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Inflammatory responses to an infection from a zoonotic pathogen, such as avian influenza viruses,
hantaviruses and some coronaviruses, are distinctly different in their natural reservoir versus human host.
While not as well studied in the natural reservoirs, the pro-inflammatory response and viral replication
appear controlled and show no obvious pathology. In contrast, infection in humans results in an initial
high viral load marked by an aggressive pro-inflammatory response known as a cytokine storm. The
key difference in the course of the infection between the reservoir and human host is the inflammatory
response. In this investigation, we apply a simple two-component differential equation model for pro-
inflammatory and anti-inflammatory responses and a detailed mathematical analysis to identify specific
regions in parameter space for single stable endemic equilibrium, bistability or periodic solutions. The
extensions of the deterministic model to two stochastic models account for variability in responses seen
at the cell (local) or tissue (global) levels. Numerical solutions of the stochastic models exhibit outcomes
that are typical of a chronic infection in the natural reservoir or a cytokine storm in human infection. In
the chronic infection, occasional flare-ups between high and low responses occur when model parameters
are in a region of bistability or periodic solutions. The cytokine storm with a vigorous pro-inflammatory
response and less vigorous anti-inflammatory response occurs in the parameter region for a single stable
endemic equilibrium with a strong pro-inflammatory response. The results of the model analyses and the
simulations are interpreted in terms of the functional role of the cytokines and the inflammatory responses
seen in infection of the natural reservoir or of the human host.
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1. Introduction

Many human infectious diseases originate as zoonoses through the cross-species transmission from
wildlife to humans. Often they are ribonucleic acid (RNA) viral zoonoses, e.g. highly pathogenic avian
influenza viruses (HPAIV), hantaviruses (HTV) and severe acute respiratory syndrome coronavirus
(SARS-CoV) (Jones et al., 2008; Lloyd-Smith et al., 2009). They pose a significant threat to public
health worldwide and are classified as emerging infectious diseases (Jones et al., 2008; Wang &

© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



270 W. ZHANG ET AL.

Crameri, 2014). The spillover of these viruses to humans m ay result in severe, life-threatening
disease, e.g. highly pathogenic avian influenza (HPAI), hantavirus cardiopulmonary syndrome (HCPS),
hemorrhagic fever with renal syndrome (HFRS) and severe acute respiratory syndrome (SARS).

Despite major differences among HPAIV, HTV and SARS-CoV, in their coding and replication
strategies and the activation of specific pro- and anti-inflammatory cytokines, similar inflammatory
responses are seen from infection with these viruses. The site of viral infection and disease associated
with HPAI, HCPS, HFRS and SARS is the lower respiratory tract. It is generally assumed that the
cytokine response drives the pathology rather than the viral load (Liu et al., 2016). The major target
cells for HPAIV and SARS-CoV replication are type II aveolar epithelial cells (Weinheimer et al.,
2012; Qian et al., 2013) and for HTV they are microvascular endothelial (Mackow et al., 2013). Other
cells, such as macrophages and dendritic cells, may become infected and/or release pro-inflammatory
cytokines that in turn affect their own cells (autocrine signalling) or other cells (paracrine signalling)
to release additional cytokines (He et al., 2006). The clinical syndrome is characterized by acute lung
injury, respiratory failure and a cytokine storm (Chan et al., 2005; Tisoncik et al., 2012). The cytokine-
induced pro-inflammatory response plays a significant role in the pathology of these diseases (Frieman
et al., 2008; Peiris et al., 2009) and leads to a system-wide cascade effect known as a cytokine storm
(Tisoncik et al., 2012).

In viral zoonoses, the term ‘reservoir’ implies that the virus is maintained in nature by a particular
host. The natural reservoir for HTV is wild rodents, for HPAIV, it is wild aquatic birds (World Health
Organization, 2005; Wang et al., 2016) and for SARS-CoV, it is bats (Li et al., 2005; Hu et al.,
2015). Humans are not the natural reservoir and therefore, they only become infected through direct
or indirect contact (secondary host or environmental source) with the natural reservoir. Transmission
occurs through direct contact with the reservoir or indirectly through the environment such as inhalation
of virus shed through excreta which may be from the natural reservoir or an intermediate carrier
(domestic poultry in avian influenza or palm civet in SARS-CoV). For SARS-CoV, the virus also spreads
via direct person-to-person contact.

The virus often persists for the life of the animal in the natural reservoir (Meyer and Schmaljohn,
2000; World Health Organization, 2005; Vorou, 2016). In the case of Andes virus (ANDV), according to
Jonsson et al. (2010) at least 21 HTV have been associated with human illness. Each of these HTV has
a unique rodent reservoir, e.g. Sin Nombre virus’s reservoir is the deer mouse, ANDV’s reservoir is the
long-tailed pygmy rice rat and Black Creek Canal virus’s reservoir is the cotton rat. In avian influenza
viruses, wild waterfowl, gulls and shorebirds are the natural reservoirs (World Health Organization,
2005). Horseshoe bats in China have been identified as reservoirs for a novel coronavirus related to
SARS-CoV (Hu et al., 2015).

There are distinct differences in the immune response to infection in the natural reservoir versus
spillover to humans. In the natural reservoir for HTV, there is little to no pro-inflammatory response
during the early stages in the lung; but in later stages of the infection, anti-inflammatory cytokine levels
and tumour growth factor (TGF-β) increase (Schountz et al., 2012). These cytokines can influence the
maintenance or differentiation of other cells, e.g. regulatory T cells (Tregs). Tregs may act indirectly
allowing a persistent infection by limiting T helper cell responses or by modulating antigen-presenting
cell function or may act directly by cell-to-cell contact (Easterbrook et al., 2007; Easterbrook and Klein,
2008). HPAI H5N1 infection in ducks, the natural reservoir, versus chickens shows different patterns of
expression of the interferon-induced transmembrane protein (IFITM) gene family; IFITM1, 2 and 3
genes are upregulated in response to HPAIV in ducks but not in chickens (Smith et al., 2015). Bats, the
natural reservoir for SARS-CoV, show no clinical signs of disease, and the mechanisms that maintain
the virus are not known (Wynne & Wang, 2013).
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In contrast to the natural reservoir, the innate immune response in human infection is distinctly
different. It has been shown that human infection with the viruses associated with HCPS, HPAI or
SARS results in upregulation of the pro-inflammatory cytokines, a major contributing factor to increased
disease severity (He et al., 2006; Szretter et al., 2007; Frieman et al., 2008; Peiris et al., 2009;
Safronetz et al., 2011). In HPAI H5N1 virus infection of human alveolar epithelial cells, IL-6, IL-8 and
IFN-β were upregulated, while infection of primary human macrophages induced TNF-α, IL-1, IFN-α,
IFN-β and IL-1β (Szretter et al., 2007). In SARS-CoV infected cells, high levels of MCP-1 and
TGF-β1 and intermediate levels of TNF-α, IL-1β and IL-6 were detected (He et al., 2006). Soluble
cytokine receptors such as sTNFR1 or SIL-1RII may also play a role in the regulation of the pro-
inflammatory response by competing with TNF or IL1 and prevent their binding of their receptor.
Herein, we define this as an anti-inflammatory activity, (Heaney & Golde, 1996) and we focus on this
effect in our modelling.

Key differences of the innate immune response, namely, the magnitude of the pro- and anti-
inflammatory responses, in natural reservoirs versus human hosts have not been modelled. The
major goal of this investigation is to propose a simple modelling framework with pro-inflammatory
and anti-inflammatory cytokines to account for the differences between the natural reservoir, where
the interaction between pro-inflammatory and anti-inflammatory cytokines maintains a low level of
cytokines (characteristic of a chronic but mild persistent infection) and the human host, where a
vigorous pro-inflammatory response leads to a cytokine storm. In addition, various models illustrate
that alternative pathways of the innate immune response may lead to similar outcomes.

We apply a model formulated by Baker et al. (2012) that includes two variables, a system of ordinary
differential equations (ODEs), one for the concentration of pro-inflammatory cytokines and the second
one for anti-inflammatory cytokines. Hereafter, this model is referred to as the Baker model. This two-
compartment model is a non-mechanistic approximation to the real system. This simple model with
just a few parameters enables us to understand some basic interactions between the cytokines. The
mechanisms responsible for the cytokine storm are much more complex. With time series data from
carefully designed laboratory experiments, specific pathways and genes/proteins associated with pro-
inflammatory and anti-inflammatory responses can be identified and used to test some of the outcomes of
this simple model. The interaction of these two broad categories of cytokines is posited to play important
roles in inflammatory immune responses (Seymour & Henderson, 2001) for both acute infectious
diseases (Henderson et al., 1998) and chronic autoimmune diseases (McInnes & Schett, 2007).

The Baker et al. (2012) study focuses on a chronic inflammatory disease, rheumatoid arthritis.
Instead, we apply their model to describe two different responses, one that mimics the controlled
response in the natural reservoir and the second one that mimics the out-of-control, pro-inflammatory
response in human infection. We focus primarily on the relation between the parameter that upregulates
the pro-inflammatory response and three other parameters: representing clearance ratio, upregulation of
anti-inflammatory response and background production of pro-inflammatory cytokines. We concentrate
on their functional role rather than identifying specific pro-inflammatory or anti-inflammatory cytokines
(Reynolds et al., 2006). The bifurcation analysis of the ODE model demonstrates an array of
cytokine dynamical behaviours, from stabilizing at a low concentration, bistable states, oscillations
around a high cytokine levels, relapse-remission flare-ups, and convergence to a high cytokine
level.

In addition, we extend the ODE model to new stochastic differential equation (SDE) models. The
first SDE accounts for local variability in cytokine levels at the initiation of the infection process (cell
level), referred to as the demographic variability; whereas the second SDE model is at a larger spatial
scale (tissue level), referred to as the environmental variability.
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In Section 2, we first summarize the ODE Baker model by interpreting the parameters in terms of
cytokine activation and four cytokine regulation mechanisms. We then explain the Hill coefficients as
a cooperative binding in cytokine secretion and introduce the two new SDE models. In Section 3, a
bifurcation analysis is carried out to identify the bistable region, in which relapse–remission or flare-up
patterns are generated. The dynamics of the models are illustrated through both symbolic computation
and numerical simulations. In Section 4, the analytical and numerical results are interpreted in terms of
the immune response typical of natural reservoirs or of human hosts.

2. Deterministic and stochastic models of cytokine dynamics

2.1 Deterministic model

A mechanistic approach to modelling gene expression and/or protein dynamics often begins with an
interaction graph to capture pairwise interactions between components and then develops them into
a Boolean network model. These models can then be converted to a system of ODEs to help reveal
dynamical behaviour of each component (Samaga & Klamt, 2013; Shao et al., 2015). Hill functions are
a common way to transform Boolean functions to ODEs (Hill, 1910; Wittmann et al., 2009; Samaga &
Klamt, 2013).

Here, we apply the Baker model which applies Hill functions to capture the rate of the interactions
occurring at the molecular level. Hill functions are often used to model cytokine production (Chaudhry
et al., 2004), which have the general functional form

h(x) = xm

km + xm
.

These functions model the rate of binding of a macromolecule to a ligand, expressed in terms of
ligand concentration x. The Hill coefficient m represents the degree of cooperative binding, whereas
the parameter k denotes ligand concentraton where half of the binding sites are occupied. In the Baker
model, described below, the Hill functions are given in (2.2).

In addition to the Baker model, several other models that have been applied to the study of cytokine
dynamics include Seymour & Henderson (2001), Yiu et al. (2012), Jarrett et al. (2014), Waito et al.
(2016) and Waters et al. (2018). Seymour & Henderson (2001) modelled cytokine concentrations and
regulation mediated by cell surface receptors for two specific pro-inflammatory and anti-inflammatory
cytokines, IL-1 and IL-10. Yiu et al. (2012) fit a linear ODE model to patient data on serum levels of
several pro-inflammatory cytokines, representative of a cytokine storm. Jarrett et al. (2014) developed
a 4D model for a bacterial-induced pro- and anti-inflammatory response. The model captured different
experimental outcomes. In another ODE model, the unbalanced interaction between several specific pro-
and anti-inflammatory cytokines that induce a cytokine storm is demonstrated by Waito et al. (2016).
Waters et al. (2018) focused their ODE model on IL-2 and its receptor IL-2R in the immune response.

According to their functional roles, we categorize cytokine compounds as pro-inflammatory or
anti-inflammatory, denoted by p and a in (2.1), respectively. The generation of both pro- and anti-
inflammatory cytokines is stimulated by pro-inflammatory cytokines and shows a positive feedback
regulation. This regulation is captured by the Hill functions in (2.2). The positive feedback between
these two cytokines is denoted as φ(p) and ψ(p) in (2.1), The inhibition effect of anti-acting on pro-
inflammatory production shows a negative feedback and is modelled as θ(a) in (2.1).
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The Baker model provides a simple framework for describing the cytokine dynamics. Their model
is described in more detail in Section 2 in Baker et al. (2012). The differential equations are

dp

dt
= −dpp + φ( p)θ(a),

da

dt
= −daa + ψ( p). (2.1)

Here,

φ(p) = c0 + c1
pm1

cm1
2 + pm1

, θ(a) = c3
cm2

4

cm2
4 + am2

and ψ( p) = c5
pm3

cm3
6 + pm3

, (2.2)

where ci > 0 and mi is a positive integer, i = 1, 2, 3. More specifically, the values of mi in (2.1)
are determined by cooperative binding to receptors of secreted cytokines. Parameter c3 stands for the
efficiency of this inhibition. Parameters c1 and c5 denote the maximum production rates for pro- and anti-
inflammatory cytokines due to pro-inflammatory binding, while c0 is the background pro-inflammatory
production rate. Parameters c2, c4 and c6 represent the corresponding cytokine concentrations at which
the Hill functions φ( p), θ(a) and ψ( p) reach half of their maximum value, respectively (Santillán,
2008; Stefan & Le Novère, 2013).

Non-dimensionalizing the Baker model (2.1) gives the dimensionless variables p∗, a∗ and t∗ as
p = p∗c2, a = a∗c4 and t = t∗/da. For notational simplicity, the asterisks are omitted, and the system
(2.1) reduces to a model with only five parameters, γ and αi, i = 1, 2, 3, 4.

dp

dt
= −γ p + 1

1 + am2

(
α1 + α2

pm1

1 + pm1

)
,

da

dt
= −a + α4

pm3

α
m3
3 + pm3

. (2.3)

The five dimensionless parameters, expressed in terms of the original parameters, are

α1 = c0c3

c2da
, α2 = c1c3

c2da
, α3 = c6

c2
, α4 = c5

c4da
and γ = dp

da
. (2.4)

The new dimensionless parameters α1, α2, α4 and γ are scaled by the clearance rate of anti-inflammatory
cytokines. Parameter γ is the ratio of clearance rates for pro-inflammatory to anti-inflammatory. In
general, increases in α1 and α2 upregulate the pro-inflammatory response, whereas an increase in α4
upregulates the anti-inflammatory response.

2.2 Parameter interpretation of cytokine regulation

Cytokine levels are governed by several mechanisms. Four mechanisms are summarized by Fernandez-
Botran (1991) as regulation of (i) cytokine secretion, (ii) cytokine receptor expression, (iii) modulation
of one cytokine by other cytokines and (iv) soluble cytokine-binding factors and/or inhibitors.
Mechanism (i) affects the pro- and anti-inflammatory cytokines secretion and alters the parameters
c1 and c5 or α2 and α4 in (2.4). The receptor expression in mechanism (ii) is modelled as Hill
coefficients in (2.1) as mi, i = 1, 2, 3. The regulation strength of anti-inflammatory cytokines acting
on pro-inflammatory cytokines in mechanism (iii) is c3 or α2 in (2.4). Binding of soluble cytokine
receptors to membrane receptors may downregulate pro-inflammatory cytokines and increase dp or γ

in (2.4). Soluble IL-6 (sIL-6) binds with IL-6 and promotes binding to the receptor. This results in an
upregulation and increase in the value of parameter c0 or α1 in (2.4).
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The four dimensionless parameters α1, α2, α4 and γ in (2.4) are the focus of the bifurcation analysis.
Parameter α3 is the assumed constant, α3 = 0.5. As shown in the analysis of the Baker model, variations
in the parameter α3 exhibit similar bifurcation dynamics as γ and α1. Variation of the remaining
parameters is interpreted in terms of the four mechanisms. Since elevated pro-inflammatory cytokine
concentrations are driven by the parameter α2, this parameter is chosen as the bifurcation parameter.
The responses elicited by changes in the dimensionless parameters are summarized below:

α1: pro-inflammatory upregulation by soluble cytokine receptors and other background factors, its
increase promotes the inflammatory response;

α2: pro-inflammatory self-upregulation, its increase promotes the inflammatory response;

α4: anti-inflammatory upregulation, its increase inhibits the inflammatory response;

γ : ratio of the pro-inflammatory to anti-inflammatory clearance rate, extracellular and soluble
cytokine receptors may increase the ratio, its increase in turn down regulates the inflammatory
response.

2.3 Cooperative binding in cytokine secretion

When cytokine proteins bind to cell surface receptors, this upregulates intracellular signalling and alters
the cell function. Both autocrine and paracrine signalling may lead to upregulation or downregulation
of pro- and anti-inflammatory cytokines as modelled through the functions φ(p) and ψ(p) in (2.1).
Likewise, the upregulation of pro-inflammatory cytokines by anti-inflammatory cytokines is modelled
as θ(a) in (2.1). The values of the Hill coefficients mi, i = 1, 2, 3 in (2.1) model the amount of
cooperative binding. Instead of representing the number of binding sites, Santillán (2008) states ‘that the
Hill coefficient is more appropriately described as an interaction coefficient, reflecting cooperativity’.
If mi > 1, there is a positive cooperativity, while if mi < 1, there is a negative cooperativity (Stefan
& Le Novère, 2013). The binding of pro-inflammatory cytokines to cell surface receptors results in an
increase of the production of both types of cytokines and may also increase the cytokine receptors on the
surface of the binding cell. Therefore, we choose mi = 2, i = 1, 2, 3 in (2.1) to model the cooperativity
and the sigmoid shape of the regulatory interactions of the Hill functions.

2.4 Stochastic models

The ODE model in (2.1) serves as a framework for formulation of stochastic models that account for
variability in local cytokine activity at the cellular level and the activity at a large scale such as the
tissue level. The first SDE model represents the early stage of infection. At this stage, the infection
is at the cellular level which is modelled assuming variability in production from individual cells, a
demographic variability. With the progression of the infection, the second SDE model represents the
infection at the tissue level, a larger spatial scale, assuming environmental variability. The assumption
is that pro-inflammatory and anti-inflammatory cytokine production rates, α2 and α4, are affected by
factors external to the local environment as the result of recruitment of other cells. Both SDE models
apply to either the natural reservoir or the human host. It is the specific parameter region that determines
whether the model applies to the natural reservoir or the human host.

2.4.1 SDE model for local infection. During the early stages of infection, a limited number of
target cells are infected locally. The infection of target cells results in the release of pro-inflammatory
cytokines. To account for variability at the cellular level in the release and the up or downregulation of
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Table 1 Possible changes in �X = (a, p)T

i Change (Δ�X)T
i Probabilities

1 (−1, 0) dppζVΔt
2 (1, 0) φ(p)θ(a)ζVΔt
3 (0, −1) daaζVΔt
4 (0, 1) ψ(p)ζVΔt

cytokines, we derive a system of SDEs from first principles. System (2.1) is used as a framework for
formulation of a birth (upregulation) and death (downregulation) process. The units of p and a are on the
order of picomoles per milliliter (Yiu et al., 2012). Let V denote a fixed volume in which these reactions
take place. For example, in an in vitro study, the volume may be on the order of milliliters. We also
need to convert picomoles to molecules using Avogadro’s constant 6.022 × 1023, which is the number
of molecules per mole. Therefore, the number of molecules per picomole is ζ = 6.022 × 1011. To put
the units of p and a in terms of molecules, multiply p and a by ζV in model (2.1). Let �X = (p, a)T be a
vector of continuous random variables and Δt > 0 be sufficiently small so that at most one birth or one
death occurs during the time interval Δt. Let Δ�X = �X(t + Δt) − �X(t). The possible changes in Δ�X are
summarized in Table 1. Note that Δ�X(t) depends on the number of molecules in time Δt.

To order Δt, the expectation equals

E(Δ�X) =
( −dpp + φ( p)θ(a)

−daa + ψ( p)

)
ζVΔt

and the covariance matrix is


(ΔX) ≈ E

(
(Δ�X)(Δ�X)T

)
=

(
dpp + φ( p)θ(a) 0

0 daa + ψ( p)

)
ζVΔt.

Following a similar argument as in Allen (2007) and Allen et al. (2008), we have a system of Itô SDEs:

dpζV = [ − dpp + φ( p)θ(a)
]
ζV dt +

√
dpp + φ( p)θ(a)

√
ζV dW1(t)

daζV = [ − daa + ψ( p)
]
ζV dt + √

daa + ψ( p)
√

ζV dW2(t),

where W1(t) and W2(t) are two independent Wiener processes. To express the SDE model in the same
dimensionless variables as in (2.1), first, we apply the same scaling as for the ODE model, p = p∗c2,
a = a∗c4 and t = t∗/da. Note also that dW(t) = √

dt η, where η ∼ N(0, 1). Therefore,

dW(t) = dW(t∗/da) =
√

dt∗

da
η =

√
dt∗ η√

da

= dW∗(t∗)√
da

.

With the preceding substitutions, the units of p∗ and a∗ agree with the ODE model (2.1). Second,
to remove the additional scaling ζV introduced in the formulation of the SDE model, we divide the



276 W. ZHANG ET AL.

equations by ζV and drop the ∗ notation for simplicity. The new SDE model has the following form:

dp =
(

−γ p + 1

1 + am2

(
α1 + α2

pm1

1 + pm1

))
dt +

√√√√γ p + 1

1 + am2

(
α1 + α2

pm1

1 + pm1

)
1√
ζV

dW1(t)

da =
(

−a + α4
pm3

α
m3
3 + pm3

)
dt +

√
a + α4

pm3

α
m3
3 + pm3

1√
ζV

dW2(t), (2.5)

with Hill coefficients mi = 2 for i = 1, 2, 3. The additional factors of 1/
√

ζV that appear in the SDE
model (2.5) account for the volume in which interactions take place. If the value of ζV is sufficiently
large, the dynamics are nonlocal and the SDE model (2.5) reduces to the ODE model (2.1). The
spatial range of cytokine communication may be on the order of micrometers. The range depends on
several factors, including the cell density, the receptor number, the rate of cytokine production and on
whether the signalling is autocrine or paracrine (Thurley et al., 2015). As model (2.5) is a diffusion
approximation of a Markov chain model (Table 1), solutions of (2.5) may become negative. However,
numerical solutions are restricted to p � 0 and a � 0, by setting the numerical values equal to zero for
those that reach a negative value.

2.4.2 SDE model with variable rates. In the second SDE model, we assume that the production
rates of the cytokines vary in time. The variability may be due to heterogeneity in individual cell
responses, the local environmental responses formed through the stochastic contributions of each cell
(infected, standby and infiltrating immune cells). The parameters α2 ≡ α2(t) and α4 ≡ α4(t). These two
parameters promote or inhibit the pro-inflammatory response, respectively. To model the environmental
variability, we use SDEs which follow a mean reverting process (Allen, 2016; Iacus, 2009),

dαi(t) = ri

(
ᾱi − αi(t)

)
dt + σiαi(t) dWi(t), i = 2, 4. (2.6)

The constant ri > 0 is the rate of return to the mean rate ᾱi through the body’s natural regulation or
through therapy (i = 2, 4). During the return process, deviations from the mean are modelled through
a term proportional to αi, i.e. σiαi(t), where σi > 0. Solutions to (2.6) are non-negative (Iacus, 2009).
There are other forms for a mean-reverting process that could be considered that also have the property
of being non-negative, such as the Cox–Ingersoll–Ross model, where the term with σi is replaced by
σi

√
αi(t) dWi(t).
The second SDE model consists of the two SDEs in (2.6) coupled with the differential equations

for p and a in model (2.3). The differential equations in (2.3) and in (2.6) form a system of SDEs. The
first and second moments of αi can be easily computed by applying Itô’s formula (Allen, 2010). Let
αi(0) = αi0. Then

E
(
αi(t)|αi0

) = ᾱi + e−ri t(αi0 − ᾱi),

E
(
α2

i (t)|αi0

) = 2ri ᾱ
2
i

2ri − σ 2
i

+ 2ri ᾱi(ᾱi − αi0)

σ 2
i − ri

e−ri t

(
α2

i0 + 2ri ᾱi

σ 2
i − ri

[
αi0 + riᾱi

σ 2
i − 2ri

] )
e
(
σ 2

i −2ri

)
t.
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The asymptotic behaviour of the mean and variance of αi in the case of rapid return rate ri is

lim
ri→∞E

(
αi(t)|αi0

) = ᾱi, lim
ri→∞Var

(
αi(t)|αi0

) = 0. (2.7)

As the rate ri → ∞ in (2.7), the return to a constant level, ᾱi, through individual response or via therapy
is extremely rapid. In the limit, the constant cytokine production rate ᾱi is maintained.

The asymptotic behaviour as t → ∞ of the mean and variance of αi is

lim
t→∞E

(
αi(t)|αi0

) = ᾱi,

lim
t→∞Var

(
αi(t)|αi0

) =

⎧⎪⎨
⎪⎩

∞ for ri �
σ 2

i
2

ᾱ2
i σ 2

i

2ri−σ 2
i

for ri >
σ 2

i
2 .

(2.8)

If the return rate satisfies ri > σ 2
i /2, the mean production rate approaches a steady-state level with

a constant variance as shown in (2.8). (An example of the limiting density for α2(t) is graphed in the
appendix for an example satisfying σ2 = √

r2.) If the return rate is too slow, ri � σ 2
i /2, then the cytokine

production rate αi will have large variability. In this latter case, the production rate cannot be maintained
at a steady-state level ᾱi.

3. Cytokine dynamics of the ODE and SDE models

Cytokine dynamics are controlled by many regulatory mechanisms. We consider the regulation from
anti-inflammatory cytokines and soluble cytokine receptors. Increase in the values of α4 and γ

has an inhibitory effect on pro-inflammatory cytokines. In contrast, the pro-inflammatory response
is upregulated with an increase of the rates α2 and α1. This upregulation can occur via soluble
cytokine receptors in the small neighbourhood surrounding the cell that facilitate cytokine binding.
Since elevation of pro-inflammatory cytokines and dysregulation of the elevated cytokines returning to
homostasis are primary causes of a cytokine storm, the parameter α2 is considered as the bifurcation
parameter for the remainder of the analysis. In addition, we consider γ , α4 and α1 as control parameters
in the following subsections.

Setting γ as the control parameter in Section 3.1, we obtain four regions in γ -space that illustrate
the effect of inhibition from γ . These four γ regions are further subdivided into regions where either
oscillations are present or absent. Then, the γ value is fixed in each of the two oscillation regions and α4
is designated as a control parameter. In these two cases, we investigate the effect of the inhibition from
anti-inflammatory cytokines. The results are described in Sections 3.2 and 3.3. Finally, in Section 3.4,
under intense inhibition from both γ and α4, the parameter α1 is considered as a control parameter to
reveal relapse–remission cytokine dynamical behaviour.

As in the Baker model, we assume that there is cooperative binding with mi = 2, i = 1, 2, 3.
We verify the fact that if m1 > 1, model (2.1) can undergo a Hopf bifurcation, which potentially
induces oscillations and even relapse–remission behaviour with high level spikes in pro-inflammatory
concentration. Such type of behaviour occurs in recurrent infections (Zhang et al., 2014b) and relapse–
remission autoimmune diseases (Zhang et al., 2014a).

The bifurcation analysis delimits parameter regions as boundaries. Close to these boundaries, small
changes in parameter input can cause a dramatic effect in the model output. Moreover, this bifurcation
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Table 2 Summary of parameter values for the bifurcation
analysis in Section 3 with the fixed parameter α3 = 0.5 and
designated bifurcation parameter α2

Section α1 α4 γ Figure

3.1 0.025 3.5 varies 1
3.2 0.025 varies 1.25 4
3.3 0.025 varies 1.5 5
3.4 varies 12 1.5 8

analysis helps to locate parameter regions for multiple stability sandwiched between two saddle-node
(SN) bifurcations and oscillation generated from a Hopf (H) bifurcation. Our analysis differs from
Baker’s original analysis, in that we derive the bifurcation conditions through symbolic computation
instead of using a numerical bifurcation toolbox. This parameter-free approach yields algebraic formulas
for all parameters for qualitative dynamical behaviours, such as bistability and oscillations. In particular,
we provide analytical formulas for SN in (A.17) and (A.18) and Hopf bifurcations in (A.19) and (A.20)
through a symbolic computational approach. The analytical results are summarized in the following
subsections and relegated to the appendix. Table 2 summarizes the choice of parameter values for the
bifurcation analysis.

We illustrate the dynamics of the SDE models when variability is included at the cell or tissue level.
To illustrate the local variability at the cell level, in the SDE model (2.5) up to time t = 50 and we let
ζV = 1. For the widespread variability at the tissue level, in SDE (2.6), we assume that the mean of the
activation rates ᾱ2 and ᾱ4 is the same as in the ODE model (2.3), α2 and α4. In addition, we assume that
σi = √

ri, i = 2, 4. Thus, it follows from (2.8) that the mean and asymptotic variances satisfy

E
(
αi(t)

) = ᾱi and lim
t→∞Var

(
αi(t)

) = ᾱ2
i , i = 2, 4. (3.1)

The preceding assumption implies that the limiting mean and variance do not depend on ri. The rate of
return is assumed to be ri = 0.5, i = 2, 4, for the simulations. Some additional examples in the appendix
show how the rate of return influences the response time. One sample path is graphed for each SDE
model, but the time scale for the first SDE model is t ∈ [0, 50] and for the second SDE model it is
t ∈ [0, 200]. The examples show that similar dynamics can be obtained through a variety of different
pathways that either activate or suppress the inflammatory response. Distinct regions in parameter space
demonstrate redundant behaviour.

3.1 Parameter γ vs. α2

In this subsection, we fix parameter α4 = 3.5 at a low value, while γ and α2 are free. The 2D bifurcation
dynamics in α2-γ space are summarized in Fig. 1(a). The cytokine dynamical behaviour is demonstrated
for three γ values from non-Hopf regions (i) and (ii), two-Hopf region (iii) and one-Hopf region (iv).
In the non-Hopf region (i) and (ii), fixing γ = 1.25, Fig. 1(b) shows that model (2.3) experiences two
SN bifurcations at SN1 and SN2. Fixing γ = 1.28 in the two-Hopf region (iii), Fig. 1(c) shows that
model (2.3) exhibits oscillation when α2 ∈ (Hopf1, Hopf2). In addition, model (2.3) exhibits bistability
between two SN bifurcations, SN1 and SN2. In the bistable interval, there exists a pro-inflammatory
oscillation. Further increases in γ , such as γ = 2 as shown in Fig. 1(d), increase the bistable region
between the two SN bifurcations.
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Fig. 1. 2D bifurcation diagram in α2-γ parameter space. (a) SN bifurcation curves, SN1 and SN2, and Hopf bifurcation curves are
plotted according to (A.7) and (A.6). In (b), (c) and (d), F1(p̄, α2, γ ) = 0 in (A.5) is plotted with γ = 1.25, γ = 1.28 and γ = 2,
respectively. Solid and dashed curves denote stable and unstable equilibrium solutions. The middle branch is always unstable and
separates initial conditions in bistable states. Hopf bifurcation makes the upper branch unstable and gives rise to stable periodic
solutions between two unstable branches. In (b), (c) and (d), the bistable region is α2 ∈ (SN2, SN1). Due to Hopf bifurcations,
(c) and (d) show bistability with oscillations.

As the value of α2 increases, the pro-inflammatory cytokines first stabilize at a healthy low level
on the left of SN2, then to a bistable state with α2 ∈ (SN2,SN1). In the bistable region, under
outside stimulation the pro-inflammatory cytokines have the possibility to return to a healthy low level.
However, the possibility of returning to the healthy state disappears when α2 increases and passes SN1.
Taking three values of γ = 1.25, 1.28, 2, the corresponding 1D bifurcation diagrams are shown in
Fig. 1(b–d). Then we fix α2 = 20, e.g. the value of the equilibrium p̄ is downregulated slightly with
increasing of the γ value. The strong pro-inflammatory response can be reached with a large value of
α2 in all three cases. However, the pro-inflammatory response may vary periodically. This phenomenon
is shown as bistability with oscillation from a Hopf bifurcation, in Fig. 1(d), where α2 ∈ (SN2, Hopf).
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Fig. 2. Dynamics of the ODE and SDE models for the parameter values in the ODE model corresponding to α2 = 10, α4 = 3.5
and γ = 1.25. Bistability occurs in the ODE model. Two initial conditions (p(0), a(0) = (0.1, 0.1)) and (p(0), a(0)) = (0.4, 1.35)

show convergence to the two different stable equilibria in the ODE model. Regardless of the initial conditions, the pro- and anti-
inflammatory cytokines are both upregulated at the cellular level, in SDE1, but the controlled response with occasional flare-ups
at the tissue level, in SDE2, is indicative of the natural reservoir.

For the SDE models, the bistable region may be a representative of the inflammatory response in a
natural reservoir, whereas the region of high pro-inflammatory response may represent the inflammatory
response in a human infection.

For the bistable region, consider parameter values corresponding to Fig. 1(b). For α2 = 10, α4 =
3.5 and γ = 1.25, the ODE exhibits bistability. However, in Fig. 2, the variability in the two SDE
models shows that the sample paths fluctuate between the two stable states. For the SDE model (2.5),
there are large fluctuations in both pro- and anti-inflammatory cytokines. However, for SDE (2.6) the
response is more controlled; the cytokine levels are low but persistent with occasional flare-ups, such as
in the infection of a natural reservoir. The pro-inflammatory cytokines are slightly upregulated through
variations in the parameter α2 but the regulatory response is weak due to low values of α4 and γ .

A strong pro-inflammatory upregulation with a large α2 = 90 and weak regulation through low
α4 = 3.5 are seen Fig. 3. The ODE model is in the region of a high stable pro-inflammatory response
(Fig. 1(d)). At very low cytokine levels, the ODE model overshoots the equilibrium value before
returning to the stable equilibrium, Fig. 3(a). Thus, in the two SDE models, when variability reduces
the dynamics to low levels, a return to equilibrium may also result in an overshoot phenomenon. In
the two SDE models, there is a variability at both the cell and tissue levels, driven by the large pro-
inflammatory response through α2 but a weak anti-inflammatory response through α4. Such behaviour
may be indicative of the cytokine storm seen in human infection. In the appendix, the dynamics of SDE
model (2.6) are explored for different values of the rate of return r = ri, i = 2, 4 to the mean value of
αi, i = 2, 4. For short time spans and small values of r, the αi values change slowly; but for large values,
the change is more rapid.

3.2 Parameter α4 vs. α2 for small γ

In this subsection, inhibition from anti-inflammatory cytokines is investigated under a small value of
γ . The value of γ = 1.25 is taken in region (ii) in Fig. 1(a). The generation rate of anti-inflammatory
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Fig. 3. Dynamics of the ODE and SDE models with ODE parameter values equal to α2 = 90, α4 = 3.5 and γ = 2. The ODE
model is in the region of a high stable pro-inflammatory level, α2 > Hopf, α2 (Fig. 1(d)). The ODE model solution overshoots the
equilibrium when initial conditions are small, p(0) = 0.1, a(0) = 0.1. The two SDE models exhibit large variability in cytokine
levels about the equilibrium, indicative of a cytokine storm.

cytokine, α4, is chosen as the control parameter with bifurcation parameter α2. Other parameter values
are fixed as in Table 2. The bifurcation analysis is illustrated in α2 – α4 parameter space in Fig. 4.

The bistable region, shown in the dotted region of Fig. 4(a), narrows down and diminishes with the
increase of the α4 value. Nevertheless, taking α2 = 20, e.g. Fig. 4(b–d) shows that the large value of α4
decreases the value of the equilibrium p̄ dramatically. Therefore, with a weak downregulation such as
from soluble cytokine receptors, anti-inflammatory regulation reduces the pro-inflammatory response to
a low healthy state.

Similar behaviour for the ODE and SDE models, as exhibited in Fig. 2, holds for parameter values
chosen from the bistable region, α2 ∈ (SN2, SN1) in Fig. 4(b). The regions where there is a greater
anti-inflammatory response, large α4 exhibit periodicity and are explored further in the next section.

3.3 Parameter α4 vs. α2 for large γ

Regulation from anti-inflammatory cytokines is studied with a large value of γ , i.e. in region (iv) of
Fig. 1(a). Specifically, we take γ = 1.5 and α4 is chosen as the control parameter with α2 the bifurcation
parameter. See Fig. 5.

Bifurcation curves in Fig. 5(a) delimit the α2 – α4 parameter space into three parts: (i), (ii) and
(iii) in Fig. 5(a). In region (i), the value of α2 is small, pro-inflammatory response converges to a
low-level healthy state with a moderate level of α2 and intensive inhibition regulations from both anti-
inflammatory cytokines and soluble cytokine receptors. In contrast, region (iii) implies a cytokine storms
with the amplifying α2 values. The region (ii) in Fig. 5(a) is an intermediate stage between (i) and (iii),
where the pro-inflammatory response oscillates between low and high levels. The oscillations spend
more time at the low pro-inflammatory level with larger values of anti-inflammatory response α4. Under
a moderate pro-inflammatory generation rate α2, which locates close to and on the right side of SN1 in
Fig. 5(c), the oscillating behaviour shows as a relapse–remission pattern of pro-inflammatory response.
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Fig. 4. 2D bifurcation diagrams in α4-α2 parameter space with γ = 1.25. (a) SN1 and SN2, and Hopf1 and Hopf2, are plotted
by (A.10) and (A.9). In the α2 – α4 parameter plane, model (2.3) shows bistability and oscillation in the dotted and grey regions,
respectively. Furthermore, taking α4 = 3, 8, 28 individually, F2(p̄, α2; α4) = 0 is plotted as 1D bifurcation diagram in (b), (c)
and (d). Solid and dashed curves denote stable and unstable equilibria. The unstable equilibrium branch between SN1 and SN2
separates the initial condition space for bistability, while the unstable branch between Hopf1 and Hopf2 is enclosed by stable
periodic solutions.

Further increases in the anti-inflammatory response α4 and in the clearance rate of pro-inflammatory
cytokines through γ , the ODE model exhibits oscillatory dynamics (Fig. 6 with α2 = 20). The
oscillations are not evident in the two SDE models. The existence of the stable equilibrium at a low
pro-inflammatory response allows the cytokine dynamics in the SDE model (2.6) to return to the low
state for an extended period of time. The dynamics are similar to those in Fig. 2 (infection in a natural
reservoir).

For a larger pro-inflammatory response α2 = 50, the anti-inflammatory cytokines cannot control the
pro-inflammatory response, resulting in a cytokine storm. The dynamics in Fig. 7 are similar to those in
Fig. 3.
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Fig. 5. 2D bifurcation diagram in α2 – α4 parameter space with γ = 1.5. (a) SN curves, SN1 and SN2, and Hopf curve are plotted
according to (A.13) and (A.12), respectively, where p̄ satisfies (A.11). With α4 = 6, 12, F3(p̄, α2; α4) = 0 is plotted in (b) and
(c). The solid and dashed curves denote stable and unstable equilibrium solutions. Model (2.3) shows bistability between SN1 and
SN2. The middle unstable branch separates the initial condition space in bistable case. The top branch is unstable and enclosed
by a stable periodic solution between SN2 and Hopf.

Fig. 6. Dynamics of the ODE and SDE models for the ODE parameter values α2 = 20, α4 = 6 and γ = 1.5 that correspond to a
controlled response with occasional flare-ups observed in the natural reservoir.

3.4 Parameter α1 vs. α2

The parameter α1 represents background production of pro-inflammatory cytokines. Strong cytokine
responses may influence this background pro-inflammatory cytokine production. For example, soluble
cytokine receptors facilitate cytokine signalling, such as α2-macroglobulin (James, 1990) carry IL-1 and
IL-6 in circulation (Fernandez-Botran, 1991) and increase the background pro-inflammatory cytokine
concentration. We consider parameter α1 as a control parameter, with a bifurcation analysis in the α1-α2
parameter space, a parameter region not fully explored in the Baker paper. See Fig. 8.

Numerical simulations show that relapse–remission behaviour occurs when the parameter pair
(α1, α2) locates close to the SN curve on its right side with a moderate value of α2 ∈ (20, 40). Thus,
relapse–remission pattern in pro-inflammatory response is more likely to occur when the background
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Fig. 7. Dynamics of the ODE and SDE models for ODE parameter values corresponding to Fig. 5(b) α2 = 50, α4 = 6 and
γ = 1.5. The two SDE models exhibit relatively high levels of pro- and anti-inflammatory cytokines, indicative of a cytokine
storm.

Fig. 8. 2D bifurcation diagram in α1-α1 parameter space. (a) SN and Hopf bifurcation curves are plotted according to (A.16)
and (A15) in solid and dashed curves, respectively. p̄ satisfies (A.14). Model (2.3) shows oscillation in the grey region. The
relapse–remission behaviour in simulations (b) and (c) occurs on the right side of the solid SN curve in the oscillation region
of (a).

pro-inflammatory production rate, α1, increases under a moderate pro-inflammatory production rate, α2.
There is an even more vigorous anti-inflammatory response with high values of γ and α4. The dynamics
of the ODE model are illustrated for two different sets of parameter values in Fig. 8(b and c). The
corresponding stochastic dynamics are illustrated for one set of parameter values in Fig. 9.

The pro-inflammatory response is not completely controlled due to this background pro-
inflammatory production. Therefore, moderate pro-inflammatory production rate α2 can drag the
pro-inflammatory concentration to high levels periodically. This interaction between promoting and
inhibiting regulations forms spikes in pro-inflammatory concentrations, which lead to high viral
replication and release illustrates a persistent infection with flare-ups seen in a natural reservoir.
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Fig. 9. The ODE solution and one sample path of the SDE models are graphed for the parameter values in Fig. 8(b). The high anti-
inflammatory response is able to control the pro-inflammatory response for short periods of times, but the underlying oscillations
show occasional flare-ups, indicative of the natural reservoir.

4. Conclusion

The goal in this investigation is to apply simple mathematical models for pro- and anti-inflammatory
cytokines to describe the dynamics of viral zoonotic infectious diseases in different hosts. Through
bifurcation analysis and numerical simulations, the models’ outcomes are related to the responses seen
in natural reservoirs and in human hosts. In natural reservoirs, the infection persists and the inflammatory
response is controlled by immune homeostasis through largely undefined mechanisms. In human hosts,
the infection can result in a stronger dysregulated pro-inflammatory response which eventually leads to
tissue damage.

The regulatory interaction between pro- and anti-inflammatory cytokines is captured by a 2D ODE
system. The positive feedback in cytokine generation and the negative feedback inhibition where anti-
acts on pro- inflammatory cytokines are modelled through Hill functions. The positive cooperativity in
cytokine bindings and the non-linear sigmoid shape of the regulatory interaction are modelled by the
Hill coefficient, whose magnitude is greater than unity.

The underlying ODE model exhibits a broad range of behaviours from low to high-stable cytokine
levels, bistable states, oscillations and relapse–remission flare-ups. Regions in parameter space are
associated with upregulation of either pro- and/or anti-inflammatory cytokines. The bifurcation analysis
is carried out through symbolic computation. This parameter-free approach yields algebraic formulas
for use in qualitative analysis. The bifurcation diagrams in Figs 1, 4, 5 and 8 reveal parameter
regions where there exists a single stable equilibrium or bistability or periodic solutions in γ − α2,
or α2 − α4, and α1 − α2 space. For example, the low pro-inflammatory generation rate, α2, may
keep the pro-inflammatory cytokines level, p, at a low stable steady state. This is illustrated by the
lower branch of p on the left of SN2 in Fig. 1(b–d). While the strong pro-inflammatory cytokine
responses, a high level of p occurs on the right of SN1 in Fig. 1(b–d). The bistable region, between
SN1 and SN2, increases with the growth of the decay ratio γ between pro- and anti-inflammatory
cytokines.

As the ODE model does not capture the variability at the cell and tissue levels, the ODE model
is extended to two SDE models. The numerical examples illustrate that some of the distinct outcomes
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associated with the ODE model cannot be distinguished in the SDE models. For example, bistability or
oscillatory behaviour in the ODE is seen in the SDE models as a chronic infection with occasional flare-
ups, typical of infection in the natural reservoir (Figs 2, 6 and 9). Also, the high-stable cytokine levels
may be viewed as a cytokine storm in the SDE models (Figs 3 and 7). The flare-ups illustrated in both
the ODE and SDE models are also characteristic of relapse–remission immune responses seen in chronic
infection. This type of behaviour has been demonstrated in other types of ODE models (Zhang et al.,
2014a,b, 2016). The examples in Sections 3.1–3.4 show the control of the pro-inflammatory response
through large γ or large α4, resulting in low levels of p and a but occasional flare-ups (bistable or
oscillatory regions), indicative of the natural reservoir. The examples also illustrate cases, where the pro-
inflammatory response α2 cannot be reduced to low levels, through γ or α4 (high endemic equilibrium
for p), indicative of a cytokine storm in human infection.

In summary, we proposed a simple two-component model for a viral infection of cells or organs
(e.g. lung, liver) to gain insight into the effects of two opposing inflammatory responses that give rise
to a cytokine storm. The theoretical mathematical models are preliminary and non-mechanistic. They
illustrate potential outcomes of pro- versus anti-inflammatory cytokines through four model parameters
with broadly defined functional roles (described in Section 2.2, (i)–(iv)).

However, the mechanisms responsible for the cytokine storm are much more complex. To develop a
mechanistic model requires time series data from carefully designed laboratory experiments that identify
when specific pathways and genes/proteins are induced or suppressed. Hence, these simple models
provide a framework for such experimental data. In other words, these complex data can be used to test
some outcomes of these models.
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Appendix A

A.1 Bifurcation analysis

We expand on the analysis presented for the Baker model. Setting the left-hand side of (2.3) to 0, we
obtain equilibrium solutions (p̄, ā) of model (2.3), where

ā ( p̄) = α4 p̄m3

α
m3
3 + p̄m3

and p̄ satisfies the following equation:

F ( p̄) = −γ p̄ + α1

1 + ām2
+ α2 p̄m1

(1 + ām2) (1 + p̄m1)
= 0. (A.1)

The bifurcation dynamics depend on the local stability of the equilibria, (p̄, ā), since stable
(unstable) equilibria attract (repel) nearby solutions. The corresponding eigenvalues of the Jacobian
matrix of system (2.3) determine the stability of equilibria and are obtained from the roots of the
characteristic polynomial λ2 − Trace (J) λ + Det (J) = 0, where

Trace (J) = −1 − γ + m1 α2 pm1

p (1 + pm1)2 (1 + am2)
,

Det (J) = γ − m1 α2 pm1

p (1 + pm1)2 (1 + am2)
+

[
α1 + (

α1 + α2

)
pm1

]
m2m3 α4 α

m3
3 am2 pm3

p a
(
α

m3
3 + pm3

)2
(1 + am2)2 (1 + pm1)

. (A.2)

The stability of an equilibrium changes when the system undergoes a bifurcation. An SN bifurcation
occurs when Det (J) = 0 at α2 = α2s in (A.17) and p̄ and other parameter values satisfy the condition
in (A.18). Hopf bifurcation occurs and gives rise to oscillations if Trace (J) = 0 and Det (J) > 0.
The Hopf bifurcation critical point is α2 = α2h in (A.19) and p̄ and other parameter values satisfy
the condition in (A.20). Bogdanov–Takens (BT) bifurcation happens if Det (J) = Trace (J) = 0 in
(A.2), where p̄ satisfies (A.1). For a dynamical system undergoing bifurcation, a small perturbation or
uncertainty in parameter values can cause a dramatic change in model behaviour. Therefore, bifurcation
curves in terms of parameter values form the boundaries for different model behaviours.

The value of mi, i = 1, 2, 3 is related to the number of binding sites on the surface of cytokine-
secreting cells. Generally, larger values of mi give rise to richer dynamical behaviour of models (2.1,
2.3). Two static bifurcations usually give rise to bistability. Hopf bifurcation plays an important role
as a source for oscillations. Therefore, we investigate the necessary condition for a Hopf bifurcation.
Considering F (p̄) = 0 of (A.1) into Trace (J) = 0 in (A.2), we have

Trace (J) =
(

m1

1 + pm1
− 1

)
γ − 1 − α1m1

p (1 + pm1) (1 + am2)
. (A.3)

Due to the positivity of the solution of (2.3), we have that the third term of the last formula in (A.3)
is positive. To satisfy the necessary condition for a Hopf bifurcation, i.e. Trace (J) = 0, we must have

m1
1+pm1 − 1 > 0 and

(
m1

1+pm1 − 1
)

γ − 1 > 0, which lead to

m1 > 1 and γ >
1

m1 − 1
. (A.4)
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Therefore, Hill coefficients are set as the smallest integers which give rise to rich dynamical behaviours
that is mi = 2, i = 1, 2, 3. Moreover, since Hopf bifurcation is a codimension-one bifurca-
tion, the dynamical behaviour of the model can fully unfold with the variance of one-parameter
value. In this study, we concentrate on investigating how the extra pro-inflammatory cytokine-
secreting rate, α2, causes cytokine storm in virus infections. Therefore, α2 is chosen as a bifurcation
parameter. The bifurcation curves (the corresponding equilibrium undergoes one specific bifurcation
when parameter values locate on one of these curves) are determined by F (p̄) = 0 in (A.1),
Trace (J) = 0 and Det (J) = 0 in (A.3).

Setting α1 = 0.025, α3 = 0.25, α4 = 3.5, we have

F1

(
p̄; γ , α2

) = −53

4
γ p̄7 +

(
1

40
+ α2

)
p̄6 − 55

4
γ p̄5 +

(
1

2
α2 + 3

80

)
p̄4 − 9

16
γ p̄3

+
(

9

640
+ 1

16
α2

)
p̄2 − 1

16
γ p̄ + 1

640

= 0, (A.5)

Trace1

(
p̄; γ , α2

) = − 53

4
(1 + γ ) p̄8 − 27 (1 + γ ) p̄6 + 2 α2 p̄5 − 229

16
(1 + γ ) p̄4 + α2 p̄3

− 5

8
(1 + γ ) p̄2 + 1

8
α2 p̄ − 1

16
(1 + γ ) (A.6)

and

Det1
(
p̄; γ , α2

) = 2809

16
γ p̄12 + 2915

8
γ p̄10 +

(
49

160
− 57

4
α2

)
p̄9 + 6527

32
γ p̄8

+
(

441

640
+ 17

16
α2

)
p̄7 + 137

8
γ p̄6 +

(
147

320
+ 25

32
α2

)
p̄5 + 521

256
γ p̄4

+
(

49

640
− 1

8
α2

)
p̄3 + 9

128
γ p̄2 − 1

128
α2 p̄ + 1

256
γ . (A.7)

The bifurcation analysis shows that an SN bifurcation occurs if Det1
(
p̄; γ , α2

) = 0 in (A.7); Hopf
bifurcation occurs if Trace1

(
p̄; γ , α2

) = 0 in (A.6) and Det1
(
p̄; γ , α2

)
> 0. In (A.7) and (A.6), p̄

satisfies equation F1

(
p̄; γ , α2

) = 0 in (A.5). (A.7) and (A.6) give the SN and Hopf bifurcation curves,
denoted as SN1, SN2 and Hopf in Fig. 1. These bifurcation curves divide the α2-γ parameter space in
Fig. 1 into four parts: (i) γ ∈ [0, 1]; (ii) γ ∈ [1, γhm]; (iii) γ ∈ [γhm, γBT ] and (iv) γ ∈ [γBT , +∞].
Here, γhm = 1.2765 denotes the minimum γ value for the occurrence of Hopf bifurcation, and γBT =
1.2845 denotes BT bifurcation critical point. Moreover, according to (A.4), the necessary condition of
a Hopf bifurcation for m1 = 2 is γ > 1. Therefore, in region (i), a Hopf bifurcation does not occur in
the entire parameter space; while in region (ii), Hopf bifurcation does not occur in the current parameter
set, but there is the possibility in other parameter sets, investigated in the next subsection. Region (iii) is
a transition case. Model (2.3) exhibits oscillations in a slim window of α2-values, sandwiched between
two Hopf bifurcations. The eigenvalues of one of the two Hopf bifurcations become a pair of real
numbers with opposite signs in region (iv). There is a large interval for α2 values where model (2.3)
exhibits oscillations.
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A.2 Parameter α4 vs. α2 for small γ

Setting α1 = 0.025 and γ = 1.25, we obtain

F2

(
p̄; α2, α4

) = 1

640
− 5

4

(
α2

4 + 1
)

p̄7 +
(

1

40
+ α2

)
p̄6 − 5

4

(
α2

4 + 3

2

)
p̄5 + 1

2

(
α2 + 3

40

)
p̄4

− 45

64
p̄3 + 1

16

(
9

40
+ α2

)
p̄2 − 5

64
p̄, (A.8)

Trace2

(
p̄; α2, α4

) = −9

4

(
α2

4 + 1
)

p̄8 − 9

2

(
α2

4 + 5

4

)
p̄6 + 2 α2 p̄5 − 9

4

(
33

16
+ α2

4

)
p̄4 + α2 p̄3

− 45

32
p̄2 + 1

8
α2 p̄ − 9

64
(A.9)

and

Det2
(
p̄; α2, α4

) = 5

4

(
α2

4 + 1
)2

p̄12 + 5

4

(
2 α4

4 + 5 α2
4 + 3

)
p̄10 −

(
α2 α2

4 + 2 α2 − 1

40
α2

4

)
p̄9

+ 5

4

(
33

8
α2

4 + 27

8
+ α4

4

)
p̄8 +

(
1

4
α2 α2

4 − 2 α2 + 9

160
α2

4

)
p̄7

+ 5

16

(
29

4
+ 5 α2

4

)
p̄6 + 1

8

(
3

10
α2

4 − 6 α2 + α2 α2
4

)
p̄5 + 5

32

(
129

32
+ α2

4

)
p̄4

+ 1

8

(
1

20
α2

4 − α2

)
p̄3 + 45

512
p̄2 − 1

128
α2 p̄ + 5

1024
. (A.10)

In Fig. 4(a), an SN bifurcation occurs if Det2
(
p̄; α2, α4

) = 0 in (A.10); a Hopf bifurcation occurs
if Trace2

(
p̄; α2, α4

) = 0 in (A.9) with Det2
(
p̄; α2, α4

)
> 0 in (A.10). The SN and Hopf bifurcation

conditions give the corresponding curves as SN1, SN2, Hopf1 and Hopf2 in Fig. 4. Model (2.3) shows
bistability in the dotted region delimited by two bifurcation curves, SN1 and SN2 and oscillation in
the grey region delimited by two Hopf bifurcation curves, Hopf1 and Hopf2. Further, 1D bifurcation
analysis is carried out for three α4 values taken at 3, 8 and 28. The corresponding bifurcation diagrams
are plotted in Fig. 4(b–d), respectively. The 1D bifurcation analysis shows that with the increase of the
value of α4, the bistable α2 interval between SN1 and SN2 shrinks down until it disappears in the case
of α2 = 28 in Fig. 4(d). The middle branch unstable equilibrium is a saddle and serves as a boundary
for bistability.

In the top branch equilibrium, with an increase in α4, a Hopf bifurcation appears; the distance
between the two Hopf bifurcations enlarges and the unstable equilibrium is enclosed by a stable periodic
solution. If the lower branch equilibrium exists, it is a stable node.
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A.3 Parameter α4 vs. α2 for large γ

Setting α1 = 0.025 and γ = 1.5 yields

F3

(
p̄; α2, α4

) = − 3

2

(
1 + α2

4

)
p̄7 +

(
1

40
+ α2

)
p̄6 − 3

2

(
α2

4 + 3

2

)
p̄5 + 1

2

(
α2 + 3

40

)
p̄4 − 27

32
p̄3

+ 1

16

(
9

40
+ α2

)
p̄2 − 3

32
p̄ + 1

640

= 0. (A.11)

The Trace (J) = 0 and Det (J) = 0 in (A.2) considering the equilibrium condition a = ā (p̄) give

Trace3

(
p̄; α2, α4

) = − 5

2

(
α2

4 + 1
)

p̄8 − 5

(
α2

4 + 5

4

)
p̄6 + 2 α2 p̄5 − 5

2

(
33

16
+ α2

4

)
p̄4 + α2 p̄3

− 25

16
p̄2 + 1

8
α2 p̄ − 5

32
, (A.12)

and

Det3
(
p̄; α2, α4

) =3

2

(
α2

4 + 1
)2

p̄12 +
(

3 α4
4 + 15

2
α2

4 + 9

2

)
p̄10 +

(
1

40
α2

4 − α2 α2
4 − 2 α2

)
p̄9

+
(

81

16
+ 99

16
α2

4 + 3

2
α4

4

)
p̄8 +

(
1

4
α2 α2

4 − 2 α2 + 9

160
α2

4

)
p̄7

+
(

87

32
+ 15

8
α2

4

)
p̄6 +

(
1

8
α2 α2

4 − 3

4
α2 + 3

80
α2

4

)
p̄5 +

(
387

512
+ 3

16
α2

4

)
p̄4

+
(

1

160
α2

4 − 1

8
α2

)
p̄3 + 27

256
p̄2 − 1

128
α2 p̄ + 3

512
. (A.13)

Bifurcation analysis gives a Hopf bifurcation curve and SN bifurcation curves, denoted as Hopf,
SN1 and SN2 in Fig. 5(a), according to Det3

(
p̄; α2, α4

) = 0 in (A.13) and Trace3

(
p̄; α2, α4

) = 0 in
(A.12) with Det3

(
p̄; α2, α4

)
> 0, respectively. Here p̄ satisfies equation F3

(
p̄; α2, α4

) = 0 in (A.11).
The points where the Hopf bifurcation curve is tangent to a SN bifurcation curve give rise to two BT
bifurcations at

(
α2, α4

) = (17.8016, 15.8314) and
(
α2, α4

) = (5.7757, 1.5577).

A.4 Parameter α1 vs. α2

Setting α4 = 12, and γ = 1.5, we have

F4

(
p̄; α2, α1

) = p̄7 + (
α1 + α2

)
p̄6 − 873

4
p̄5 +

(
1

2
α2 + 3

2
α1

)
p̄4 − 27

32
p̄3

+
(

1

16
α2 + 9

16
α1

)
p̄2 − 3

32
p̄ + 1

16
α1 − 435

2

= 0, (A.14)

Trace4

(
p̄; α2, α1

) = −725

2
p̄8 +2 α2 p̄5 − 2905

4
p̄6 +α2 p̄3 − 11685

32
p̄4 + 1

8
α2 p̄− 25

16
p̄2 − 5

32
, (A.15)
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and

Det4
(
p̄; α2, α1

) =63075

2
p̄12 + 126585

2
p̄10 + (−146 α2 + 144 α1

)
p̄9 + 512001

16
p̄8

+ (
34 α2 + 324 α1

)
p̄7 + 8727

32
p̄6 +

(
216 α1 + 69

4
α2

)
p̄5 + 14211

512
p̄4

+
(

−1

8
α2 + 36 α1

)
p̄3 + 27

256
p̄2 − 1

128
α2 p̄ + 3

512
. (A.16)

The static bifurcation occurs when

α2s = α2sa

p̄2
(
α2

3 + p̄2
)2

, where

α2sa =
(
α2

4 + 1
)

γ p̄7 − α1 p̄6 +
(

2 α2
3 + α2

4 + 1
)

γ p̄5 −
(

2 α2
3 + 1

)
α1 p̄4

+
(
α2

3 + 2
)

α2
3 γ p̄3 −

(
α2

3 + 2
)

α1 α2
3 p̄2 + (

γ p̄ − α1

)
α4

3. (A.17)

Here in (A.17), p̄ and the parameters satisfy the following condition:

Fs =
(
α2

4 + 1
)2

γ p̄15t + 5
(
α2

4 + 1
)2

α2
3 γ p̄13 + 2

(
α2

4 + 1
)

α1 p̄12

+
(

2
(

2 α2
3 α2

4 +
(

5 α2
3 + 4 α2

4

) (
α2

4 + 1
))

α2
3 −

(
α2

4 + 1
)2

)
γ p̄11

+ 2
(

3 α2
3 α2

4 + 5 α2
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4 + 1
)

α1 p̄10

+
(

3 α2
4

(
2 α4

3 + α2
4

)
+ 10 α4

3 − 5 + 2 α2
4

(
8 α2

3 − 1
))

α2
3 γ p̄9

+
(

6
(
α2

3 + 1
)

α2
4 + 20 α2

3 + 10
)

α1 α2
3 p̄8 +

(
5 α4

3 − 10 + 2
(

4 α2
3 + 1

)
α2

4

)
α4

3 γ p̄7

+ 2
(
α2

3 α2
4 + 10 α2

3 + 3 α2
4 + 10

)
α1 α4

3 p̄6 +
(
α4

3 + 2 α2
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)
α6

3 γ p̄5

+ 2
(

5 α2
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4 + 10
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α1 α6
3 p̄4 − 5 α8

3 γ p̄3 + 2
(
α2

3 + 5
)

α1 α8
3 p̄2 − α10

3 γ p̄ + 2 α1 α10
3

= 0. (A.18)

A Hopf bifurcation occurs when

α2h = α2ha

p̄2
(
α2

3 + p̄2
)2 , where

α2ha =
(
α2

4 + 1
)

γ p̄7 − α1 p̄6 +
(

2 α2
3 + α2

4 + 1
)

γ p̄5 −
(

2 α2
3 + 1

)
α1 p̄4

+
(
α2

3 + 2
)

α2
3 γ p̄3 −

(
α2

3 + 2
)

α1 α2
3 p̄2 + α4

3 γ p̄ − α1 α4
3. (A.19)
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Table A1 Bifurcation points for model (2.3) in Figs 1, 4, 5 and 8

Figure SN:
(
α2, p̄, ā

)
Hopf:

(
α2, p̄, ā

)
Fig. 1(b) SN1:(15.666, 0.041, 0.022)

SN2:(7.331, 0.214, 0.545)
–

Fig. 1(c) SN1:(16.423, 0.039, 0.214)
SN2:(7.521, 0.215, 0.547)

Hopf1:(7.537, 0.226, 0.594)
Hopf2:(7.885, 0.269, 0.787)

Fig. 1(d) SN1:(40.031, 0.025, 0.009)
SN2:(12.061, 0.221, 0.572)

Hopf: (22.813, 0.572, 1.984)

Fig. 4(b) SN1:(15.662, 0.040, 0.019)
SN2:(6.787, 0.238, 0.557)

–

Fig. 4(c) SN1:(15.732, 0.041, 0.052)
SN2:(10.777, 0.127, 0.486)

Hopf1:(11.612, 0.164, 0.779)
Hopf2:(26.742, 0.316, 2.282)

Fig. 4(d) – Hopf1:(24.954, 0.101, 1.089)
Hopf2:(310, 73, 0.332, 8, 567)

Fig. 5(b) SN1:(22.557, 0.033, 0.026)
SN2:(11.587, 0.155, 0.525)

Hopf: (31.885, 0.441, 2.623)

Fig. 5(c) SN1:(22.654, 0.034, 0.054)
SN2:(15.846, 0.102, 0.479)

Hopf: (117.685, 0.445, 5.311)

The values for the parameters and p̄ should satisfy a necessary condition as follows:

Fh = −
(
α2

4 + 1
)

(γ + 1) p̄9 − 2
(
α2

3 (γ + 1) + α2
4 + 1

)
p̄7 − 2 α1 p̄6

+
((

−α4
3 + α2

4 + 1
)

γ − α2
3

(
α2

3 + 4
)

− α2
4 − 1

)
p̄5 − 2

(
2 α2

3 + 1
)

α1 p̄4

− 2 α2
3

(
α2

3 − γ + 1
)

p̄3 − 2
(
α2

3 + 2
)

α1 α2
3 p̄2 + (γ − 1) α4

3 p̄ − 2 α1 α4
3 = 0. (A.20)

SN and Hopf bifurcations occur if Det4
(
p̄; α2, α1

) = 0 in (A.16) and Trace4

(
p̄; α2, α1

) = 0
in (A.15) with Det4

(
p̄; α2, α1

)
> 0. Here p̄ satisfies F4

(
p̄; α2, α1

) = 0 in (A.14). A BT bifurcation
occurs at

(
α1, α2

) = (0.0286, 15.4864). In the 2D bifurcation diagram in Fig. 8(a), the Hopf bifurcation
curve and the SN bifurcation curve enclose a large oscillation region for model (2.3).

A.5 Probability densities for parameters in the SDE model (6)

The limiting probability density functions (pdfs) of the parameters αi(t), i = 2, 4 in the SDE model
(2.6) have a limiting mean and variance given by (3.1). In this case, the shape of the limiting pdfs only
depends on the mean value. See Fig. A1.

Sample paths of the random variables p(t) and a(t) for the SDE model (2.6) are graphed in Fig. A2
for different values of r = r2 = r4 (and other parameter values as in Fig. 3). The return rate r differs in
the three graphs below, r = 0.05, 0.5 and 5. The limiting mean value for the parameter α2(t) is equal to
90 and for α4(t) it is 3.5. The rate of return impacts the rate of change of the parameters αi(t), i = 2, 4,
e.g. with large values for r the change in the parameters occurs much faster. The rate r also impacts the
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Fig. A1. The graph of limiting pdf of the random variable α2(t) in the SDE model (2.6) with mean equal to 90. Ultimately, the
variable α2(t) takes on the full range of values associated with the pdf.

Fig. A2. Sample paths of p(t) and a(t) for the SDE model (2.6) with limiting mean values for α2(t) and α4(t) equal to 90 and
3.5, respectively, and other parameters as in Fig. 3. In (a) r = 0.05, (b) r = 0.5 and (c) r = 5.

sample paths for p(t) and a(t) as illustrated in Fig. A2. The rate of change for case (c) r = 5 is much
faster than for case (a) r = 0.05.

As a final note, the numerical simulations are for the dimensionless ODE and SDE models. Data
on the actual response time and magnitude of the immune response for individual hosts will help in
parameterization of models to differentiate natural reservoirs versus human hosts.
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