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Neuronal migration is essential for
the development of the cerebral

cortex. Mutations leading to defective
migration are associated with numerous
brain pathologies. An important challenge
in the field is to understand the intrinsic
and extrinsic mechanisms that regulate
neuronal migration during normal deve-
lopment and in disease. Many small
GTPases are expressed in the central
nervous system during embryonic develop-
ment. Recent findings have shown that
Rap1 and its downstream partners Ral, Rac
and Cdc42 are involved in the maintenance
of N-Cadherin at the plasma membrane
which is necessary for the correct polariza-
tion of migrating neurons. The activation
of Rap1 is triggered by Reelin, an extra-
cellular protein known for its role in the
organization of the cortex into layers of
neurons. In the absence of Reelin, neurons
exhibit a broader and irregular pattern of
positioning. The prevailing model suggests
that Reelin signals to neurons during the
last step of their migration, a notion that is
inconsistent with new data describing an
effect of Reelin on early steps of migration.
In regard to these recent findings I suggest
a revised model, which I call the “polarity
model,” that further refines our under-
standing of the developmental function
played by Reelin and its downstream small
GTPases.

Introduction

Small GTPases are guanine nucleotide
binding proteins that function as mole-
cular switches by cycling between active
GTP-bound and inactive GDP-bound
states. They are activated by Guanine

nucleotide Exchange Factors (GEFs) that
induce GTP loading and inhibited by
GTPase Activating Proteins (GAPs) that
return them into their GDP loaded
inactive form.1 The large superfamily of
small GTPases (also named the Ras super-
family) is comprised of the Ras/Rap/Ral,
Rho, Rab, Arf and Ran families.2 They
regulate a wide variety of essential cellular
processes such as cell division, adhesion,
polarity, migration and differentiation.3 It
is thus not surprising that many of their
members are involved directly or indirectly
in numerous pathological conditions includ-
ing cancer and brain developmental diseases.

This extra view will focus on the Rap
subfamily of small GTPases. It is com-
posed of five related proteins, Rap1 (A and
B) and Rap2 (A, B and C) which have
overlapping functions and patterns of
expression. Rap1 in particular has been
intensively studied for its role in the
regulation of integrin-mediated cell adhe-
sion and the control of endothelial and
epithelial cadherin-based cell-cell junction
integrity.4 We have recently demonstrated
a new function of Rap1 in regulating the
polarity of migrating neurons in the
developing mouse brain cortex through
the control of N-Cadherin (NCad).5 We
found that Reelin, an extracellular matrix
protein which has an important function
in the organization of the cortex, triggers
the activation of Rap1 in cortical neurons
when they are midway through their
migration path, at a stage where re-
polarization occurs. These new findings
do not fit with the current model in which
Reelin affects neurons at the end of their
migration. Here, I suggest a revised model
of action for the Reelin signaling pathway
with a central function for small GTPases.
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I will start this extra view with a descrip-
tion of the development of the cerebral
cortex and the recently discovered role
played by Rap1. Then I will discuss the
downstream proteins involved in this func-
tion, followed by the upstream Reelin signal.

Cortical Development and Rap1
Small GTPases

The development of the brain requires that
neurons migrate away from their birth place
in order to perform their functions properly.
In addition, neurons have to extend neurites
and ultimately differentiate and commun-
icate with each other. Characterization of
the molecular signaling pathways involved
in cerebral cortex development is important
for the understanding of brain pathologies
such as lissencephaly, microcephaly, peri-
ventricular heterotopia, epilepsy, dyslexia,
mental retardation, schizophrenia, bipolar
disorder, and many others resulting from
defective cortical architecture, connectivity
and function. The majority of neurons in
the cortex are the excitatory glutamatergic
neurons that are generated from progeni-
tor cells located at the ventricular zone
(VZ) which lines the ventricle (Fig. 1).
These neurons undergo different phases of

migration starting with a polarized migra-
tion within the VZ. This is followed by a
more complex movement within the mul-
tipolar morphology zone (MMZ), which is
made up of the sub-ventricular zone (sVZ)
and the lower part of the intermediate zone
(IZ), where they undergo more divisions.6,7

Importantly, at this stage, the neurons lose
their bipolar morphology and elongate
several neurites which is why they have
been referred as having a multipolar
morphology. This occurs along with a
slower migration and a few switches in their
direction of movement. The neurons then
migrate within the radial morphology zone
(RMZ), comprising the upper part of the IZ
and the cortical plate (CP), to reach the top
of the CP. During the transition from
MMZ to RMZ, they change morphology to
become bipolar once again. Within the CP,
new neurons migrate past the older ones
already installed resulting in “inside-out
layering,” that is, a gradient of cells with
younger neurons in the outermost field of
the CP and older neurons more inside.

During the multipolar stage, and in
spite of the multiple changes of direction
of migration, the net movement is still
directed toward the CP. Rap1 has emerged
as a critical regulator of this polarization.5

Similar to all small GTPases, Rap proteins
are regulated by specific GAPs or GEFs.
Important clues for their involvement in
brain development came from the pheno-
type of a hypomorphic mutant mouse for
C3G, a Rap-specific GEF, which exhibits
an accumulation of neurons within the
MMZ.8 This arrest in cell migration is
mainly due to the highly disorganized
radial glia fibers (the main migration
substrate for this type of cell) and
disintegration of the basement membrane.
Moreover, these mice die around E14.5
making it difficult to study the migration
of later born neurons. C3G is not the only
GEF regulating Rap during the develop-
ment of the cortex. In fact, a dorsal
telencephalon-specific knockout of PDZ-
GEF-1, another activating protein for
Rap1 and Rap2 enzymes, results in the
accumulation of neurons underneath a
normally developed cortex.9 The involve-
ment of Rap activators in cortical develop-
ment suggested that Rap enzymes might
also play an important role. Indeed, the
neuron-specific inhibition of Rap (i.e.,
without affecting radial glial cells) in vivo
induces an ectopic accumulation of
neurons within the MMZ.5 Time lapse
video-microscopy revealed that this

Figure 1. Migration of glutamatergic neurons in the mammalian cerebral cortex. Neurons are born in the ventricular zone (VZ) from progenitor cells
(green cells). They start migration as bipolar cells then migrate as multipolar cells when they move into the Multipolar Morphology Zone (MMZ), which
contains the sub-ventricular zone (sVZ) and the lower part of the intermediate zone (IZ). Neurons resume a bipolar migration when they enter the Radial
Morphology Zone (RMZ) comprising the upper part of the IZ and the cortical plate (CP). Within the CP, neurons migrate past the other cells already
installed and settle just beneath the marginal zone (MZ) resulting in formation of an inside-out layered structure: The CP is divided into layers II to VI, with
layer II consisting of younger later-born cells and layer VI consisting of the oldest cells. Cx, cortex; V, ventricle; arrows show direction of migration.
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phenotype is not the result of defective
neuronal motility of the affected multi-
polar cells, but is rather due to a defect in
their polarization toward the RMZ. This
is because the movement of the Rap-
inhibited neurons is randomized with a
decreased net movement toward the
RMZ. This phenotype is not due to a
complete arrest of invasion of the RMZ
because many cells migrate out of the
MMZ, albeit with a significant delay when
compared with control cells. Surprisingly,
the subsequent radial bipolar migration
along glial fibers (also called glia-guided
locomotion) is not affected by the absence
of Rap activity. This absence of effect on
locomotion has been confirmed in an in
vitro lattice culture system where disso-
ciated neurons move along glial fibers.
Together, these observations suggest that
Rap is important for the initial polarization
of neurons but not migration per se.

Rap1 Polarizes Neurons Through
Its Regulation of N-Cadherin, with
a Potential Involvement of Ral,

Rac and Cdc42

Signaling through the small GTPase Rap1
has been implicated in both integrin-
mediated and cadherin-mediated adhesion
events. To date, studies examining neuron-
specific deletion of β1 Integrins10 or the
Integrin downstream effector FAK (focal
adhesion kinase)11 did not observe any
defect in glia-guided migration. On the
other hand, both Rap1 and cadherins and
their interaction are emerging as important
regulators during the brain development.
Classical cadherins are single-pass trans-
membrane adhesion receptors involved in
cell-cell contact and epithelial polarity
through calcium dependent homophilic
binding. Intracellularly, cadherins interact
with catenin family members. p120-catenin
binds to the juxtamembrane region of
cadherin to stabilize it at the plasma mem-
brane, while a- and β-catenin serve a dyn-
amic role in linking cadherin to the actin
cytoskeleton.Manymembers of the cadherin
family are expressed in the central nervous
system and one of them, NCad, has recently
attracted the interest of neuroscientists.

The prevailing view is that cadherin
functions to mediate adhesion between
stationary cells, thereby maintaining tissue

integrity and segregation of different cell
populations. Indeed, throughout develop-
ment, NCad is highly expressed in the
vertebrate central nervous system and its
conditional deletion in the dorsal telence-
phalon results in disruption of the adhe-
rens junctions localized at the apical end of
neuroepithelial cells, where NCad is most
highly concentrated. This results in a
general disruption of neuroepithelial integ-
rity and aberrant radial glia fibers that do
not expand toward the pial surface.12

However, evidence is emerging that cad-
herins also regulate cellular motility. In the
rat caudal hindbrain, classic cadherins
regulate tangential migration of precere-
bellar neurons.13 In the zebrafish, NCad
concentrates transiently at the front of
cerebellar granule cells during the initia-
tion of their chain-migration and is
required for them to polarize prior to
migrate.14 In the early chick embryo
PDGF signaling controls NCad expression
in mesoderm cells, which is required for
efficient migration.15 Interestingly, C3G
and PDZ-GEF1, two of the Rap-specific
GEFs known to be important for mam-
malian brain development (see above),
have also been linked to the cadherins.
In epithelial cells, C3G directly interacts
with E-cadherin and is important for the
initial steps of adherens junction forma-
tion,16,17 while PDZ-GEF1 is recruited
by MAGI-1 at VE-cadherin-mediated
endothelial cell-cell adhesions.18

Our recent findings demonstrated that
in the mammalian cerebral cortex NCad
has an important function in polarizing
cortical neurons before they are able to
start migrating into the RMZ.5 The
inhibition of cadherins in post-mitotic
neurons without affecting progenitor cells
and their radial glia fibers, recapitulates the
phenotype induced by inhibition of Rap1
i.e., loss of polarity during the multipolar
migration with no effect on the speed of
migration as multipolar or bipolar neu-
rons. Several experiments confirmed that
NCad functions downstream from Rap1.
First, inhibition of Rap1 in vivo and in
vitro reduced the presence of NCad at the
plasma membrane with a concomitant
increase in intracellular NCad. Second, a
functional assay demonstrated that inhibi-
tion of Rap1 reduced the binding of
neurons to the NCad extracellular domain.

And finally, overexpression of NCad in the
cortex is able to partially rescue the cell
positioning defect due to inhibition of
Rap1. These data suggest that Rap1
activity is important in migrating neurons
in order to maintain the high level of
NCad at the plasma membrane necessary
to allow cells to polarize correctly. Yet
we do not know whether other cadherins,
also expressed at the MMZ, might have
some redundant function with NCad. In
addition, how NCad allows the polariza-
tion of cortical neurons is still under
investigation. Nevertheless, hypotheses
might be suggested. NCad may be
activated locally in order to increase the
binding to radially-oriented processes on
other neurons or glial fibers. This adhesion
could stabilize the position of the centro-
some. A similar model has been suggested
for the directional chain migration of
cerebellar granule neurons in the zebrafish
with NCad transiently accumulating at
the front of the cells.14 However, in other
cell types, it is the cadherin-free cell edge
that shows the polarity of migration.
Indeed, cadherin-mediated cell-cell inter-
actions induce the centrosome and Golgi
apparatus to move toward the free cell
edges in cultured astrocytes19 and stimulate
protrusions at the free edge in Xenopus
neural crest cells.20 Alternatively, NCad
may be a regulator for other cell surface
receptors that respond to directional
signals from the CP. For example, NCad
modulates FGF-2 signaling in MCF-7
breast cancer cells21 and VE-cadherin
regulates TGFβ signaling in endothelial
cells.22 This model has parallels with the
migration of Drosophila border cells,
where Drosophila ECad (DECad) is
required in the migrating cells as well as
in the cells they migrate between.23 The
border cells extend a long leading process,
whose direction is specified by a growth
factor gradient but whose formation
requires DECad.24 The induction of the
long extensions on border cells may be
analogous to the induction of a radial
leading process on cortical neurons, and
in both cases surface cadherin expression
may be key to developing the polarity
needed for migration.

According to studies in epithelial and
endothelial cells, Rap uses several mechan-
isms to regulate cadherin traffic (Fig. 2).
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The Rap effector RalGDS activates RalA,
which docks secretory vesicles to the
exocyst complex and recycles E-Cadherin
to epithelial cell-cell junctions.25 It has
been shown that Rap1, Rac1 and Cdc42,
activated by nectins, are able to trigger
the formation of adherens junctions in
epithelial cells and fibroblasts.26,27 This
positions them upstream of cadherin func-
tion. However, they also can be activated
downstream of cadherins,17,28 suggesting a
potential positive feedback loop. In epi-
thelial cells, Rap1 is important for the
recruitment of E-cadherin into nascent
cell-cell contact sites16,29 and in this
process it functions upstream of Rac1
and Cdc42 by recruiting their GEF
Vav2.16,17 Cdc42 has been reported to
regulate the trafficking of basolateral
membrane proteins30 as well as to modu-
late the association of cell-cell contacts

with the actin cytoskeleton.31 Finally,
activation of Rac1 and Cdc42 by Rap1
could also stabilize cadherins at the
membrane through their target IQGAP1.
Studies have suggested two possibilities
as to how they work. First, it has been
proposed that IQGAP1 destabilizes cad-
herins by inducing their dissociation
from a-catenin and IQGAP1 is negatively
regulated by Rac1 and Cdc42.31,32 Second,
another study suggested that IQGAP
stabilizes cadherins through the reorgani-
zation of the actin cytoskeleton and is
positively regulated by Rac1 and Cdc42.33

Regardless of which of these pathways
downstream of Rap1 are predominant,
perhaps depending on cell types or
experimental conditions, all those results
indicate that, in epithelial cells, stimu-
lation of Rap1 may induce the activation
of Ral, Rac and/or Cdc42, which in turn

might facilitate the directional vesicle
transport of E-cadherin and/or organize
the actin cytoskeleton, enabling neighbor-
ing cells to contact one another. Other
regulatory pathways have also been pro-
posed such as the interaction of Rap1
with AF6, increasing AF6 association
with p120 catenin which in turn strength-
ens the interaction of p120 catenin with
E-cadherin, reducing its internalization
and/or degradation.34

Although migrating neurons are differ-
ent from static epithelial cells making
contacts, Rap1, Ral, Rac and Cdc42 may
function similarly to regulate cell to cell
contact of cortical neurons through the
regulation of NCad.5 Our inhibition and
rescue experiments in the animal and in
vitro suggested that Ral, Rac and Cdc42
may also play a role influencing Rap1’s
effect on the presence of NCad at the
plasma membrane and the resulting func-
tion on polarity of cortical neurons.5 This
process is likely to be very dynamic and
control of the amount of cadherins at the
cell surface must be tightly regulated by a
balance between endocytosis and recycling
to the sites of new contact formation. Of
note, a recent study demonstrated the
involvement of Rab5-dependent endocytic
and Rab11-dependent recycling pathways
in the regulation of NCad in cortical
neurons,35 while, in epithelial cells,
Rap1 has been shown to co-localize with
E-cadherin at the Rab11-positive recycling
endosome compartment.36 It would be of
interest to determine whether Rap1 and
the Rab pathways work in parallel or
cooperatively in the regulation of NCad
and neuronal migration. Another import-
ant next step would also be to investigate
whether the exocyst, downstream of Ral,
or IQGAP and other proteins downstream
of Rac and Cdc42, play roles in the
polarization of cortical neurons through
the Rap1/NCad pathway.

Reelin Polarizes Multipolar
Neurons Toward the RMZ Through
Rap1 and NCad: A New Model

of Action

An important question is what stimulates
Rap1 and its downstream effectors in the
polarization of migrating neurons.

Figure 2. Regulation of cadherins by Rap1 and other downstream small GTPases. Rap1 induces
adherens junction formation by stabilizing cadherins at the plasma membrane. Maintenance of
cadherins at junctions can take the form of increased exocytosis, decreased endocytosis, increased
recycling at the plasma membrane or remodeling of the actin cytoskeleton underneath the
junctions. Those functions can be accomplished by the activation of different pathways
downstream of Rap1 such as signals involving the small GTPases Ral, Rac, Cdc42 or Rab11. Rap1
also inhibits the targeting of cadherins for degradation through an AF6/p120-catenin pathway.
Activation of Rap1 depends on specific GEFs such as PDZ-GEF or C3G that are recruited by cadherin
clustering or by other signals.
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Reelin is an extracellular protein
secreted by Cajal-Retzius cells present in
the marginal zone above the RMZ and is
required for the correct organization of the
CP.37 The prevailing model suggests that
Reelin acts on migrating neurons when
they arrive at the top of the RMZ during
their final somal translocation (named
“detach and go” because cells would
detach from the radial glia then proceed
through the final somal translocation).38

This model explains why, in the absence
of Reelin, the inside-out layering of the
cortex is inverted. However, it is impor-
tant to point out that the reeler cortical
phenotype is not simply an inversion of
the neuronal layering. Even though the
earliest neurons shift from a deep laminar
position to form a superficially located
superplate in the reeler brains, the later
born neurons exhibit a broader and
irregular distribution which is far more

than just an inversion of laminar fate.39

This suggests that the current model may
not fully explain the phenotype. Earlier
studies already indicated that Reelin may
signal the neurons before they start their
radial migration within the RMZ. First,
the active cleavage fragment of Reelin has
been shown to diffuse from the marginal
zone into the deep tissue.40 Second, cells in
the MMZ express the highest level of
functional Reelin receptors.41 Recently, we

Figure 3. Regulation of neuronal migration
within the mammalian cerebral cortex by the
Reelin/Rap1/N-cadherin pathway and other small
GTPases. (A) Reelin signals through Rap1 (and its
downstream enzymes Ral, Rac and Cdc42) and
N-cadherin on neurons at the MMZ to polarize
them toward the RMZ. Rab5 and Rab11 might
also be involved. The subsequent glia-guided
migration within the RMZ is independent of
Reelin, Rap1 or N-cadherin. During this migration,
the Reelin signal is downregulated (degradation
of phosphorylated Dab1, downregulation of
functional receptors) and N-cadherin is down-
regulated by the Rab7 pathway which may be a
consequence of the downregulation of the Reelin
pathway. When neurons reach the top of the
RMZ, they undergo a final somal translocation.
This final somal translocation could depend on
the reduction of the Reelin signal or, alternatively,
Reelin may induce a second set of intracellular
signals in cells performing the final somal
translocation as they are more mature than when
they encountered Reelin for the first time in the
RMZ and are in a different biological context. (B)
In the absence of Reelin, Rap1 or N-cadherin,
neurons are disoriented within the MMZ. Rab5 or
Rab11 inhibition induces a similar phenotype. In
the absence of Reelin or Rab7, the final somal
translocation is also affected and could be, at
least in part, a consequence of defective
N-cadherin downregulation.
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showed that inhibition of Reelin by in
utero electroporation delays the cells at the
MMZ and affects the localization of NCad
at their plasma membrane, mimicking
the phenotype caused by Rap inhibition.
Rescue experiments in vivo confirmed
that Rap1 is involved in this phenotype
downstream of Reelin. These data suggest
that Reelin is, at least in part, responsible
for the Rap1/N-cadherin-mediated polar-
ization function in neurons migrating
within the MMZ. In agreement with this,
NCad protein levels are decreased in the
embryonic reeler mutant cerebral cortex
exclusively at the MMZ.5 A function of
Reelin through Rap1 and NCad on
polarity of neurons before they enter the
RMZ may better explain the disorganized
positioning of late-born neurons. Indeed,
in the absence of a polarizing signal,
neurons would exit the MMZ in a
disorderly manner disregarding their date
of birth. It is surprising that Reelin affects
the polarization of neurons because pre-
vious experiments showed that the local-
ization of the source of Reelin is not
important for its function in the CP.42,43

The polarization mediated by Reelin may
thus be indirect. Reelin would rather act as
a permissive signal allowing neurons to
respond to another cue which still remains
to be discovered.

After neurons have received the polar-
izing cue triggered by Reelin, the signal is
downregulated. Previous works have shown
that neurons downregulate the signal and/
or become less responsive to Reelin once
they commence migration within the
RMZ. For example, Reelin induces the
downregulation of its functional receptors
at the time neurons migrate within the
RMZ.41,44 Also, Reelin induces the phos-
phorylation of the intracellular adaptor

Dab1 which is consequently degraded.45,46

It is therefore likely that membrane-
associated NCad levels are downregulated
because the Reelin signal is not any longer
there to maintain it at the membrane.
Indeed, NCad also exhibits a downregula-
tion of its expression in the wild-type
RMZ, which is much less pronounced in
the reeler brain.5 Interestingly, the down-
regulation of the Reelin signal seems to be
an important event for a correct neuronal
positioning.45,46 A testable prediction
would be that the downregulation of
NCad depends on the decreased Reelin
signal. Indeed, a recent study showed that
Rab7-dependent degradation of NCad is
also important for the final phase of
migration when neurons reach the top of
the RMZ.35 Therefore, I propose a model
(Fig. 3) in which Reelin first triggers the
polarization of neurons when they are at
the MMZ by activating Rap1 and stabi-
lizing NCad at the plasma membrane but,
and at the same time as phosphorylated
Dab1 and the Reelin signal are down-
regulated, NCad is also degraded through
a Rab7 pathway when neurons migrate
as bipolar cells. This downregulation at
the end of their migration might be as
important as the upregulation at the
multipolar stage. In this view, the final
somal translocation is a consequence of the
downregulation of the Reelin signal that
was initiated when the cells were in the
MMZ.

In the above model, Reelin signals only
in multipolar cells. However, it is also con-
ceivable that Reelin stimulates migrating
neurons twice: first at the MMZ and a
second hit later during the final somal
translocation. Neurons might be refractory
to Reelin signaling after the first stimu-
lation but become sensitive again when

they reach the top of the RMZ. It is then
plausible that Reelin triggers two different
intracellular signals in the immature
multipolar and in the more mature bipolar
neurons as they are predicted to express
different sets of intracellular signaling
molecules and are surrounded by different
cues and/or extracellular matrix proteins.
In this case, the “polarity model” is not
mutually exclusive with, but complement-
ary to the previous “detach and go” model
because they affect migrating neurons at
two different steps of their journey.

Future Directions

The next challenge in the field is to
determine exactly how Rap1 and its client
GTPases RalA/B, Rac and Cdc42 affect
the polarity of cortical neurons. Other
small GTPases such as members of the
Rab family might also come into play.
How all those small GTPases finely tune
neuronal migration needs to be investi-
gated in more details. How NCad, and
maybe other cadherins, regulate the polar-
ized movement of cortical neurons is also
ground for future work. Reelin certainly
does not work alone and it will be exciting
to uncover the interconnection of the
multiple signals that regulate the develop-
ment of the cerebral cortex.
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