents (both TTX-S and TTX-R components)
under either U0124 or U0126 conditions (Table 5).

We next tested the effects of PKC inhibitor BIM I on
the TTX-R resurgent currents in small diameter DRG
neurons. In the presence of DMSO, the inflammatory
soup significantly increased TTX-R resurgent currents
in small diameter DRG neurons (Figure 7(a), (b), and
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Figure 4. Effects of ERK inhibition on TTX-R resurgent currents in medium DRG neurons. Representative TTX-R, slow resurgent
currents were recorded from medium DRG neurons (a–d). The resurgent currents were elicited by the same voltage protocol as
described in Figure 1. ERK inhibitor U0126 (10 mM) and its inactive control U0124 (10 mM) were pretreated for 15 min in culture medium
and were maintained in the recording chamber. (a and b) In the presence of U0124, the TTX-R resurgent currents were enhanced by
inflammatory mediators (IMs). (c and d) U0126 completely prevented the enhancing effects of inflammatory mediators on the TTX-R
resurgent currents. Note that U0126 also reduced TTX-R resurgent currents compared to U0124 insignificantly (P< 0.1). (e) The data
were presented as mean� standard error of the mean. Student’s t-test was used to compare the difference, *P< 0.05 (vs. U0124).

Table 3. Effects of ERK inhibition on TTX-R resurgent and
transient sodium currents in medium neurons.

U0124 U0216 IMþU0124 IMþU0126

INaR

n (N)

n_sþf

(pA/pF) 13.7�2.0

14 (3)

1

16.4�6.6

13 (3)

2

19.7�2.3*

13 (3)

2

11.3�2.8

9 (2)

3

V0.5_m

n (N)

(mV) �27.4�2.3

14 (3)

�24.1�3.7

13 (3)

�29.6�3.8

12 (3)

�31.5�2.8

8 (2)

V0.5_h_TTXS

n (N)

(mV) �70.6�1.9

14 (3)

�64.1�1.6

12 (3)

�67.0�2.6

11 (3)

�65.4�2.4

8 (2)

V0.5_h_TTXR

n (N)

(mV) �35.1�2.5

13 (3)

�35.3�1.2

11 (3)

�29.7�1.8

10 (3)

�37.8�2.2

7 (2)

INaT_TTXS

n (N)

(nA/pF) 0.45�0.06

14 (3)

0.44�0.07

13 (3)

0.53�0.09

13 (3)

0.45�0.08

9 (2)

INaT_TTXR

n (N)

(nA/pF) 0.55�0.06

14 (3)

0.62�0.10

13 (3)

0.97�0.15

13 (3)

0.55�0.12

9 (2)

Data are expressed as mean� SEM. Significant level was set at P< 0.05.

A level of P< 0.1 is regarded as a high probability event and might indicate a

trend change. INaR: resurgent current; n (N): cell number (culture

number); n_sþ f: number of medium neurons expressing both slow and

fast resurgent currents; V0.5_m: half activation voltage; V0.5_h_TTXS: half

inactivation voltage of the TTX-S currents; V0.5_h_TTXR: half inactivation

voltage of the TTX-R currents; INaT_TTXS: TTX-S transient current;

INaT_TTXR: TTX-R transient current.

*P< 0.1; Student’s t-test, IMþU0124 versus U0124.
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(e), Table 6). This increase was completely prevented by
BIM I (Figure 7(c) to (e), Table 6). The complete pre-
vention of the enhancing effects suggests PKC activation
during inflammatory soup application is necessary in the
modulation of inflammatory mediators on TTX-R resur-
gent currents in small diameter DRG neurons.
Inflammatory mediators did not produce significant dif-
ferences in the half activation voltage, half inactivation
voltage (both TTX-S and TTX-R components), or the

current density of the peak transient sodium current

(both TTX-S and TTX-R components) under either

DMSO or BIM I conditions (Table 6). However, the

lack of statistical difference in peak transient, TTX-S

currents between U0126 and inflammatory mediators

(IM)þU0126 groups might be due to a relatively small

sample size compared to the variability of current ampli-

tude among cells.

Repetitive action potential firing in small DRG neurons

The effects of the ERK inhibitor U0126 on repetitive

action potential firing was tested in small diameter

DRG neuron in the presence of the inflammatory medi-

ator soup. Compared to U0124, U0126 significantly

reduced the number of action potentials triggered by a

suprathreshold current injection (3� current threshold)

(Figure 8(a) to (c)). However, U0126 did not change the

resting membrane potentials (Figure 8(d)) or rheobases

(Figure 8(e)) significantly.

Effects of PKC activation on resurgent currents in

DRG neurons

Our data using the PKC inhibitor BIM I indicate that

PKC activation is involved in the enhancing effects of

inflammatory mediators on resurgent currents in DRG

neurons. To directly test if PKC activation alone can

modulate resurgent currents, we tested the effects of

the PKC activator (PMA) and compared PMA to its

inactive control 4a-PMA. As shown in Tables 7 to 9,

PMA did not change density of TTX-S (medium neu-

rons) or TTX-R (both medium and small neurons)
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Figure 5. Effects of PKC inhibition on TTX-R resurgent currents in medium DRG neurons. Representative TTX-R, slow resurgent
currents were recorded from medium DRG neurons (a–d). The resurgent currents were elicited by the same voltage protocol as
described in Figure 1. PKC inhibitor BIM I (1 mM) and control DMSO (1:1000) were pretreated for 15 min in culture medium and were
maintained in the recording chamber. (a and b) In DMSO control condition, the TTX-R resurgent currents were enhanced by inflammatory
mediators (IMs). (c and d) BIM I seemed to partially prevent the enhancing effects of inflammatory mediators on the TTX-R resurgent
currents. (e) The data were presented as mean� standard error of the mean. Student’s t-test was used to compare the difference,
*P< 0.05 (vs. DMSO). DMSO: dimethyl sulfoxide; BIM I: bisindolylmaleimide I.

Table 4. Effects of PKC inhibition on TTX-R resurgent and
transient sodium currents in medium neurons.

DMSO BIM I IM IMþBIM I

INaR

n (N)

n_sþf

(pA/pF) 10.2�3.4

11 (4)

2

12.7�5.0

7 (2)

1

24.4�6.3*

13 (4)

1

18.3�5.8

9 (4)

1

V0.5_m

n (N)

(mV) �44.5�3.6

9 (4)

�41.2�4.2

7 (2)

�46.0�5.7

11 (4)

�45.5�3.4

9 (4)

V0.5_h_TTXS

n (N)

(mV) �60.0�0.7

8 (3)

�62.6�2.2

7 (2)

�62.3�1.0

8 (3)

64.8�2.1

9 (3)

V0.5_h_TTXR

n (N)

(mV) �31.3�1.9

7 (3)

�30.0�1.8

7 (2)

�32.3�0.8

7 (3)

�31.8�0.9

9 (3)

INaT_TTXS

n (N)

(nA/pF) 0.61�0.07

11 (4)

0.56�0.11

7 (2)

0.81�0.15

13 (2)

0.56�0.10

9 (2)

INaT_TTXR

n (N)

(nA/pF) 0.75�0.10

11 (4)

0.78�0.20

7 (2)

0.75�0.20

13 (4)

0.65�0.09

9 (4)

Data are expressed as mean� SEM. INaR: resurgent current; n (N): cell

number (culture number); n_sþ f: number of medium neurons expressing

both slow and fast resurgent currents; V0.5_m: half activation voltage;

V0.5_h_TTXS: half inactivation voltage of the TTX-S currents; V0.5_h_TTXR:

half inactivation voltage of the TTX-R currents; INaT_TTXS: TTX-S tran-

sient current; INaT_TTXR: TTX-R transient current; DMSO: dimethyl

sulfoxide; BIM I: bisindolylmaleimide I.

*P< 0.1; Student’s t-test, IM versus DMSO.
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resurgent currents significantly. However, PMA signifi-
cantly inhibited peak transient sodium currents in
medium DRG neurons that express TTX-S currents
only (Table 7). On the other hand, PMA did not signif-
icantly change peak transient currents (both TTX-S and
TTX-R) in either medium or small DRG neurons that
express both TTX-S and TTX-R currents (Tables 8 and
9). In addition, PMA did not significantly change the
half activation voltage or half inactivation voltage for
both TTX-S and TTX-R currents in the three groups
of DRG neurons tested (Tables 7 to 9).

Discussion

Our results show that ERK inhibition reduces baseline

TTX-S resurgent currents in medium diameter DRG neu-

rons and completely prevented the enhancing effects of

inflammatory mediators on TTX-S resurgent currents in

medium diameter DRG neurons, on TTX-R resurgent cur-

rents in medium diameter DRG neurons, and on TTX-R

resurgent currents in small diameter DRG neurons. Those

results suggest that ERK activation mediates the enhancing

effects of inflammatory mediators on resurgent currents in

DRG neurons. On the other hand, PKC inhibition only

partially prevented the enhancing effects of inflammatory

mediators on TTX-S and TTX-R resurgent currents in

medium diameter DRG neurons. However, PKC inhibition

completely prevented the enhancing effects of inflammatory

mediators on TTX-R resurgent currents in small diameter

DRG neurons. These results suggest that while PKC acti-

vation is also likely involved in the enhancing effects of

inflammatory mediators on resurgent currents in DRG

neurons, PKC activation plays a greater role in small diam-

eter neurons than in medium diameter neurons. It is

hypothesized that ERK activation leading to enhanced

resurgent currents plays an important role in inflammatory

and other chronic pain conditions. Assuming this hypoth-

esis is correct in some chronic pain conditions, targeting

ERK enhancement of resurgent currents could be a

useful approach to treat chronic pain.

Possible mechanisms of ERK and PKC modulating

resurgent currents

Our current studies did not suggest whether the effects of

ERK and PKC inhibition were via a direct effect of
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Figure 6. Effects of ERK inhibition on TTX-R resurgent currents in small DRG neurons. Representative TTX-R, slow resurgent currents
were recorded from small DRG neurons (a–d). The resurgent currents were elicited by the same voltage protocol as described in Figure 1.
DRG neurons-exhibited slow resurgent currents (TTX-R) were chosen to study. ERK inhibitor U0126 (10 mM) and its inactive control
U0124 (10 mM) were pretreated for 15 min in culture medium and were maintained in the recording chamber. (a and b) In the presence of
U0124, the TTX-R resurgent currents were enhanced by inflammatory mediators (IMs). (c and d) U0126 completely prevented the
enhancing effects of inflammatory mediators on the TTX-R resurgent currents. (e) The data were presented as mean� standard error of
the mean. Student’s t-test was used to compare the difference, *P< 0.05 (vs. U0124).

Table 5. Effects of ERK inhibition on TTX-R resurgent and
transient sodium currents in small neurons.

U0124 U0216 IMþU0124 IMþU0126

INaR

n (N)

(pA/pF) 15.2�2.8

10 (3)

9.3�2.2

10 (3)

30.1�6.9**

7 (2)

20.0�5.9

9 (2)

V0.5_m

n (N)

(mV) �22.3�2.7

10 (3)

�21.5�2.9

10 (3)

�30.6�3.3*

7 (2)

�24.1�3.2

9 (2)

V0.5_h_TTXS

n (N)

(mV) �70.6�2.4

10 (3)

�72.1�1.6

8 (3)

�67.5�1.0

7 (2)

�68.7�1.0

9 (2)

V0.5_h_TTXR

n (N)

(mV) �34.3�1.9

10 (3)

�37.9�2.2

10 (3)

�37.7�1.1

7 (2)

�40.6�2.6

9 (2)

INaT_TTXS

n (N)

(nA/pF) 0.86�0.16

10 (3)

0.51�0.11

10 (3)

1.24�0.21

7 (2)

1.13�0.28

9 (2)

INaT_TTXR

n (N)

(nA/pF) 1.27�0.23

10 (3)

1.21�0.17

10 (3)

1.47�0.24

7 (2)

1.25�0.26

9 (2)

Data are expressed as mean� SEM. INaR: resurgent current; n (N): cell

number (culture number); V0.5_m: half activation voltage; V0.5_h_TTXS: half

inactivation voltage of the TTX-S currents; V0.5_h_TTXR: half inactivation

voltage of the TTX-R currents; INaT_TTXS: TTX-S transient current;

INaT_TTXR: TTX-R transient current.

*P< 0.1; Student’s t-test, IMþU0124 versus U0124.

**P< 0.05; Student’s t-test, IMþU0124 versus U0124.
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protein kinases phosphorylating sodium channels or if
they were mediated by intermediate molecules in DRG
neurons. However, direct modulation of DRG sodium
channels by ERK and PKC has been reported.
Stamboulian et al. reported a direct phosphorylation
and modulation of Nav1.7 by pERK1/2.22 They
showed that pERK1 phosphorylated specific residues
within intracellular loop 1 (L1) of Nav1.7, that inhibi-
tion of pERK1/2 caused a depolarizing shift of

activation and fast inactivation of Nav1.7, and that

mutation of these phosphoacceptor sites abrogated the

effects of pERK1/2 on this channel. The same group of

researchers also showed that activated p38 mitogen-

activated protein kinase directly phosphorylated

Nav1.6 and Nav1.8 sodium channels and regulated

their current densities.23,24 Although no one has demon-

strated a direct phosphorylation of ERK on Nav1.6 and

Nav1.8, which is most relevant in this study, such a pos-

sibility can be suggested based on the results observed in

the present research.
A direct phosphorylation by PKC of sodium channels

has been well shown.25,26 We reported recently that the

PKC activator PMA can phosphorylate a conserved

PKC phosphorylation site of Nav1.7 in HEK293 cells,

increasing Nav1.7-mediated resurgent currents without

affecting peak transient current density.27 However, in

this study in DRG neurons, we found that PMA did not

change resurgent currents significantly in medium or

small neurons. On the other hand, PMA significantly

decreased peak transient TTX-S current in medium neu-

rons that express only TTX-S currents. Those results

suggest that different PKC isoforms might be expressed

in HEK293 and DRG neurons, and activation of differ-

ent PKC isoforms might have distinct effects on sodium

currents. Basal PKC and activated PKC by PMA or

inflammatory mediators used in this study might be dif-

ferent in DRG neurons than in HEK293 cells. It is also

important to note that while PEPD mutations in Nav1.7

can enhance resurgent currents, the predominant iso-

form underlying the TTX-S resurgent current in

medium diameter DRG neurons is likely to be
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Figure 7. Effects of PKC inhibition on TTX-R resurgent currents in small DRG neurons. Representative TTX-R, slow resurgent currents
were recorded from small DRG neurons (a–d). The resurgent currents were elicited by the same voltage protocol as described in Figure 1.
PKC inhibitor BIM I (1 mM) and control DMSO (1:1000) were pretreated for 15 min in culture medium and were maintained in the
recording chamber. (a and b) In DMSO control condition, the TTX-R resurgent currents were enhanced by inflammatory mediators (IMs).
(c and d) BIM I completely prevented the enhancing effects of inflammatory mediators on the TTX-R resurgent currents. (e) The data were
presented as mean� standard error of the mean. Student’s t-test was used to compare the difference, **P< 0.01 (vs. DMSO). DMSO:
dimethyl sulfoxide; BIM I: bisindolylmaleimide I.

Table 6. Effects of PKC inhibition on TTX-R resurgent and
transient sodium currents in small neurons.

DMSO BIM I IM IMþBIM I

INaR

n (N)

(pA/pF) 32.8�8.8

12 (3)

28.4�9.5

8 (3)

64.7�11.9**

8 (2)

28.8�8.9

10 (2)

V0.5_m

n (N)

(mV) �31.9�4.0

10 (3)

�39.0�3.5

7 (3)

�37.1�4.8

8 (2)

35.6�2.2

9 (2)

V0.5_h_TTXS

n (N)

(mV) �72.4�1.9

8 (3)

�72.6�1.2

7 (3)

�72.1�1.2

8 (2)

73.8�1.2

9 (2)

V0.5_h_TTXR

n (N)

(mV) �35.0�1.4

10 (3)

�34.3�0.9

7 (3)

�35.8�1.1

8 (2)

35.9�0.9

9 (2)

INaT_TTXS

n (N)

(nA/pF) 1.55�0.23

12 (3)

1.09�0.23

8 (3)

1.67�0.25

8 (2)

1.30�0.26

10 (2)

INaT_TTXR

n (N)

(nA/pF) 1.22�0.16

12 (3)

1.01�0.12

8 (3)

1.34�0.22

8 (2)

1.05�0.19

10 (2)

Data are expressed as mean�SEM. INaR: resurgent current; n (N): cell

number (culture number); V0.5_m: half activation voltage; V0.5_h_TTXS: half

inactivation voltage of the TTX-S currents; V0.5_h_TTXR: half inactivation

voltage of the TTX-R currents; INaT_TTXS: TTX-S transient current;

INaT_TTXR: TTX-R transient current; DMSO: dimethyl sulfoxide; BIM I:

bisindolylmaleimide I.

**P< 0.05; Student’s t-test, IM versus DMSO.
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dependent on Nav1.6, and Nav1.6, Nav1.7, and Nav1.8

channels are likely to be differentially regulated by PKC.

Nevertheless, the effects of PKC inhibition in this study

could be caused by a direct effect on sodium channels.

On the other hand, an indirect effect of PKC on sodium

channels cannot be excluded, especially as a possibility

of PKC activation causing ERK activation can be envi-

sioned. For instance, our studies found that both PKC

and ERK inhibitors completely prevented inflammatory

mediator–induced increase in resurgent currents in small

DRG neurons. This can be explained by that PKC activ-

ity is necessary for ERK activation and subsequent

increase of resurgent currents induced by inflammatory

mediators in the small DRG neurons. On the other

hand, it is also possible that a double activation of

PKC and ERK is required to increase resurgent currents
in the small DRG neurons.

An inflammatory soup consisting of five inflammato-
ry mediators was used in this study in order to mimic a
collective effect of inflammatory mediators. However,
the complex components of the inflammatory soup com-

plicate the identification of an explanation for the precise
mechanism on ERK and PKC action, especially for
the identification of a bridge between inflammatory

U0124
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U0126

50 mV

250 ms
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(c) (d) (e)

(b)

*
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Figure 8. Effects of ERK inhibition on repetitive firing of small DRG neurons in the presence of inflammatory mediators. Small DRG
neurons were recorded under whole-cell current clamp conditions. A three-time rheobase current was injected and the representative
responses from neurons in the presence of U0124 and U0126 were shown (a and b). U0126 significantly reduced the number of action
potentials (APs) (a–c) without changing rest membrane potential (RMP) (d) or rheobase (e), significantly. The data were presented as mean
� standard error of the mean. The data were from 20 neurons and 5 cell cultures for each group. Student’s t-test was used to compare the
difference, *P< 0.05.

Table 7. Effects of PMA on TTX-S resurgent and transient
sodium currents in medium neurons.

4a-PMA PMA

INaR

n (N)

(pA/pF) 39.7�4.6

9 (3)

43.5�4.1

12 (3)

V0.5_m

n (N)

(mV) �35.8�3.2

10 (3)

�41.7�1.8

12 (3)

V0.5_h

n (N)

(mV) �50.4�2.8

11 (3)

�55.7�2.8

11 (3)

INaT

n (N)

(nA/pF) 1.61�0.12

11 (3)

1.11�0.10*

12 (3)

Data are expressed as mean� SEM. INaR: resurgent current; n (N): cell

number (culture number); V0.5_m: half activation voltage; V0.5_h: half

inactivation voltage; INaT: transient current; PMA: phorbol myris-

tate acetate.

*P< 0.01 (PMA vs. 4a-PMA); Student’s t-test.

Table 8. Effects of PMA on TTX-R resurgent and transient
sodium currents in medium neurons.

4a-PMA PMA

INaR

n (N)

n_sþf

(pA/pF) 21.6�3.1

10 (4)

1

22.2�3.1

6 (3)

1

V0.5_m

n (N)

(mV) �42.6�6.6

9 (3)

�37.8�4.6

7 (3)

V0.5_h_TTXS

n (N)

(mV) �55.0�3.3

12 (4)

�61.7�3.0

8 (3)

V0.5_h_TTXR

n (N)

(mV) �28.5�2.2

12 (4)

�30.2�1.8

8 (3)

INaT_TTXS

n (N)

(nA/pF) 1.58�0.21

12 (4)

1.07�0.19

8 (3)

INaT_TTXR

n (N)

(nA/pF) 1.20�0.11

12 (4)

0.92�0.19

8 (3)

Data are expressed as mean� SEM. INaR: resurgent current; n (N): cell

number (culture number); n_sþ f: number of medium neurons expressing

both slow and fast resurgent currents; V0.5_m: half activation voltage;

V0.5_h_TTXS: half inactivation voltage of the TTX-S currents; V0.5_h_TTXR:

half inactivation voltage of the TTX-R currents; INaT_TTXS: TTX-S tran-

sient current; INaT_TTXR: TTX-R transient current; PMA: phorbol myr-

istate acetate.
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mediators and PKC and ERK action. For example,

many receptors have been reported to link inflammatory

mediators and PKC/ERK activation in DRG neurons.

EP1-PKC and EP4-ERK pathways contributed to

the PGE2-induced TRPV1 externalization.28 In Sham-

operated mice, bradykinin-induced nociceptive

responses were associated with B2-ERK pathway in

unmyelinated DRG neurons.29 In contrast, these behav-

iors were associated with B1-ERK pathway in myelinat-

ed DRG neurons in nerve-injured animals. In addition,

5-HT2-PKC and H1R-PKC pathways contributed to

the enhanced TRPV1 function induced by serotonin

and histamine, respectively.30–32 Therefore, future stud-

ies using single inflammatory mediators will be needed to

determine the contribution of specific pathways to

the enhancing effects of inflammatory mediators on

resurgent currents in DRG neurons.

ERK inhibition, sodium channel gating, and membrane

excitability of DRG neurons

A previous study has found that ERK inhibition caused

(1) a depolarizing shift of activation and inactivation of

Nav1.7 expressed in HEK293 cells and (2) membrane

hyperpolarization and decreased firing frequency of

action potentials in DRG neurons.22 In the present

study, we found that ERK inhibition caused (1) a depo-

larizing shift of inactivation of TTX-S currents in

medium DRG neurons expressing TTX-S currents only

and (2) decreased firing frequency of action potentials in

DRG neurons in the presence of a group of inflamma-

tory mediators. The partial similar effects of ERK

inhibition between the previous and the current studies

suggest that ERK inhibition reduces membrane excit-

ability through modulating sodium channels in DRG

neurons. However, the differences in cell types or sub-

types (HEK 293 vs. DRG neurons; different subpopula-

tion of DRG neurons), microenvironment (in the

presence or absence of inflammatory mediators),

sodium channel isoform expression, and/or recording

methods of patch clamping (conventional vs. perforated)

likely contribute to the differences in effects of ERK

inhibition observed between the previous and the current

study. The results from this study suggest that the inhib-

itory effects of ERK inhibition on membrane excitability

of DRG neurons in the presence of inflammatory medi-

ators are mediated by the inhibitory effects of ERK inhi-

bition on resurgent currents.

ERK activation, resurgent currents, and

inflammatory pain

Our previous and current studies demonstrated that

inflammatory mediators enhance TTX-S and TTX-R

resurgent currents in small-to-medium diameter DRG

neurons.13 The enhancing effects of inflammatory medi-

ators on DRG resurgent currents are dependent on ERK

activation. It has been well documented that ERK acti-

vation, including ERK activation at the DRG level,

plays an important role in development of inflammatory

and neuropathic pain.18,19 In fact, our recent study

found that TTX-S resurgent currents in medium diame-

ter DRG neurons were up-regulated in a low back

inflammatory pain model: local injection of zymosan

to DRG (LID).6 Blockade of this increase in TTX-S

resurgent currents by in vivo knockdown of the b4 sub-

unit in DRG completely reversed the LID-induced

mechanical hyperalgesia and mechanical allodynia.6 It

would be interesting for future studies to test whether

the LID-induced increase in pain behavior is caused by

ERK-dependent increase in DRG resurgent currents. It

would be also interesting to test this hypothesis in other

inflammatory pain models or other chronic pain models

that have a significant inflammatory component.
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Table 9. Effects of PMA on TTX-R resurgent and transient
sodium currents in small neurons.

4a-PMA PMA

INaR

n (N)

(pA/pF) 15.7�3.7

12 (3)

14.8�1.8

11 (3)

V0.5_m

n (N)

(mV) �22.9�0.8

12 (3)

�23.1�0.6

12 (3)

V0.5_h_TTXS

n (N)

(mV) �64.9�0.8

12 (3)

�64.8�0.7

12 (3)

V0.5_h_TTXR

n (N)

(mV) �33.7�0.5

12 (3)

�37.3�1.5

12 (3)

INaT_TTXS

n (N)

(nA/pF) 1.06�0.14

12 (3)

1.42�0.22

12 (3)

INaT_TTXR

n (N)

(nA/pF) 0.87�0.12

12 (3)

0.59�0.13

12 (3)

Data are expressed as mean�SEM. INaR: resurgent current; n (N): cell

number (culture number); V0.5_m: half activation voltage; V0.5_h_TTXS: half

inactivation voltage of the TTX-S currents; V0.5_h_TTXR: half inactivation

voltage of the TTX-R currents; INaT_TTXS: TTX-S transient current;

INaT_TTXR: TTX-R transient current; PMA: phorbol myristate acetate.
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