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Abstract

Objective: Hemorrhagic fever with renal syndrome (HFRS), a natural–focal infectious disease

caused by hantaviruses, resulted in 37 deaths between 2011 and 2015 in Hubei Province, China.

HFRS outbreaks are seasonally distributed, exhibiting heterogeneity in space and time. We aimed

to identify the spatial and temporal characteristics of HFRS epidemics and their probable influenc-

ing factors.

Methods: We used the space–time cube (STC) method to investigate HFRS epidemics in

different space–time locations. STC can be used to visualize the trajectories of moving objects

(or changing tendencies) in space and time in three dimensions. We applied space–time statistical

methods, including space–time hot spot and space–time local outlier analyses, based on a calcu-

lated STC model of HFRS cases, to identify spatial and temporal hotspots and outlier distribu-

tions. We used the space–time gravity center method to reveal associations between possible

factors and HFRS epidemics.

Results: In this research, HFRS cases for each space–time location were defined by the STC

model, which can present the dynamic characteristics of HFRS epidemics. The STC model deliv-

ered accurate and detailed results for the spatiotemporal patterns of HFRS epidemics.

Conclusion: The methods in this paper can potentially be applied for infectious diseases with

similar spatial and temporal patterns.
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Introduction

Hemorrhagic fever with renal syndrome
(HFRS), characterized by fever, hemor-
rhage, kidney damage, and hypotension, is
an important infectious disease that is
mainly caused by Hantaan orthohantavirus
(HTNV) and Seoul orthohantavirus
(SEOV).1–4 HFRS is distributed in several
countries, with China the most seriously
affected. HFRS in China has accounted
for more than 90% of cases worldwide, 5–9

and Hubei Province has the highest occur-
rence. Since the first case of HFRS emerged
in 1957 in Hubei, HFRS epidemics have
expanded, reaching a peak in 1983
with 23,943 cases. During the period
1980–2009, a total 104,467 cases of HFRS
have been reported in Hubei Province.
The increase in HFRS cases has a consider-
able impact on human health and social sta-
bility.10–12

Spatial and temporal statistical methods
have been used worldwide to determine the
spatiotemporal distributions and clustering
characteristics of HFRS,12,13 such as in
Buenos Aires Province of Argentina,14

Germany,15 the city of Brussels, and
across Belgium.16 In China, the Moran’s I
index has been adopted in spatial global
autocorrelation analysis to identify the
overall spatiotemporal pattern of HFRS
outbreaks in Hubei Province, China
during 2005–2014.17 The Kulldorff spatial
scan statistic has been used to identify clus-
tering of HFRS using data during 1980–
2009.18 These methods enable interactive
examination of global and local clustering
patterns in a specific temporal profile;
however, connections and influences

from different profiles are not considered.
Liu et al.19 applied the ARIMA
(Autoregressive Integrated Moving
Average) model to evaluate and forecast
the HFRS incidence in China using time
series historical HFRS incidence data. The
ARIMA model provides an important tool
for estimation using continuous time series
data; however, the correlations for different
spatial locations are ignored in this analysis.
To address this limitation, Martin and
Oeppen (1975) proposed the STARMA
(Space-Time Autoregressive Moving
Average) model and extensions for spatial
and temporal data.20 Nonetheless, the spa-
tial influences of data in distinct locations
are only considered as individual factors in
the STARMA model. The accuracy of anal-
ysis for spatial epidemics like of HFRS may
be further improved by comprehensive
consideration of both spatial and
temporal characteristics, as well as interac-
tive influences.

We created a three-dimensional map of
HFRS cases to visually and simultaneously
comprehend both the temporal duration
and spatial extent of HFRS cases in each
space–time location. This was accomplished
using a space–time cube (STC) method.
Spatial and temporal clustering methods
based on the STC model, which has the
advantage of tracking the spatial and
temporal trajectories of moving objects or
tendencies, have been used to identify the
dynamic tendencies and patterns of HFRS
cases. The STC was introduced by
Hagerstrand. Rucker, and Szego21 who
proposed the method to create a three-
dimensional cube that can contain spatial
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and temporal data for specified data requir-
ing further space–time pattern mining. The
STC method has evolved since its introduc-
tion; it has also been used to examine time
series trends across a studied area.22

Recently, the STC model has been applied
to reveal the spatiotemporal patterns in a
data set for users in different areas and
events.23 This method can provide impor-
tant support for studies in epidemiology,
health geography, and environmental regu-
lation.24 For instance, the STC method
combined with space–time scan statistics
was applied to analyze and display the spa-
tiotemporal pattern of incidence of hand-
foot-and-mouth disease (HFMD) in
Guangdong Province from May 2008 to
March 2009.25

In the present study, we first applied the
STC and its clustering methods to detect
spatial and temporal dynamic patterns of
HFRS cases in Hubei Province. The analy-
sis of HFRS in this work consisted of three
main steps. In the first step, we adopted
STC-based approaches, including emerging
hot spot analysis and space–time local out-
lier analysis, to investigate the spatial and
temporal clustering characteristics and
locations of HFRS cases. The second step
focused on clarifying the key influencing
factors of the disease in various regions.
The third step used a spatial gravity center
model and correlation analysis to analyze
the moving trajectory of HFRS. Last, pos-
sible influencing factors of HFRS epidemics
were additionally explored.

Study data and methodology

Study data

The study data consisted of geographic,
health (i.e., number of HFRS cases), cli-
mate, and human population density data.
These data span a 5-year period (2011–
2015) in Hubei Province, China.
Geographic information data were

obtained from the China National

Administration of Surveying, Mapping

and Geoinformation. The Hubei Province

Center for Disease Control and Prevention

of the Chinese Center for Disease Control

and Prevention was the source for HFRS

data (number of cases per month in the

county). Climate data were obtained from

the National Centers for Environmental

Prediction and Hubei Meteorological

Bureau. The Hubei Statistical Yearbook

was the source of annual population data.

Esri ArcMap 10.5 was used to organize and

process the geographic data.

Methodology

Figure 1 depicts the relationships between

the statistics used in this study.

Construction of space–time cube (STC). The

STC method has been used to create a

three-dimensional cube containing spatial

and temporal data for a specified data set

requiring further space–time pattern

mining. In the present study, we used the

STC model to aggregate HFRS cases into

a series of spatiotemporal bins (refer to

Figure 2). Each bin is characterized in

space, using a fixed (x,y) coordinate, and

time (t). Bins that cover the same area

share a common location ID; bins that

share the same duration have a common

time-step ID. We used different bins to rep-

resent the number of HFRS cases in differ-

ent space–time locations. Data in a row of

the cube collection represent the case values

in different locations with a specific date;

data in a column represent the time series

for a specific space location. Continuous

statistical methods, including emerging hot

spot analysis and local outlier analysis, were

applied to examine the spatial and temporal

dynamic patterns of HFRS epidemics.
The steps of the STC method in the anal-

ysis are as follows:
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1. Aggregate the collections of points into

space–time bins and integrate the bins

into a netCDF data model (refer to

Figure 3). The netCDF data set includes

attributes, variables, and dimensions.

The bins are uniquely identified using a

name and ID number.26

2. Calculate each point and aggregate the

attributes of HFRS cases.
3. Perform the Mann–Kendall (M-K) trend

test for every county with data. Each of

these is treated as an independent bin
time series test.

In this work, the M-K trend test is
applied independently to each location
that has data. The data for each location
are stored in a bin with a value (i.e.,
count) for one period of time; a series of
values for the bin is recorded over time.
The computation of the M-K trend test
uses straightforward, pairwise comparisons
of bin values over time. If the bin value for
a time period is smaller than that for the
next time period, then the sum is incre-
mented. If the result is larger, then the
sum is decremented. If the values are the
same (a tie), the sum remains unchanged.
After the pairwise comparisons are com-
plete, the expected sum is 0, which indicates
that no positive or negative trend exists in
the data. Actual trends in the data are com-
puted using the variance, number of ties
and time periods, (observed) sum, and the
expected sum. The z-score and p-value are
computed for each time series. The sign of

Figure 2. Space–time cube graphic sample Figure
gives an explanation for each value in the space–
time cube.

Figure 1. Relationships between the statistics used in this study Figure represents the overall
analysis process.
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the z-score indicates the positive or negative

direction of the trend; 27 the p-value indi-

cates its statistical significance.
Based on the calculated STC results, we

conducted space–time hot spot analysis and

space–time local outlier analysis to further

explore the spatial and temporal tendencies

of HFRS in Hubei Province. In this study,

emerging hot spot analysis was used to

identify the trend in the spread of HFRS

cases; local outlier analysis was used to

identify significant clusters and outliers.

Spatial and temporal weight matrix. For many

statistics, including the Getis–Ord Gi* and

Anselin local outlier analysis, the spatial

relationships between each location are

specified through a spatial weight matrix.

However, when conducting spatial and

temporal-based statistical analysis, the

spatial weight matrix is insufficient to

express the spatial and temporal relation-

ships for each location. In this case, the spa-

tial and temporal weight matrix is extended.

There are commonly three types of spatial

and temporal weight matrices. First, based

on the rules of the spatial weight matrix, a

specified spatial distance d and a specified

time interval t are set up. Only when there is

a spatial distance smaller than d and tem-

poral interval smaller than t, elements in the

matrix are set to 1 and all others are 0

(Smith and Wu, 2009). Second, the spatial

weight matrix is extended, a spatial and

temporal distance proposed, and values

are calculated for the matrix based on the

spatial and temporal distance in a specified

threshold. Third, an external temporal

matrix is built and the spatial and temporal

weight matrix with the spatial matrix set up

Figure 3. netCDF Classic Data Model Figure depicts the data structure for the netCDF data format.
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through a Kronecker product. In this study,
the spatial and temporal distance is deter-
mined using the second mode mentioned
above. The spatial and temporal weight
matrix is calculated using Equation 1.

W ui;vi;tið Þ
¼diag w1 ui;vi;tið Þ;w2 ui;vi;tið Þ;���;wn ui;vi;tið Þð Þ

(1)

In Equation 1, ðui; vi; tiÞ indicates the bin
obtained from the space–time cube calcula-
tion.Wðui; vi; tiÞ is an n� n spatial and tem-
poral diagonal matrix. The spatial and
temporal weight for each bin is calculated
using Equation 2.

wij¼ 1� dij
h

� �2
� �2

dij � h

0 dij > h

8><
>: (2)

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ui � ujð Þ2 þ vi � vjð Þ2
h i

þ l ti � tjð Þ2
r

(3)

In Equation 3, dij is the spatial and tem-
poral distance between bin ui; vi; tið Þ and
another bin uj; vj; tjð Þ. h is a positive value
and represents band width. k is a spatial
parameter to measure spatial distance, and
l is a temporal parameter to measure tem-
poral distance.

Spatial and temporal-based Gi* statistic. In this
work, we proposed the spatial and temporal
based Getis–Ord Gi* statistic (ST-G*).
Spatial and temporal weight is calculated
to obtain the Getis–Ord Gi* statistic.
Compared with traditional spatial–
temporal distribution analysis, analysis
using the ST-G* has the advantage of ana-
lyzing continuous spatial and temporal
trends. With the created STC, the ST-G*
can calculate the Getis–Ord Gi* statistic
with the provided neighborhood distance

and neighborhood time-step parameters.
In addition to existing hot spots, the results
of calculation reveal new hot spots that are
changing (e.g., intensifying or diminishing)
or fluctuating between hot and cold. We
used the ST-G* to identify trends in the
clustering of HFRS cases for each county
location, based on the STC model. To carry
out ST-G* analysis, the ST-G* statistics of
each bin were computed based on the spa-
tial and temporal weight matrix. The ST-
G* statistic was used to explore the local
spatial autocorrelation of the collected
data sets and to detect the spatial differen-
ces caused by spatial autocorrelation. From
these results, hot and cold spot areas of the
spatial object attribute distribution can
be judged.12

The ST-G* statistic introduces the con-
cept of spatiotemporal proximity; the for-
mulas are as follows7,28

G�
i ¼

Xn

j¼1
wi;jxj � �X

Xn

j¼1
wi;j

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� 1Þ

Xn

j¼1
wi;j � 1

=ðn� 1Þ
�Xn

j¼1
wi;j

�2

8<
:

9=
;

vuuut
(4)

�X ¼ 1

n

Xn
j¼1

xj (5)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j¼1

x2j � �Xð Þ2
vuut (6)

where xj is HFRS cases in space–time bin j
(value of COUNT), n is the number of bins
with spatiotemporal proximity to bin i, and
wi,j is the spatial and temporal weight
between bin i and bin j. The formula for
wi,j is shown as Equation 2.

The result of regression is directly
impacted by the computed value of the
bandwidth. We used the Akaike
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information criterion (AIC) to identify
the bandwidth for each space–time bin.29

The Gi* calculated with Equation 4 is the

z-score. For statistically significant positive
z-scores, the larger the z-score, the more
intense the clustering of high values (i.e., a
hot spot).30,31

Spatial and temporal-based Anselin local Moran’s

I. We used the spatial and temporal-based
Anselin local Moran’s I (ST-ALM) to identi-

fy statistically significant clusters and outliers
in the context of both space and time for a
study area. This analysis identified
the locations exhibiting distinct statistical dif-

ferences in comparison with their neighbors.
Based on the STC model, the ST-ALM

statistic for each bin in the cube was com-
puted. For space–time bin i, the ST-ALM
can be expressed as Equation 7.6,32

Ii ¼
Xn

j¼1
wij xi � �xð Þ xj � �xð Þ

1
n

Xn

j¼1
xj � �xð Þ

(7)

where xi and xj are the HFRS cases in bin i
and the cases in neighbor bin j; wi,j is calcu-
lated using Equation 2. In this paper, the
bandwidth for the spatial weight is

105,240.34, according to AIC testing.

Space gravity center model. To explore the
correlation between the influencing factors

of population migration and HFRS epi-
demics, we also investigated the spatial
gravity center of HFRS cases and spatial
gravity center of the population distribu-

tion in this study. The space gravity center
coordinate is calculated as follows35,36

U ¼
Xn

i¼1
QiuiXn

i¼1
Qi

(8)

V ¼
Xn

i¼1
QiViXn

i¼1
Qi

(9)

where (ui, vi) is the space position coordi-
nate and Qi is factor value of the corre-
sponding space position (such as the
HFRS cases or population).

Results and analysis

Features of HFRS outbreaks in
Hubei Province

Figure 4 demonstrates the time series of
HFRS incidence in Hubei Province from
2011 to 2015. The figure shows that the
HFRS incidence fluctuated and had no
decreasing trend during this period.
Obvious peaks and troughs can be detected
in the figure, which means that HFRS epi-
demics had a significant seasonal distribu-
tion pattern. A nonlinear distribution
pattern appears in the curve, from which
it can be inferred that HFRS incidence
from 2011 to 2015 had no statistically sig-
nificant temporal distribution.

The spatial distribution of annual HFRS
cases is presented in Table 1. In four of the
five years, the HFRS epidemic presented a
clustered pattern of distribution in space,
with a z-score >1.65; these results were sta-
tistically significant, with p< 0.05. The
results indicate that the occurrence of
HFRS in Hubei Province is globally auto-
correlated and temporally continuous.
These results support the execution of
STC-based analysis.

STC-based analysis

Based on the above characteristics of cases,
we developed the STC model of HFRS
cases with a time step of 1 month and
space distance of 10,000 meters. This
model contains 60 time-step intervals, and
the number of space–time bins is 4,000. The
entire length of time covered by the HFRS
cases is 60 months (January 2011 to
December 2015). The M-K statistic test
determines the final bin counts. Any bins
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that cannot be filled based on the estima-

tion criteria result in the whole location

being excluded from the analysis. The cal-

culating attributes used is HFRS cases; the

statistic fill method is space–time neighbors,

which means empty bins are filled using a

interpolated univariate spline algorithm.

The M-K statistic test resulted in 3,300

bins (82.5%) included in the analysis.
After constructing the STC model, the

number of HFRS cases at each position in

every time-step interval was set as the time

series. We applied M-K statistical trend

analysis; this technique is based on a spatial

time series analysis. It analyzes the number

of points for all locations in each time-step

interval as a time series of count values,

based on the M–K statistic. The z-score

was –5.709 and the corresponding p-value

was 0. This result suggests that Hubei

Province shows a statistically significant

decreasing trend in the overall number of

HFRS cases.

Results of ST-G*

Figure 5 shows the emerging hot spot dis-

tribution and the statistical results.

According to Figure 5, the following con-

clusions can be drawn.
Zhongxiang is a diminishing hot spot

county. This category describes a

Table 1. Spatial autocorrelation results of annual HFRS cases (Hubei Province, 2011–2015).

Year Moran’s index Expected index Variance z-score p-value

2011 0.0550 �0.0133 0.0030 1.2442 0.2134

2012 0.1526 �0.0133 0.0038 2.6845 0.0073

2013 0.1642 �0.0133 0.0027 3.4013 0.0007

2014 0.2604 �0.0133 0.0038 4.4143 0.0001

2015 0.1548 �0.0133 0.0022 3.5549 0.0004

HFRS, hemorrhagic fever with renal syndrome.

Figure 4. HFRS incidence in Hubei Province from 2011 to 2015 Each dot in the figure represents the
monthly provincial incidence of HFRS epidemics.
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statistically significant hot spot for 90% or

more of the time-step intervals, including

the final time step, with a significantly

decreasing change over time. For this type

of county, the number of HFRS cases is

temporally increasing, with the incidence

risks ranking the highest of all hot spot

types. Thus, prevention of HFRS in this

county should receive greater attention, to

slow the spread of HFRS epidemics.
Yicheng and Zaoyang are persistent hot

spot counties. This category describes a sta-

tistically significant hot spot for 90% or

more of the time-step intervals, with no sig-

nificant change over time. For these two

counties, the number of HFRS cases tem-

porally remains at a high level without an

increasing tendency. Thus, prevention and

treatment of HFRS in these counties could

contribute to reducing the overall

HFRS incidence.
Zuogui, Changyang, and Fangxian are

intensifying cold spot counties, which

means a statistically significant cold spot

for 90% or more of the time-step intervals,

including the final time step. In addition,

the clustering intensity of the low counts

in each time step is increasing significantly.

For these counties, the number of HFRS

cases is decreasing gradually; hence,

HFRS epidemics have been effectively con-

trolled in these counties.
Shiyan, Guangshui, Xiaogan, and

Badong are sporadic cold spot counties,

which are intermittent cold spots. These

are statistically significant cold spots for

less than 90% of the time-step intervals

and none of the time-step intervals have

been statistically significant hot spots. For

these counties, HFRS epidemic risks still

exist and the counties cannot be regarded

as noninfected areas.
The M-K trend test was performed on

every location with HFRS case data as an

independent bin time series test. Locations

with bins indicated that HFRS cases in the

location showed significant temporal

trends. However, 45 of the 55 calculated

STC models showed no detectable pattern.

For these counties, other data analysis

methods should be used to determine the

spreading tendencies of HFRS epidemics.

Figure 5. Visualization of the results of hot spot analysis: HFRS cases in Hubei Province (2011–2015)
Space–time cubes represented by the analyzed spatial and temporal patterns.
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The ST-G* analysis results indicated that

the epidemic hot spots are clustered in the

central part of Hubei Province, which

means there may be favorable environments

and risk factors for pathogens to grow and

reproduce in these counties.

Results of ST-ALM

Local outlier analysis demonstrated that 34

of 55 locations have outliers. Based on the

results in Figure 6 and Table 2, the follow-

ing conclusions can be drawn.
Five counties (Yunxian, Zhuxi, Anlu,

Yingcheng, and Jingshan) showed no sig-

nificant clusters or outliers, indicating spa-

tially and temporally random distributions

of HFRS epidemics. No counties showed a

high HFRS incidence over time; 156 bins

demonstrated only high-high clusters, and

no counties had only statistically high-

high clusters. Four counties (Gucheng,

Laohe, Tianmen, and Xiantao) showed

only low-high outliers, indicating that

these are low-incidence counties sur-

rounded by high-incidence counties.

However, prevention of HFRS is still
needed, with qualified monitoring.

Sixteen counties (Zhushan, Shiyan,
Danjiang, Fangxian, Baokang, Shennong,
Xingshan, Zuogui, Changyang, Yichang,
Changyang, Zhijiang, Yidu, Wufeng,
Guangshui, and Hong’an) demonstrated
only low-low clusters. These counties can
therefore be regarded as having a low risk
of HFRS epidemics. Six counties (Yunxi,
Suizhou, Maocheng, Yicheng, Lichuan,
and Enshi) showed only high-low outliers,
indicating that these are surrounded by
counties with a low HFRS incidence.
Therefore, more attention is needed for
counties near these high-low counties, for
early prevention of HFRS.

A total 24 counties were categorized as
having multiple types of statistically signif-
icant clusters and outliers over time.
Therefore, further analysis should be con-
ducted for these counties. From this analy-
sis, it can be inferred that no statistically
high-high clusters exist, which indicates
that HFRS epidemics in Hubei Province
are effectively controlled.

Figure 6. Visualization of local outlier analysis results: HFRS cases in Hubei Province (2011–2015)
Space–time cubes represented by the analyzed spatial and temporal outliers.
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Discussion

In this study, we investigated the spatiotem-
poral distribution and clustering patterns of
HFRS cases in Hubei Province. We carried
out an analysis of the correlation between
HFRS cases and possible influencing fac-
tors including landscape characteristics,
population, average humidity, rainfall, and
average temperature. This analysis was con-
ducted according to two methods: linear
regression analysis using the ordinary least
square (OLS) method, and nonlinear
regression analysis of the geography using
geographically weighted regres-
sion (GWR).37,38

As shown in Table 3, the OLS analysis
demonstrated that farmland area, water
area, population, average humidity,
and rainfall are positively correlated

with HFRS cases whereas forest area and

average temperature had no significant

correlation. Compared with the results

demonstrated using the OLS method, the

results from GWR analysis indicated

that forest area and average temperature

are also related to the emergence of

HFRS whereas population factors had no

significant effect on the number of

HFRS cases.
The estimation results from the OLS and

GWR methods are different because the

GWR model includes spatial characteristics

in the general linear regression. Compared

with the OLS, the GWR model is a nonsta-

tionary regression method; OLS has superi-

or performance in the analysis of data with

spatial and temporal characteristics, like

HFRS trends.33

Table 2. Local outlier analysis summary results.

Category

Number of

locations

Percentage of

locations

Number

of bins

Percentage

of bins

Never significant 5 9.09% 2267 69.86%

Only high-high clusters 0 0.00% 156 4.81%

Only low-high outliers 4 7.27% 150 4.62%

Only low-low clusters 16 29.09% 642 19.78%

Only high-low outliers 6 10.91% 30 0.92%

Multiple types 24 43.64%

Table 3. Ordinary least square method (OLS) and geographically weighted regression (GWR): Feature
correlation analysis.

Factors

OLS GWR

Correlation coefficient Sig. (2-tailed) F p-value

Farmland area 0.421** 0.000 1.800 0.016*

Forest area 0.051 0.147 3.663 0.026*

Water area 0.087** 0.001 1.509 0.001**

Population 0.317** 0.000 0.286 0.106

Average humidity 0.032** 0.000 7.619 0.076*

Rainfall .132** 0.000 2.667 0.032*

Average temperature .263 0.325 2.435 0.026*

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
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Reports in the literature indicate that
HFRS in Hubei Province is primarily
caused by SEOV, transmitted by Rattus

norvegicus.18 In the present work, Yicheng
and Zaoyang were found to be persistent
hot spot counties. These counties are
mainly covered by farmland, with resident

rodent populations. Zuogui, Changyang,
and Fangxian were found to be intensifying
cold spot counties. Their low coverage of
farmland may contribute to the low inci-

dence of HFRS in recent years.
Zhongxiang was found to be a diminishing
hot spot; its farmland coverage is high in
the west and low in the east, so this distri-

bution characteristic has led to a decreasing
trend of HFRS incidence in Zhongxiang.
Results of local outlier analysis showed
that the clustering characteristics in the

west of Hubei are mainly in the form of
low-low clustering and mainly in the form
of multiple distribution clustering in the
east of the province; this is in accordance

with the increasing proportion of farmland

coverage from west to east, as shown in
Figure 7. When combined with the results

of correlation analysis, the proportion of

farmland coverage appears to be positively
associated with the emergence and spread

of HFRS epidemics in Hubei Province.
The GWR method was used to make

predictions based on the spatial and tempo-

ral data from 2011 to 2015. In a comparison
of Figures 8 and 9, the predicted results for

hot spot counties (Zhongxiang, Yicheng)

are relatively consistent with the observa-
tions, indicating that the selected possible

influencing factors are possible determi-
nants of the HFRS epidemics in

Hubei Province.
From the west to the east of Hubei

Province, the proportion of water areas

increases significantly, which has also led
to increasing incidence of HFRS. These

results also correspond with the results of

correlation analysis. In addition, Peng
et al.39 found that HFRS cases in Anhui

Province between 1983 and 1995 were

Figure 7. Visualization of farmland and water distribution in Hubei Province Blue polygons represent the
distribution of water areas; light orange colored areas represent the distribution of farmland in
Hubei Province.
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distributed along large water systems (wet-
lands), such as the Yangtze and Huai river
basins. The surrounding water system is
beneficial for crop cultivation, which in
turn helps to establish thriving rodent pop-
ulations that are hantavirus hosts. From

this study, we infer that the increase of
HFRS incidence in Hubei Province from
2011 might be related to the increased pop-
ulation of infected rodents and the sur-
rounding water system. However, in our
study, space–time hot spot analysis

Figure 8. Prediction results for HFRS in Hubei Province, 2016 The color gradient represents the annual
predicted incidence of HFRS in thematic maps.

Figure 9. Observed results for HFRS in Hubei Province, 2016 The color gradient represents the annual
observed incidence of HFRS in thematic maps.
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indicated that counties with sufficient water

resources have not always behaved like per-

sistent hot spots. As an example, the annual

number of cases in Wuhan from 2011 to

2015 was 33, 12, 0, 5, and 4, respectively.

With the combination of disease prevention

measures and economic development,

HFRS epidemics are effectively controlled

in Wuhan County, thereby removing this

county from the hot spot clusters.
Human migration is regarded as an

influencing factor for the risk of HFRS

spread.17 The space gravity center method

has been used to calculate the migration of

the space center of HFRS cases and the

population. It has been shown that the

space gravity center of HFRS cases has

consistently changed within a narrow

range, as shown in Figure 10. In general,

the space gravity center of HFRS cases in

Hubei Province has been consistent with

that of the overall population from 2011 to

2015. For each year, the change in the range

and direction of the space gravity center of

HFRS cases and the overall population are

also identical. Li et al. found that an increase

in human population density could facilitate

virus transmission (Xiao et al. 2011). As dis-

cussed above, the human population density

factor is positively associated with outbreaks

of HFRS. In Hubei Province, both human

population density and population migra-

tion are factors that are significantly related

to HFRS outbreaks.

Figure 10. Space weight center moving map and population space weight center moving map of HFRS
cases in Hubei Province (2011–2015) Blue lines with arrows connecting the points represent the moving
direction of HFRS cases of the space gravity center. Red lines with arrows connecting the points represent
the moving direction of the population space gravity center.
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Previous studies have reported that the

spatiotemporal dynamics of HFRS can be

affected by a number of environmental fac-

tors, such as moisture (e.g., precipitation,

humidity, rainfall) and temperature.41 In

this research, the average humidity and

rainfall were found to be positively associ-

ated with outbreaks of HFRS. In other

lines of research, Xiao et al.42 demonstrated

that rodents thrive in moist environments.

Therefore, taken together with the correla-

tion results, it can be inferred that moist

climates help to establish a thriving rodent

population, which may in turn contribute

to HFRS outbreaks.
We recommended initiating a compre-

hensive prevention and control strategy, a

“monitoring, health education, rodent con-

trol, and immunization” program, in hot

spot areas of HFRS epidemics. Early warn-

ing mechanisms are needed in these areas,

with continuous routine monitoring of

human epidemics, host animal species and

density, as well as favorable conditions for

virus propagation, especially 1 or 2 months

before the peak period of disease outbreaks.

We also recommend conducting propagan-

da campaigns on the prevention and con-

trol of HFRS to improve health knowledge

among responsible individuals in key areas,

and to improve disease prevention aware-

ness and behavior.

Conclusions

With application of emerging hot spot anal-

ysis, correlation analysis, and the space

gravity center method, the results from

our study showed that an HFRS epidemic

is more likely to spread in areas with greater

farmland or water areas. Population densi-

ty, human migration, average humidity,

and rainfall are also factors related to the

incidence of HFRS. These results are in

accordance with those obtained in spatio-

temporal clustering analysis.17 The STC

method used in this study offered the fol-

lowing advantages:

1. Based on an STC analysis of disease, the

spatial–temporal trend and characteris-

tics of HFRS in Hubei Province could

be analyzed from macroscopic and

microscopic aspects. Each bin in the

STC can be used to analyze and predict

every spatiotemporal granularity unit

within the space–time range of the

entire study period.
2. Based on emerging hot spot analysis and

local spatiotemporal outlier analysis, the

changes in each spatial unit could be

obtained. Combined with the time

series of each spatial unit, the degree of

potential risk and the development trend

of disease could be determined, enabling

us to provide constructive suggestions.
3. According to the space gravity center

model, the migration characteristics of

possible influencing factors could be

revealed. Based on the changes and

migration of the space gravity center,

the distribution and development trend

of HFRS and the influencing factors

could be analyzed.

In summary, the research method pro-

posed in this paper can be used for the anal-

ysis of factors with temporal and spatial

distribution characteristics.
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