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1
Nicolas D. Tribble,

2
Juraj Staník,

1,3
Miroslava Hučková,
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OBJECTIVE—Inactivating mutations in glucokinase (GCK)
cause mild fasting hyperglycemia. Identification of a GCK muta-
tion has implications for treatment and prognosis; therefore, it is
important to identify these individuals. A significant number of
patients have a phenotype suggesting a defect in glucokinase but
no abnormality of GCK. We hypothesized that the GCK �-cell
promoter region, which currently is not routinely screened, could
contain pathogenic mutations; therefore, we sequenced this
region in 60 such probands.

RESEARCH DESIGN AND METHODS—The �-cell GCK pro-
moter was sequenced in patient DNA. The effect of the identified
novel mutation on GCK promoter activity was assessed using a
luciferase reporter gene expression system. Electrophoretic mo-
bility shift assays (EMSAs) were used to determine the impact of
the mutation on Sp1 binding.

RESULTS—A novel �71G�C mutation was identified in a
nonconserved region of the human promoter sequence in six
apparently unrelated probands. Family testing established coseg-
regation with fasting hyperglycemia (�5.5 mmol/l) in 39 affected
individuals. Haplotype analysis in the U.K. family and four of the
Slovakian families demonstrated that the mutation had arisen
independently. The mutation maps to a potential transcriptional
activator binding site for Sp1. Reporter assays demonstrated that
the mutation reduces promoter activity by up to fourfold. EMSAs

demonstrated a dramatic reduction in Sp1 binding to the pro-
moter sequence corresponding to the mutant allele.

CONCLUSIONS—A novel �-cell GCK promoter mutation was
identified that significantly reduces gene expression in vitro
through loss of regulation by Sp1. To ensure correct diagnosis of
potential GCK-MODY (maturity-onset diabetes of the young)
cases, analysis of the �-cell GCK promoter should be included.
Diabetes 58:1929–1935, 2009

D
iagnostic molecular genetic testing is available
for many different monogenic forms of diabetes
(1). One of the remaining clinical and scientific
challenges, however, are the patients who

clearly have a monogenic subtype of diabetes but are
negative on screening using existing genetic tests (2,3).
Genetic linkage analysis can be used to demonstrate or
exclude linkage to known genes if there are sufficient
family members to reach statistical significance (4).

However, many patients presenting with apparent mo-
nogenic forms of diabetes do not have large extended
families to facilitate this process (4). Traditionally, the
coding region and exon-intron boundaries of the gene of
interest have been screened for mutations; in some cases,
high levels of conservation between species have been
used to identify putative regulatory regions such as pro-
moters and enhancers for additional mutational screening
(5,6).

Mutations in the gene encoding the key regulatory
enzyme glucokinase (GCK) are one cause of maturity-
onset diabetes of the young (MODY) subtype GCK
(GCK-MODY) previously termed MODY2, which is an
autosomal dominantly inherited form of non–insulin-
dependent diabetes classified by the gene that is mu-
tated (7). The phenotype of GCK-MODY has been well
characterized and is distinct from other subtypes of
MODY as a result of mutations in genes encoding
transcription factors (8).

The heterozygous inactivating mutations seen in pa-
tients with GCK-MODY shift the set point for glucose-
stimulated insulin secretion from �5 to �7 mmol/l,
resulting in elevated fasting plasma glucose (FPG) levels
(5.5–8.0 mmol/l) but normal 2-h plasma glucose incre-
ments (typically �4.6 mmol/l) after a 75-g oral glucose
tolerance test (8). There are a number of patients fulfilling
these criteria who have no abnormality of the GCK
coding region (9). Tissue-specific expression of GCK is
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governed by two promoters, initially described as spe-
cific for pancreatic �-cells and hepatocytes but now
recognized to regulate expression in a wider range of
tissues (10). The rodent hepatic GCK promoter has been
extensively characterized, but there are relatively few
data on the transcriptional regulation of the human
�-cell promoter (11).

The aim of this study was to extend our mutational
screen in probands with a phenotype consistent with an
abnormality of GCK that have no abnormality of the
coding sequence to the �-cell GCK promoter to identify
mutations that could affect GCK expression.

RESEARCH DESIGN AND METHODS

Unrelated probands of 60 families (30 from Slovakia and 30 from the U.K.)
with a clinical phenotype suggesting a defect in GCK but without a mutation
in the GCK coding region were included in the study. Partial or entire
deletions of the GCK gene were previously excluded by multiplex ligation-
dependent probe amplification (MLPA) analysis in all U.K. probands (9).
Selection criteria included FPG levels �5.5 mmol/l, treatment by diet, oral
hypoglycemic agents, or very low doses of insulin (mean dose consistently
�0.3 IU � kg�1 � day�1) and detectable C-peptide levels. Eighty-five blood
relatives of the six probands with the GCK pancreatic promoter mutation
were subsequently contacted and invited for blood sampling and mutation
testing. This study was performed with full approval of the ethics committees
in Bratislava and Lubochna (Slovakia) and in the U.K., and all subjects gave
informed consent.

Genetic analysis of the human �-cell GCK promoter. DNA was isolated
from peripheral blood using standard protocols. 324bp of the human pancre-
atic islet GCK promoter was amplified by PCR (primers available upon
request). The promoter region was examined by direct sequencing on an ABI
3130 Capillary Sequencer (Applied Biosystems, Warrington, U.K.). Sequences
were compared with the published sequence (NM_000162.2), using either
SeqScape (version 2.1.1; Applied Biosystems) or Mutation Surveyor software
(version 3.0; Softgenetics, Cambridge, U.K.). Haplotypes were constructed
using microsatellites D7S3043, D7S691, D7S2428, GCK1, GCK2, D7S667, and
D7S2506 that were run on an ABI 3130 analyzer. MLPA analysis was
performed in the five Slovakian probands with the GCK promoter mutation
using the SALSA MLPA kit P241-Bi MODY/MRC-Holland (Amsterdam, the
Netherlands). Results were analyzed using GeneMarker (version 1.75; Softge-
netics). To circumvent computational constraints as a result of the pedigree
size, the pedigree SK R78 was divided into 40 two-generation small pods using
a facility in MEGA2 (http://portal.litbio.org/registered/help/mega2/index/html)
and the analyses were run in Merlin (12). The logarithm of odds (LOD) score
for family SK R78 was performed applying a rare autosomal dominant
inheritance model using a disease allele frequency of 0.001 and a frequency of
phenocopies of 0.1%.
Biochemistry. Fasting venous blood samples for glucose and hormonal
analyses were collected into EDTA tubes (Sarstedt, Nümbrecht, Germany).
Plasma glucose concentrations were measured with the glucose oxidase
method (Hitachi 911, Hitachinaka, Japan). Insulin and C-peptide were deter-
mined using the Elecsys (Roche, Switzerland) chemiluminescence automatic
analyzer.
�-Cell GCK promoter analysis. Alignment of the human �-cell GCK

promoter was performed using the University of California Santa Cruz (USCS)
bioinformatics BLAT tool. The human �-cell promoter was analyzed for
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FIG. 1. A: Extended pedigrees of the six probands with the novel
�71G>C GCK promoter mutation showing five Slovakian (SK R78, SK
R25, SK R71, SK R94, and SK R124) and one U.K. (UK MY180SC)
family. Arrows indicate the probands. Filled icons indicate individuals
with fasting hyperglycemia (>5.5 mmol/l); open icons indicate normo-
glycemic subjects. The GCK mutation status is shown under each
symbol. Individuals V:9 (SK R78 family) and I:2 (SK R25 family) are
diabetic subjects (phenocopies) with the NN genotype (see RESULTS).
NM, heterozygous for the �71G>C GCK promoter mutation; NN, wild
type. B: Haplotype analysis performed in five of the six families with
the novel GCK promoter mutation. Squares denote male subjects,
circles denote female subjects, and solid symbols show individuals
with fasting hyperglycemia (>5.5 mmol/l). Genotype is shown under-
neath each symbol. Solid bars indicate the haplotype cosegregating
with fasting hyperglycemia on which the GCK c.�71G>C mutation has
arisen. The marker order, location of the GCK gene, and location on
chromosome 7 are shown in the box. NM, heterozygous mutation; NN,
mutation not present.
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potential transcription factor binding sites by running a Matrix Search for
Transcription Factor Binding Sites (MATCH) using TRANSFAC Professional
(version 12.1).
Transfection constructs. PCR primers were designed to generate five
different lengths of the human GCK upstream promoter sequence (supple-
mentary tables and figures, available in an online appendix at http//diabetes.
diabetesjournal.org/cgi/content/full/db09-0070/DC1). The promoter fragments
were amplified from human genomic DNA and subcloned into the pCR 2.1
TOPO vector (Invitrogen, Paisley, U.K.). Prior to cloning, DNA sequencing was
performed to ensure that the �-cell GCK promoter haplotype associated with
variation in FPG levels was not included (13). The fragments were subcloned
into a predigested pGL3-basic luciferase reporter vector (Promega, Southamp-
ton, U.K.). The �71G�C mutation was introduced using a Quick change
mutagenesis kit (Stratagene, La Jolla, CA) (supplementary Table 2). All
mutations were confirmed by bidirectional sequencing.
Luciferase assay. INS-1 cells were cultured as previously described to a
density of 1 � 104 per well in 24-well tissue culture dishes 24 h before
transfection (14). Cotransfection was performed using lipofectamine reagent
(Invitrogen) with 580 ng pGL3 promoter construct DNA plus 20 ng pRL-TK per
well, according to the manufacturer’s protocol. Transfected cells were har-
vested after 24 h and assayed for luciferase activity in a Veritas microplate
luminometer using the Dual Luciferase Reporter Assay System (Promega).
The Renilla luciferase (pRL-TK) was used as a recovery marker for data
normalization. Promoter data are reported as the ratio of the firefly/Renilla

arbitrary units for each sample minus the value gained by the promoterless
pGL3-basic vector. Each transfection experiment was carried out in triplicate
on at least three independent occasions. Statistical significance was deter-
mined by two-tailed Student’s t test.

Electrophoretic mobility shift assays. Both wild-type and �71 mutant
GCK promoter oligonucleotides were generated spanning the potential Sp1
binding region predicted from TRANSFAC analysis and corresponding to
sequences �53 to �88bp from the transcriptional start site. An additional
oligonucleotide corresponding to a known Sp1 binding site was also used
as a positive control for Sp1 binding (Promega). The oligonucleotide probe
sequences are provided in supplementary Table 3. Binding reactions and
electrophoretic mobility shift assays were conducted as previously de-
scribed (15,16). Briefly, 200 ng Sp1 protein (Promega) was incubated with
0.2– 0.5 ng of �32P-labeled probe (1–5 � 104 cpm) at room temperature for
30 min. For supershift or competition analysis, the reaction mixture was
preincubated with 1 �g Sp1 or USF1 antiserum (Santa Cruz Biotechnology,
Heidelberg, Germany) or with 7.5 pmol (100X) unlabeled oligonucleotide
probe at room temperature for 20 min prior to addition of the labeled
probe.

RESULTS

Identification of a novel �71G>C GCK �-cell pro-
moter mutation. Screening of 60 probands with a GCK-
MODY phenotype and no abnormality of the GCK coding
sequence identified six (five from Slovakia and one from
the U.K.) apparently unrelated individuals with a novel
�71G�C mutation. This mutation was not identified in
�400 ethnically matched normal chromosomes. Family
testing demonstrated that the mutation cosegregated with
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FIG. 1. Continued.
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fasting hyperglycemia (�5.5 mmol/l) in a total of 39
affected individuals and 52 unaffected individuals across
the six pedigrees (Fig. 1A). Using a rare autosomal domi-
nant model, the LOD score in family SK R78 alone was 5.00
that is well above the proposed guidelines for claiming
statistically significant linkage with a LOD score of �3.0
(17). MLPA analysis excluded partial or entire GCK gene
deletions in all six probands. Haplotype analysis in the
U.K. family and in four of the Slovakian families demon-
strated that the mutation had arisen independently and
there was no evidence for a founder effect (Fig. 1B). The
�-cell �71G�C promoter mutation is responsible for
�30% (5 of 17 families) of known cases of GCK-MODY in
Slovakia (D.G., J.S., and I.K., unpublished data), whereas
in the U.K. only one family has been identified and over
160 GCK-MODY cases with coding mutations have been
identified (K.C., A.T. Hattersley, and S.E., unpublished
data).
Clinical characteristics of patients with the novel
promoter mutation. The clinical characteristics of the
individuals with the novel promoter mutation are summa-
rized in Table 1. In line with other cases of GCK-MODY, all
patients had fasting hyperglycemia (8). The age at diagno-
sis ranged from 6 to 81 years; 15 case subjects were
identified following the detection of the GCK mutation in
one of the six probands. In affected individuals, BMI
ranged from 18.2 to 40.8 kg/m2 with a mean 	 SD value of
24.6 	 5.3 kg/m2. The majority of patients (23 of 39 [59%])
with the mutation are registered with and seen by a
diabetologist.

Of these, 83% (19 of 23) are managed by diet alone, with
three patients on oral hypoglycemic agents (one receiving
metformin [1,000 mg/day] and two receiving sulfonylureas
[Diaprel MR, twice daily]) and one patient on insulin
treatment (NPH insulin [0.22 units � kg�1 � day�1]). The
decision to treat these four patients was made by their
referring physicians. None of these patients have had
A1C values �7%, whereas A1C values on treatment are
all �6.5%. FPG levels in these patients are independent
of insulin dose and/or oral hypoglycemic agents used.

There were two individuals without the novel promoter
mutation with diabetes. One patient, a female aged 50
years (pedigree SK R78, subject V:9) (Fig. 1A) with a BMI
28.0 kg/m2 has several features consistent with the meta-
bolic syndrome including hypertension (blood pressure
140/90 mmHg) and dyslipidemia (total cholesterol 5.79
mmol/l). She was diagnosed with hyperglycemia at the age
of 47 years and is currently treated with metformin. The
second female patient (SK R25, I:2) (Fig. 1A) was diag-
nosed with diabetes at the age of 49 years and is insulin
treated. No further clinical or laboratory data are available
on this subject because following blood withdrawal for
genetic testing the patient refused to cooperate further in

the study. Based on these clinical characteristics, both of
these patients have a phenotype that is consistent with
classical type 2 diabetes and can be considered as
phenocopies.
Activity of �-cell GCK promoter in INS-1 cells and
effects of the �71G>C mutation. To establish the
appropriate promoter construct in which to study the
effect of the �71G�C mutation, reporter gene constructs
containing different GCK promoter fragment lengths were
prepared ranging from �263bp to �1031bp with respect to
the ATG start site. Luciferase activity was detectable with
all GCK promoter constructs (Fig. 2A).

Decreased expression levels were seen with fragments
�618bp and �826bp suggesting the presence of repressor
elements within this region. The effect of the �71G�C
mutation was then analyzed using the �430bp promoter
fragment that had near-maximal reporter gene expression,
indicating that necessary binding sites for expression were
contained in this fragment; site-directed mutagenesis was
also carried out for the full length �1031bp fragment.
When these constructs were analyzed, the GCK �71G�C
promoter variant caused a dramatic reduction in promoter
activity in the presence of the C versus G allele for both
promoter lengths (P 
 3.6 � 10�6 and 1.9 � 10�6 for the
�430bp and �1031bp fragments, respectively) (Fig. 2B).
This provides robust evidence that the point mutation has
a repressive effect on gene expression, suggesting either
allele-specific recruitment of a transcriptional repressor or
loss of activator binding.
Identification of potential transcription factor bind-
ing sites in the �-cell GCK promoter. Using the USCS
BLAT tool, no sequences could be identified correspond-
ing to the �64bp to �89bp region of the human GCK
promoter in the mouse or rat GCK promoters as a result of
either a deletion in the rodent or an insertion in the
human DNA (supplementary Fig. 1). MATCH analysis
conducted on the wild-type GCK promoter identified a
number of potential activator and repressor regions
within the �71bp region of interest (supplementary
Table 4). Identical MATCH analysis conducted on the
�71 variant GCK promoter demonstrated the potential
loss of the majority of these transcription factor binding
sites including the transcriptional activator Sp1 (supple-
mentary Table 4).
Sp1 binding is reduced due to the �71G>C mutation.
To demonstrate that Sp1 can indeed bind to the putative
binding site located at the �71bp region of the wild-type
promoter, gel shift experiments were performed. Using the
wild-type oligonucleotide, two clear bands that were spe-
cific on competition with molar excess of unlabeled self or
an unlabeled probe corresponding to a consensus Sp1
binding site were observed (Fig. 3A).

The mobility of these bands matched those seen when

TABLE 1
Clinical characteristics of individuals with the novel �71G�C mutation

GCK promoter
mutation carriers

Nonmutation
carriers

Published data on GCK

mutation carriers (8)

n 39 52 245
Sex (male/female) 19/20 17/35 125/120
Age (years) 37.0 (8–86) 31.0 (1–80) 26.7 (2–79)
BMI (kg/m2) 24.6 (18.2–40.8) 25.3 (19.3–36.9) 21.1 (13.8–40.9)
FPG (mmol/l) 7.0 	 1.0 5.1 	 0.5 6.8 	 0.8

Data are means (range) or means 	 SD unless otherwise indicated.
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the consensus Sp1 binding site probe was radiolabeled and
used in the binding reaction (Fig. 3B). The complexes
were lost when a radiolabeled probe corresponding to the
C-allele of the point mutation was used in the binding
reaction; this probe also competed much less effectively
when used as an unlabeled competitor (Fig. 3A). Recruit-
ment of Sp1 was confirmed by supershift experiments for
both the Sp1 consensus probe and the �71 wild-type
probe bearing the G-allele (Fig. 3B).

DISCUSSION

In this study, we have identified the first mutation in the
GCK �-cell promoter that causes elevated glucose levels
as a result of decreased GCK expression in six probands:
five from Slovakia and one from the U.K. The mutation
cosegregated with fasting hyperglycemia in all six families
with a total of 39 affected individuals (Fig. 1A). Haplotype
analysis demonstrated that the mutation had arisen inde-
pendently between the U.K. and Slovakian families, with
no evidence for a founder effect in the Slovakian families
(Fig. 1B). The clinical phenotype of patients with GCK-
MODY attributable to a promoter mutation is indistin-
guishable from that caused by a mutation in the coding
region of the gene (Table 1 and ref. 8). This is entirely

expected as compensation will be provided by the wild-
type allele (18,19).

Functional characterization of the GCK promoter
clearly demonstrates that the GCK �71G�C promoter
variant causes a dramatic reduction in promoter activity.
Bioinformatic analysis predicted that this mutation could
potentially result in the loss of transcription factor binding
within the �71bp region. Allele-specific modulation of Sp1
binding was then demonstrated by the electrophoretic
mobility shift assay. Sp1 has previously been demon-
strated to enhance GCK transcription in gilthead sea
bream (Sparus aurata) (20). In rodent studies, Sp1 has
also been shown to play an integral part in the mecha-
nisms for the transcription of several glycolytic enzymes,
such as pyruvate kinase, aldolase A, and acetyl-CoA (21–
23). The results clearly show an allele-specific difference in
Sp1 binding with the �71G�C mutation losing Sp1 binding
capacity. This provides a clear explanation of the reduced
gene expression levels associated with this novel mutation
and the first evidence in humans for an essential role of
Sp1 regulation in GCK expression.

The significance of this finding is that routine molecular
diagnostic testing for GCK-MODY does not currently in-
clude the promoter region. Given the implications for
prognosis, treatment decisions, and inheritance, it is im-
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FIG. 2. A: Comparison of luciferase activity generated with
varying lengths of upstream GCK promoter. The promoter
fragment lengths incorporated into the pGL3-basic vector
are shown on the left of the figure and ranged from �263bp
to �1031bp. The bar chart on the right shows mean � SE
luciferase activity in cotransfected INS-1 cells with the
different promoter lengths. The reported luciferase activ-
ity is normalized to Renilla and pGL3 null expression
levels. B: Functional characterization of the novel GCK

�71G>C promoter mutation demonstrates reduced pro-
moter activity. Mean luciferase activity of wild-type pro-
moter fragments of �430bp and �1031bp is represented by
the black bars, whereas the luciferase activity of their
counterparts containing a �71G>C mutation is repre-
sented by the white bars � SE. Statistical significance was
determined by two-tailed Student’s t test. The reduction in
activity was significant (*P � 3.6 � 10�6 and **P � 1.9 �
10�6). Expression is in INS-1 cells, and reported luciferase
activity is normalized to Renilla and pGL3 null expression
levels.
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portant to identify these individuals (24). Interestingly, a
comparison of the promoter sequences across species
demonstrated that the sequence containing the novel
mutation was absent from both the rat and mouse �-cell
promoters. This is unusual because normally pathogenic
mutations occur in regions that are conserved (and there-
fore supposed to be functionally important) across spe-
cies. This observation has implications for the design of
future studies evaluating the role of noncoding regions in
the pathogenesis of both monogenic and multifactorial
diabetes.

We have identified the first mutation in the GCK �-cell
promoter in a total of 39 individuals with mild fasting
hyperglycemia. This mutation has been demonstrated at
the genetic and functional level to cause GCK-MODY. Our
results support the inclusion of the GCK �-cell promoter
region in routine diagnostic testing for GCK-MODY.
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