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Abstract
Mathematical models played in a major role in guiding policy decisions during the COVID-19 pandemic. These models while
focusing on the spread and containment of the disease, largely ignored the impact of media on the disease transmission.
Media plays a major role in shaping opinions, attitudes and perspectives and as the number of people online increases, online
media are fast becoming a major source for news and health related information and advice. Consequently, they may influence
behavior and in due course disease dynamics. Unlike traditional media, online media are themselves driven and influenced
by their users and thus have unique features. The main techniques used to incorporate online media mathematically into
compartmental models, with particular reference to the ongoing COVID-19 pandemic are reviewed. In doing so, features
specific to online media that have yet to be fully integrated into compartmental models such as misinformation, different time
scales with regards to disease transmission and information, time delays, information super spreaders, the predatory nature
of online media and other factors are identified together with recommendations for their incorporation.
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1 Introduction

The COVID-19 pandemic has highlighted the importance of
mathematical models in projecting the spread of disease out-
breaks [1], in estimating epidemiological parameters [2, 3]
and in evaluating the effects of various intervention or con-
trolmeasures [4, 5]. Thesemodels are notmeremathematical
exercises—they played a central role in the decision by the
government of the United Kingdom to impose a strict lock-
down inMarch 2020 [6].Models have generally concentrated
on R0 as the most important predictor of viral spread [7].
However, most of these models while focusing on the spread
of the disease have largely ignored the impact of changes
in awareness (and thus compliance with public health regu-
lations) resulting from increased information dissemination
through online media.
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The ongoing COVID-19 pandemic has radically changed
many aspects of our lives, especially the way in which we
communicate and interact. As of January 2022, approxi-
mately 62.5 percent of the world’s population was online—a
4 percent increase from the previous year [8]. Of these, 9 out
of ten are engaged in social media—a 10 percent increase
from the previous year [8].Accordingly, onlinemedia such as
websites, search engines and social media platforms are fast
becoming major sources for news and health related infor-
mation and advice [9, 10].

However, this greater access to information has also led to
a greater access to misinformation, disinformation, rumors
and conspiracy theories [11]—a situation which has been
exacerbated by the pandemic [12]. A survey of COVID-19
misinformation on social media found that the proportion
of misinformation ranged from 0.2 to 28.8% of posts [13].
With such contradictory and seemingly credible information
easily available, online media can induce both positive and
negative behavioral changes with regards to attitudes toward
non-pharmaceutical interventions, vaccination and treatment
[14, 15]. Therefore, they may influence the population’s per-
ception of the risk of infection and consequently the spread
of the disease and disease dynamics [15].
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Table 1 Inclusion of online
media in models. For ease of
comparison, the following
notation is adopted—λandγ for
information transmission rate
terms, S for susceptibles, E for
exposed Individuals, I for
infected/infectious Individuals, A
for asymptomatics, R for
recovered individuals and M for
the media compartment

Reference Basic
Model

Effect of online media Transmission term

[28] SEIR Creation of an aware class Susceptibles interact with the media
at a rate λSM to become aware,
where M represents the daily
normalized number of tweets about
the infectious disease at any given
time

[34] SEIR Modification of the transmission
term
Media-induced quarantine

The transmission rate between
susceptible and infected individuals

is reduced by a factor e−pM due to
awareness driven by media reports
where p represents the weight of
the media effect
Terms λSM /λEM represent the
quarantine rates due to media
reports

[29] SIR Creation of aware classes Unaware individuals interact with the
media at a rate λSM , λI M , λRM
to become aware

[35] SEI Modification of the transmission
term

The transmission rate between
susceptible and infected individuals

is reduced by a factor e−αM due to
awareness driven by media reports,
where α is a measure of the media
effect

[36] SEIR Creation of aware classes
Modification of transmission
terms

Susceptibles interact with the media
at a rate λSM to become aware
Asymptomatics interact with the
media at a rate
γ AM to go into quarantine
The transmission rate between
susceptible and infected individuals

is reduced by M
ρ+M where ρ is a half

saturation constant

[37] SEIR Creation of aware classes with
different degrees of activity

Susceptibles interact with the media

at a rate λS M
ρ+M to become aware,

where ρ is a half saturation
constant. Asymptomatics interact
with the media at a rate
γ A M

q+M to go into quarantine,

where q is a half saturation constant

[38] SIRS Creation of an aware class Susceptibles interact with the media

at a rate λS M
K+M to become aware

where K is a half saturation constant

[39] SEIR Creation of an aware class Susceptibles interact with the media
at a rate λSM to become aware

Though there has been much research on the use of social
media in the surveillance of infectious diseases [16, 17], the
influence of online media (as distinct from media in gen-
eral) on disease dynamics is a relatively new consideration
in modeling efforts. Unlike traditional “static” media, online
media (as a result of their interactivity) are themselves driven
and influenced by their users and thus have emergent features

(such as such as bots, influencers and echo chambers) that are
not found in traditional media. This means that their incor-
poration is not as straightforward as that of traditional media
sources.

We review the major approaches used to incorporate
onlinemedia into compartmental models, with particular ref-
erence to the ongoing COVID-19 pandemic. In doing so, we
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also identify features that are specific to online media that
have yet to be included in compartmental models and sug-
gest ways of including them in modeling efforts.

2 Onlinemedia in models

Media awareness/information campaigns and their influence
on human behavior have already been incorporated in mod-
els for Ebola, alcoholism, HIV, Tuberculosis and Influenza
[18–24]. Aware people make behavioral changes such as
mask wearing, hand-washing and avoidance of crowded
places, thus reducing their risk of infection. The effects of
these changes have been incorporated in models by either a
reduction of the transmission term in the form of an expo-
nential/saturated Holling type-II function [18, 20–22, 25, 26]
or by the introduction of extra compartments representing
awareness of the disease with [23, 26–29] and without a
media compartment [30–32].

As a relatively recent form of media, few models con-
sider social media exclusively, but instead merge them with
print and broadcast media and mouth-to-mouth communica-
tion under the umbrella of awareness/information [14, 33].
Yet the extensive changes brought about by COVID-19 on
the information landscape suggest that online media need to
be considered as distinct entities from their traditional media
counterparts. This section focuses on models that include
online media exclusively—Table 1 describes their inclusion
in models while Table 2 describes the associated media func-
tions where appropriate.

3 Idiosyncratic features of onlinemedia

While the models reviewed include the effects of online
media, it should be remembered that online media (in par-
ticular social media) have dramatically changed the way
information is generated, consumed, and then propagated
[40, 41].Consequently,models need to bemodified to accom-
modate emerging features arising from this novel information
ecosystem.We identify four significant features and describe
their incorporation (existing or potential) into traditional
compartmental models.

3.1 Information, disinformation andmisinformation

With so much information literally at our fingertips, it is
sometimes difficult to distinguish fact from false informa-
tion. Ineffective and harmful medical advice, as well as false
and misleading information (negative information) under-
mining prevention and intervention measures may lead to
increased infection and hospitalization rates by encouraging
risky behavior [40–42]. In spite of this, very few infectious

Table 2 Media Functions

Reference Media Function M

[36, 37] M
′ � r

(
1 − θ A

�+A

)
I − r0(M − M0), where

r represents the media growth rate, θ is the decay in
advertisements due to an increase in the number of
aware individuals A, � is a half saturation
constant, M0 is a baseline number of social media
advertisements and r0 represents the media waning
rate

[34] M
′ � η

(
δI I + δq Eq

) − μM , where

δI and δq are the hospitalized rates for the infected

I , and the quarantined exposed Eq , η is the media
reporting rate of number of newly hospitalized
individuals and μ represents the media waning rate

[29] M
′ � ρ(I1 + θ I2) − dM , where
ρ represents the media reporting rate, I1 and I2
represent infected individuals and d represents the
media waning rate

[35] M
′ � δ

(
σE

1+hσE

) − μM), where

σ E represents the number of newly observed
infectious individuals, δ is the media reporting rate,
h is a measure of the saturation effect of media
reports and μ represents the media waning rate

[38] Information is divided into three categories:
positive information M1 (dependent on to the
number of confirmed cases H), where

M
′
1 � e1 + u1 f (H) − μ0M1,

negative information M2 (dependent on to the
number of confirmed cases H and medical
resources w),
where
M

′
2 � e2 + u2 f (H ) + u3 f (w) − u5M3 − μ0M2,

and policies and regulations information M3
(which counteracts the negative information and is
dependent on the total population L),

where M
′
3 � u4 f (L) − μ0M3

μ0 represents the media waning rate, ei represents
extra information sources,
ui (i �� 0) represents the media implementation rate
and f (x) refers to the amount of information
generated by media coverage on variable x

[39] M
′ � ρ I − μM , where
ρ represents the implementation rate of the
awareness programs and μ represents the media
waning rate

diseasemodels have taken negative information into account,
instead focusing on the beneficial effects of information such
as the reduction of contact rates or the increase in positive
awareness (Table 1).

3.1.1 Including negative information andmisinformation

A recent model by Chang et al. [38] recognized the impor-
tance of negative information in the modeling process by
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separating information into three disparate compartments
representing positive, negative and official information on
policies and regulations. With dynamics similar to infor-
mation release during the pandemic in response to deaths
and disinformation [42], an increase in negative information
(when compared to the other two types) triggered pulse con-
ditions and the release of counteracting official information
with time delay.

This is not to say that the spread of misinformation online
has not been modeled. Information propagation models have
been used to measure the diffusion of information, misinfor-
mation and disinformation online by comparing their spread
to that of an infectious disease—analogous to a social con-
tagion process [43–47]. These models basically adapt the
traditional SIR model by dividing the population into igno-
rants (those not aware of the rumor—susceptibles), spreaders
(those who are spreading it—infected people), and stiflers
(those who know the rumor but have ceased communicating
it—recovered people) [48]. Compartments may be added to
incorporate the details of the spread of information via online
media. For example, Maleki et al. [49] used additional com-
partments to include skeptics who know about the news but
have decided not to spread it and exposed persons who have
heard about the news but needed some time before deciding
to engage in any action [49]. Also, with increasing concerns
about the spread of misinformation, fact checkers who cor-
rect or debunking myths and falsehoods are playing a vital
role in removing and editing information [50, 51]. They may
be included in this model as a “fact checkers class,” contact
with whom may result in skeptics “recovering.”

Information propagation models have been coupled with
infectious disease ones to consider the effects of aware-
ness due to information dissemination on the transmission
of the disease [52–54]. The ongoing challenge is how to cou-
ple these models without resulting in an unwieldy model.
A search for models coupling these two processes yielded
mostly network models [53, 54] with a smaller number using
compartmental models [32, 52]. However, none of these
models considered the effects of negative information or
included an “online media” mechanism like those in Table
1 for the spread of information. Instead, they used contact
between aware and unaware people to spread awareness so
that onlinemedia is not included explicitly in themodel equa-
tions as in the models in Table 2.

With our increased dependence on online media for news
and health related information and their subsequent influence
on our behavior, this coupling between information and dis-
ease transmission and the interplay among the three types of
information are important considerations and more research
is needed into their inclusion in models.

3.1.2 Time scales of information and disease transmission

Social media has been a major contributor to the speed of
spread of information online and a major conduit for misin-
formation and rumors. Most of the models reviewed assume
that the spread of the epidemic and the transmission of
information occur at the same time scale. However, the dif-
fusion of information among individuals is faster than the
spread of a disease and that of demographic processes [42].
By considering the time variation between information dis-
semination, epidemiological and demographic processes, Li
et al. [35] constructed a multi-scale model describing the dis-
ease/information transmission with aware/unaware classes
and a media term. Since the spread of awareness due to
information dissemination is faster than population growth,
the dynamical behavior of the system was analyzed using
the theory of the slow-fast system [51, 55]. Despite ignoring
disease related mortality, results suggested that information
transmission about COVID-19 pandemic caused by media
coverage can reduce the peak size of the epidemic.

Another recent study [56] comparing the spread of
interacting diseases to information spread with different
timescales observed that depending on the dynamics of inter-
actions, when the diffusion of information is faster than the
spread of the disease, the disease may actually have a greater
prevalence and information awareness may not be as effec-
tive.

Furthermore, false information spreads more rapidly than
news from reliable sources [57, 58] Though Chang et al.
[38] considered the impact of positive information, negative
information and information on policies and regulations on
transmission, the transmission time scales were considered
to be the same. Formore realistic dynamics, these time scales
may be further separated into a fast time scale associatedwith
the transmission of fake news, an intermediate time scale
associated with that from credible sources, and a slower time
scale associated with the spread of the disease [42, 57, 58].

3.2 Time lag—time to post and react

Though information spread online appears to be instan-
taneous, their effects on behavior and awareness are not
synchronous—there is a “pondering” time between receiv-
ing information and taking measures [58]. For this reason,
the introduction of discrete time delays on models is impor-
tant. Thesemay be included in the transition from unaware to
aware classes [27, 59, 60] or through a reduction in transmis-
sion rates as a response to the current media coverage [61,
62].

In addition, most of the models that include online media
(Table 2) consider the growth of themedia compartment to be
a function dependent on the number of infected individuals.
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However, in reality the information in the media compart-
ment (whether positive, negative or official) changes as a
result or reaction to numbers released earlier—often from
reports from the previous day. Thus a delay may be needed
to account for the time needed to respond and to organize
awareness programs [59]. For this reason, a time delay may
also be necessary in the media compartment [27, 59, 62, 63].
For example, Al Basir et al. (2018) used an expression of the
form

M ′ � ηρ I (t − τ) − θM (1)

while examining the role of awareness programs on the con-
trol of infectious diseases where ρ represents disease-related
deaths, θ represents the media waning rate and η is the pro-
portionality constant which governs the implementation of
awareness programs for the media compartment.

The endemic equilibrium in models with time delay
exhibits Hopf-bifurcations and periodic oscillations which
destabilize the system and multiple stability switches may
occur with the system becoming chaotic as the time delay
increases [63]. Nevertheless, including delays are important
especially when modeling reported/measured data, as delays
are inherent in the data gathering process [64].

3.3 Information superspreaders—Influencers,
algorithms and bots

Unlike traditional “static” information sources such as news-
papers, the “online information ecosystem” is especially
vulnerable to manipulation [65, 66]. Not only are websites
relatively simple to create and inexpensive to maintain, but
online information may be rapidly disseminated (exponen-
tially faster than humans) by computer programs—known
as bots. These automated online accounts exploit the way in
which content is shared and recommended—by sharing a dis-
proportionate number of posts or by tagging or mentioning
popular figures. Other rapid spreaders include social media
influencers and search engine algorithms, which curate, rec-
ommend and promote content [67].

The role of information superspreaders has been recog-
nized in modeling efforts [68–70] by distinguishing between
the contact/spreading rates and the forwarding probabilities
of superspreaders and normal users. Liu et al. [69] devel-
oped a susceptible users (S), superspreaders (A), normal
spreaders (I) and recovered users (R) model by inserting a
superspreader compartment into the classical SIR model to
characterize the information propagation using Weibo data.

While traditional media may be relatively straightfor-
ward to introduce into coupled models of disease spread and
information, challenges arise when bots and algorithms are
considered. As primary drivers of the spread of misinfor-
mation [71], they are often overlooked—perhaps due to their

novelty and stealth like modus operandi. While we were able
tofindagent-basedmodels [72], further research is needed for
their incorporation into compartmental information models
and thereafter into coupled models of disease transmission.

3.4 Fatigue and algorithms—another look at media
functions

Table 2 describes the media functions used in the COVID-
19 models, where generally the amount of media cover-
age/awareness is dependent on thenumber of people infected.
In reality, this may not be the case as “pandemic fatigue” [73]
becomes increasingly prevalent or other more newsworthy
items take prominence [74, 75]. Thismeans that theremay be
a limit to the amount of information presented, explored and
absorbed by the public [76] and other forms should be con-
sidered. Li and Xiao [35] considered a saturated function of
newly observed infectious individuals (Table 2) in which the
media reporting rate initially riseswith newly observed infec-
tions. This gradually decelerates until a plateau is reached
where the media reporting rate remains constant regardless
of newly observed infections similar to the Holling type 2
functional response.

A key consideration often neglected when framing media
functions is the personalized, predator-like behavior of online
search engines and social media algorithms which collect
data and recommend content based on popularity, past behav-
ior and the preferences of people similar to us [77]. The
Internet, especially social media has become increasingly
adept at creating personalized experiences for each user
searching or browsing for information [77]. This content
then appears in newsfeeds or search queries and may result
in biased thinking and the creation of echo chambers/filter
bubbles in which like-minded people reinforce each other’s
opinions [67, 76–78]. These have been implicated in the
growth of the anti-vax movement and vaccine hesitancy
[79]. With algorithms playing a major role in the curation
of content [66], they should figure prominently in the media
function. A basic suggestion for their inclusion may be to
consider a reproduction rate for themedia compartment (rM)
representing the additional coverage generated due to algo-
rithmic recommendations.

Another suggestionmay be to adapt an existing functional
response from ecology to account for the predatory nature of
online media. The Beddington–DeAngelis, the Crowley—
Martin and the Hassell–Varley functions may be used for
predator dependent functional responses [80]. For exam-
ple, the Beddington–DeAngelis functional response though
similar to the Holling type 2 functional response contains
an extra term describing mutual interference/cooperation
among predators [81]. A modification may be to use a term
of the form σ PS

1+bS−cP where P represents the algorithms and
S the susceptibles with the extra term cP accounting for

123



J. Sooknanan, T. A. R. Seemungal

cooperation among algorithms which may contribute to bias
and polarization [82]. A challenge arises in determining P
in the media function. We propose this may be done in one
of two ways. If we could quantify the proportion of mate-
rial posted q that accounts for algorithmic recommendations
then P � qM . Alternatively, at the risk of violating parsi-
mony, the media compartment may be divided into coupled
compartments—representing information due to algorithmic
recommendations and non-automated information.

4 Conclusions

Despite the similarity between the spread of information and
the spread of infectious diseases, there are some notable
differences. For example, in disease transmission every indi-
vidual in contact with an infected individual has the same
probability of being infected [83]. This may not be the case
as long as algorithms recommend content based on viewing
history [77]. Also, there is a limit to how long an individ-
ual continues to be infectious [83]. In contrast, information
online may be available for an indefinite amount of time
unless it is deleted. Since some articles may be reposted on
other sites, even if the original site removes the post, they
may still exist online and be able to exert an influence [50].

Infectious diseases, information and human behavior are
inextricably linked. Unlike traditional media, information
online can not only be viewed and accessed easily, but
rapidly shared and discussed—this allows for a two way
interaction—which may subsequently color users’ attitudes,
beliefs, or decisions [13, 14]. During an outbreak, the result-
ing changes in behavior may influence disease dynamics,
especially during the early stages, where non-pharmaceutical
interventions may be the only defense against spread [84].
Representing this “feedback loop between human behavior
and infectious diseases is one of the key challenges in epi-
demiology” [83], with online media introducing yet another
layer of complexity. Since R0 is the single best predictor of
disease spread [7], it would be useful to see how estimates
of R0 vary with online media input into the models.

All things considered, as online media usage increases,
their unique features need to be integrated into models. This
will further improve the predictive capability of the models
as they become more involved in the decision making and
planning processes and guide policy decisions for the con-
tainment of future outbreaks.
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