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Abstract
1. Landmark- based geometric morphometrics has emerged as an essential discipline 

for the quantitative analysis of size and shape in ecology and evolution. With the 
ever- increasing density of digitized landmarks, the possible development of a fully 
automated method of landmark placement has attracted considerable attention. 
Despite the recent progress in image registration techniques, which could pro-
vide a pathway to automation, three- dimensional (3D) morphometric data are still 
mainly gathered by trained experts. For the most part, the large infrastructure 
requirements necessary to perform image- based registration, together with its 
system specificity and its overall speed, have prevented its wide dissemination.

2. Here, we propose and implement a general and lightweight point cloud- based ap-
proach to automatically collect high- dimensional landmark data in 3D surfaces 
(Automated Landmarking through Point cloud Alignment and Correspondence 
Analysis). Our framework possesses several advantages compared with image- 
based approaches. First, it presents comparable landmarking accuracy, despite 
relying on a single, random reference specimen and much sparser sampling of the 
structure's surface. Second, it can be efficiently run on consumer- grade personal 
computers. Finally, it is general and can be applied at the intraspecific level to 
any biological structure of interest, regardless of whether anatomical atlases are 
available.

3. Our validation procedures indicate that the method can recover intraspecific pat-
terns of morphological variation that are largely comparable to those obtained by 
manual digitization, indicating that the use of an automated landmarking approach 
should not result in different conclusions regarding the nature of multivariate pat-
terns of morphological variation.

4. The proposed point cloud- based approach has the potential to increase the scale 
and reproducibility of morphometrics research. To allow ALPACA to be used out- 
of- the- box by users with no prior programming experience, we implemented it 
as a SlicerMorph module. SlicerMorph is an extension that enables geometric 
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1  | INTRODUC TION

In the past 10 years, volumetric (3D) imaging has been used with 
increasing frequency to characterize morphological variation in 
complex biological structures in ecological and evolutionary con-
texts (Boyer et al., 2011; Falkingham, 2012; Goswami et al., 2019; 
Marcy et al., 2018). The general approach has been to capture 
high- resolution specimen images (but see Marcy et al., 2018) and 
posteriorly collect the position of several anatomical landmarks of 
interest. These anatomical landmarks are then used in multivariate 
shape analyses, allowing researchers to test specific functional/de-
velopmental hypotheses regarding the ecology or evolution of com-
plex phenotypes (e.g. Felice et al., 2019; Sanger et al., 2013; Sherratt 
et al., 2014).

While the quality of imaging techniques (e.g. Gignac et al., 2016) 
and the density of landmarks (e.g. Goswami et al., 2019) have contin-
uously increased during the last decade, the gold standard method 
for landmark data collection has remained largely the same, that is, 
manual annotation by a trained expert. Manual annotation of land-
marks is, however, both time and labour intensive, low throughput 
and subject to significant amounts of intra-  and inter- observer bias, 
precluding datasets from different laboratories (or even multi- year 
datasets) from being confidently combined (Percival et al., 2019).

Recently, several approaches have been developed to automate 
and standardize landmark data collection in the context of volumet-
ric imaging. While deep learning approaches are starting to emerge 
(e.g. Devine et al., 2020), most studies approach the problem using 
image- based registration techniques developed in biomedical con-
texts (Bromiley et al., 2014; Maga et al., 2017; Young & Maga, 2015). 
Image registration represents the alignment of images that belong 
to the same anatomical structure of interest and provides research-
ers with a powerful framework for workflow automation, allowing 
morphometric research to truly enter the age of big data (Maga 
et al., 2017).

However, attempts to translate these biomedically oriented 
approaches to more ecological and evolutionary contexts have 
remained rather elusive and have faced substantial practical and 
technical barriers. For example, most image- based registration 
approaches depend on high- end hardware, all the while produc-
ing results in a timeframe that greatly exceeds the amount of time 
required for manual annotation (e.g. 10 CPU hours per specimen; 
Devine et al., 2020). While computing clusters have made high- end 
hardware more accessible at the institutional level, the cost- benefit 
ratio of implementing such approaches is still highly skewed against 

automation. Additionally, these algorithms are highly system spe-
cific and difficult to generalize to different study systems. Finally, 
image registration techniques rely on specialized labour, which in-
clude a dedicated programmer for algorithmic development and an 
imaging technician capable of developing and troubleshooting high- 
resolution anatomical ‘reference maps’ representing the structure of 
interest, also known as anatomical atlases (Joshi et al., 2004).

Here we propose a new and general approach to automated 
three- dimensional (3D) landmarking based on point cloud regis-
tration. Starting with 3D surface meshes, the procedure performs 
pairwise registration of subjects to the specified template using a 
sequential procedure with four steps. Initially, the edge informa-
tion in individual meshes is discarded and the resulting point clouds 
are downsampled to facilitate the initial alignment and increase 
the speed of calculation. These point clouds are then subjected to 
a global registration step (Rusu et al., 2009), in which there is an 
initial alignment of the source and target point clouds. This initial 
alignment is followed by a local registration step (Rusinkiewicz & 
Levoy, 2001), in which the initial alignment is refined. Finally, the 
two rigidly aligned point clouds are subjected to a deformable reg-
istration step (Myronenko & Song, 2010), in which the source point 
cloud is deformed to match the target point cloud. As a result of the 
deformable registration step, the landmark correspondences across 
meshes gets established and landmark positions can be transferred 
across specimens.

Point cloud registration provides a simpler and more general al-
ternative to image- based registration, since it not only requires less 
preprocessing, but is also of much lighter implementation, therefore 
eliminating many of the challenges listed above. Point cloud regis-
tration has three main requirements: (a) a single reference (source) 
specimen; (b) one or multiple target specimens; and (c) that the 
meshes being aligned represent the same biological structure (i.e. 
there are no extraneous morphological elements). Since the source 
specimen will be deformed to match all target specimens, some 
care in the choice of source mesh is advisable (e.g. avoid using in-
dividuals with extreme morphologies). However, that is not a strict 
requirement of the ALPACA pipeline, which allows for any individ-
ual to be chosen as the source. We provide an efficient implemen-
tation of the single- template ALPACA pipeline in the most recent 
version of SlicerMorph (Rolfe et al., 2020), the 3D morphometrics 
extension to the open- source biomedical visualization software 3D 
Slicer (Fedorov et al., 2012; Kikinis et al., 2014). This implementation 
is specifically targeted at intraspecific studies in ecology, evolution 
and biomedicine.

morphometrics data collection and 3D specimen analysis within the open- source 
3D Slicer biomedical visualization ecosystem. We expect that convenient access to 
this platform will make ALPACA broadly applicable within ecology and evolution.

K E Y W O R D S
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2  | MATERIAL S AND METHODS

Below, we present and describe in detail: (a) the set of images and 
landmarks used to explore the performance of the method, (b) the 
proposed pipeline and (c) the metrics employed to validate the ap-
proach and to quantify how reliable it is in comparison with manual 
digitization and other image- based registration methods that have 
been published in the literature.

2.1 | Samples

When developing automated landmarking methods, it is often use-
ful to have a dataset of manually digitized samples to serve as a 
reference set (i.e. a gold standard for performance). We have de-
veloped and tested our approach on a standard dataset used in 
many image- based automated landmarking approaches, namely 
the laboratory mouse skull (Devine et al., 2020; Maga et al., 2017; 
Percival et al., 2019). For the sake of generality, we also test it on 
three separate datasets belonging to non- human primates (Pongo, 
Pan and Gorilla). Figure S1 presents the anatomical landmarks used 
in this study. We note, however, that our approach should work for 
any other biological structure of interest, and it is not restricted to 
craniofacial research.

2.1.1 | Mice

More specifically, we developed and initially tested the ALPACA 
framework on a published dataset containing 51 wild-  and laboratory- 
derived inbred strains of mice (Table S1, Maga et al., 2017). In short, 
8- week- old females, each derived from a total of 25 inbred and 5 F1 
crosses, were commercially acquired from Jackson Laboratories and 
then sacrificed at 56 ± 3 days of age via CO2 asphyxiation followed 
by decapitation. Heads were imaged using a Skyscan 1076C micro-
 CT using a standardized imaging protocol. These images were then 
processed following Maga et al. (2017). All animal procedures used 
in the study were reviewed and approved by the Institutional Animal 
Care and Use Committee of the Seattle Children's Research Institute 
(protocol # 13733).

2.1.2 | Hominoids

We also applied the ALPACA framework to skull meshes belong-
ing to three other mammalian datasets, all of them great apes: Pan 
troglodytes (N = 11), Gorilla gorilla (N = 22) and Pongo pygmaeus 
(N = 18). These meshes were generated from CT scans of dry 
crania of specimens housed in the National Museum of Natural 
History (NMNH). We present the list of specimens used in this 
study as Table S1. More details can be found on Rolfe et al. (2021). 
We should note that all three ape datasets were analysed sepa-
rately from each other, at the intraspecific level. We should also 

note that specimen choice was based purely on availability of dry 
crania 3D volumes.

2.2 | Overview of the pipeline— ALPACA

We approach the problem of automated 3D landmarking using a 
lightweight point cloud registration approach based on surface 
meshes. In this approach, a reference mesh (here, the source mesh) 
is aligned and posteriorly deformed to match a target mesh for which 
we want to predict the landmark positions for. Using the transforma-
tion parameters used to deform one mesh into another, we project 
the landmark positions of the source mesh into the target one. In 
other words, we approach the problem of automated landmarking by 
transferring the landmark position of a single specimen (or template) 
into another (Figure 1).

Note that the source sample does not necessarily need to be 
aligned to the target one (i.e. meshes can be oriented in opposite di-
rections). Similarly, one could choose the surface mesh of any spec-
imen for which landmark data are available as the source mesh. The 
same is true for the target sample. However, it is advisable to care-
fully consider which specimen should be chosen as the reference 
specimen to annotate new samples with, as the template choice may 
itself influence the quality of the prediction (Young & Maga, 2015). 
This is particularly true when the reference sample is not near the 
species/population average shape (see Figure 2a). The speed and 
ease of ALPACA pipeline is meant to greatly facilitate an initial ex-
ploration of the automation parameters, including the choice of tem-
plate specimen. The user can quickly change the source sample and 
compare how resultant landmarks differ across samples. Overall, 
this initial exploration of parameters is best done using target spec-
imens that are highly divergent in shape, therefore lying near the 
edge of the shape distribution. In particular, target specimens near 
the edge of the shape distribution will be the furthest away from 
the centre of the deformation space, and therefore will require the 
largest deformation magnitude (Young & Maga, 2015). Based on the 
two initial samples, the pipeline then proceeds as follows.

2.2.1 | Step 1— Scaling and downsampling

The ALPACA pipeline starts with an optional step. In this step, 
the source mesh is isotropically scaled to match the target mesh. 
Following the optional scaling procedure, the source and target 
meshes are then uniformly downsampled to simplify the initial 
alignment and increase the speed of calculation. The downsampling 
procedure occurs in units of physical space and discards the edge 
information, transforming the mesh into a point cloud. In our case, 
we downsampled each mesh using a voxel grid (Zhou et al., 2018) to 
a point cloud of approximately 5,000 points. Voxel grid downsam-
pling occurs through the regular subdivision of 3D space at a user- 
defined voxel size, and in which mesh vertices falling within the same 
voxel get replaced by their centroid. The 5,000- point standard was 
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empirically determined to be a good compromise between accuracy 
and computational burden (Figure 2b), based on an initial exploration 
of hyperparameters using the mouse dataset, and has been inde-
pendently observed in the literature in other contexts and datasets (Hirose, 2020a). Once downsampled, the two point clouds are then 

F I G U R E  1   Visual representation of the ALPACA pipeline. 
Starting with a source (red) and target (blue) meshes representing 
the same biological structure and lying at arbitrary positions in XYZ 
axes (a), the pipeline starts with an initial downsampling of the two 
meshes into point clouds that are then rigidly aligned (b) to each 
other. Note the differences between the two meshes in terms of 
the angle of the nasal bone relative to the neurocranium and in 
terms of the position of the zygomatic arch. Once rigidly aligned, 
these point clouds are then subjected to a deformable registration 
step (c) in which the source mesh is warped (green) to match the 
target one (blue). Note how the nasal bone and zygomatic arch 
are much more closely aligned. Finally, after the deformable 
registration step, the landmark positions (dots) in the source mesh 
are projected into the target one (d) using point correspondence

F I G U R E  2   (a) Prediction error (black solid line) and cumulative 
percentage of individuals (red dotted line) as a function of the 
template's Procrustes distance from the centroid. Note that 
prediction error, measured in terms of the root mean squared error, 
has a nonlinear relationship with the template's distance from the 
centroid and is minimized at 0 (synthetic template). The cumulative 
percentage of individuals at a certain distance from the centroid is 
also nonlinearly related to the distance from the centroid, with 50% 
of the specimens being <0.04 units away from the centroid and 
90% of the specimens being <0.06 units away from the centroid. 
In other words, if one was to choose a random sample as template, 
one would have a 50% chance of obtaining RMSE values around (or 
lower than) ~0.24 mm and a 90% chance of obtaining RMSE values 
around (or lower than) ~0.27 mm. (b) Prediction error (black dashed 
line) and execution time (red dotted line) of the ALPACA pipeline at 
different point cloud sizes based on the mouse dataset. Note that 
prediction error, measured in terms of the root mean squared error, 
has a nonlinear relationship with point cloud size and is minimized 
on point clouds in the 5,000– 6,000 points range. Execution time, 
measured in seconds, is also nonlinearly related to point cloud size, 
increasing exponentially with increasing point cloud size
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subjected to a global registration procedure that aligns these two 
samples in physical space (see Figure 1).

2.2.2 | Step 2— Global registration

Similar to Procrustes superimposition techniques, global registration 
techniques aim to find the optimal rotation, translation and scaling 
transformations required to align two 3D shapes starting from ar-
bitrary initial positions (Gelfand et al., 2005). In other words, they 
aim to find a transformation that correctly registers a source point 
cloud or image to a target one. Usually, approaches to global regis-
tration use iterative procedures that either (a) exhaustively search 
hyperparameter space for optimal combinations of parameters, or 
(b) run until some convergence criteria are met (Zhou et al., 2016). 
As such, they are often plagued by the curse of dimensionality, 
making them inefficient and more error prone at increasing image 
sizes. These approaches, however, perform well when using seman-
tically rich local geometric descriptors, which greatly decrease the 
false correspondence rate when comparing two point clouds (Chen 
et al., 2019). In our case, we used a feature- based random sample 
consensus algorithm (RANSAC) to estimate the optimal transform 
(Rusu et al., 2009). Essentially, in each RANSAC iteration, a user- 
defined number of points are sampled from the source point cloud 
and their corresponding points in the target point cloud are identi-
fied through finding their nearest neighbour in a space of geometric 
features. The features, in this case, are fast point feature histograms 
(FPFHs; Rusu et al., 2009). FPFHs are 33- dimensional vectors that 
provide a description of the local geometric properties around a 
point and that are scale invariant, providing the RANSAC algorithm 
with good discriminative power in the search for point correspond-
ence across point clouds.

Aside from the number of iterations and the number of vali-
dation steps typical of iterative algorithms, ALPACA's implemen-
tation of the FPFH- based RANSAC has three main parameters 
that can be defined by the user. The first one is the normal search 
radius that defines the neighbourhood of points used when cal-
culating the surface normals in each point cloud. The second is 
FPFH search radius, which defines the neighbourhood of points 
used when computing the FPFH features. Lastly, users have the 
option of controlling the maximum distance between two points 
up to which the points can be considered corresponding to each 
other (in voxel size units).

Once the rigid transforms are obtained from the FPFH- based 
RANSAC, they are then fed to the third step of our pipeline, repre-
senting a local registration step.

2.2.3 | Step 3— Local registration

While the FPFH- based RANSAC algorithm provides an approxima-
tion of the rigid transform, its alignment is performed using broad 
geometric features, which lead to an imperfect alignment. To refine 

the initial alignment, we then proceeded with a local registration 
algorithm.

The alignment of the two point clouds was improved upon 
through an iterative procedure that assigns, to each point in the 
source point cloud, its closest point in the target point cloud. In our 
case, we opted to using the point- to- plane iterative closest point algo-
rithm (point- to- plane ICP) to do so (Rusinkiewicz & Levoy, 2001). ICP 
represents a family of widely used local registration algorithms, with 
applications in a variety of computer vision problems (Rusinkiewicz 
& Levoy, 2001). Essentially, given the target and source point clouds, 
the ICP algorithm calculates, at each iteration, the squared distance 
between each source point and the tangent plane at its correspond-
ing target point. The algorithm proceeds iteratively until the distance 
between the two point clouds is minimized. The main advantage of 
the point- to- plane version of ICP is the speed of convergence rela-
tive to point- to- point error (Rusinkiewicz & Levoy, 2001).

Similar to the global registration step, the result of the point- to- 
plane ICP is a rigid transform, corresponding to the optional rigid 
alignment of the source and target point clouds. Also, similar to the 
global registration step, users have the option to control a maximum 
distance between points (in voxel size units) up until which they still 
can be considered corresponding to each other.

Once the optimal rigid alignment is obtained, we then proceed to 
the deformable registration step of the pipeline.

2.2.4 | Step 4— Deformable registration and 
point projection

The final step of the ALPACA pipeline is the deformation of the rig-
idly aligned source point cloud to match the target point cloud. We 
use a low- rank implementation of Coherent Point Drift (CPD) algo-
rithm to do so (Dupej et al., 2015; Myronenko & Song, 2010). CPD 
is a probabilistic procedure for point cloud registration, in which 
the alignment of two point clouds is framed in terms of a probabil-
ity density estimation. The source point cloud represents Gaussian 
mixed model (GMM) centroids that are fitted to the target set using 
maximum likelihood (Myronenko & Song, 2010). The main benefit 
of CPD is that it imposes a constraint in the form of motion co-
herence among neighbouring points, leading to deformations that 
preserve the topology of the structure of interest. It also makes no 
other underlying assumption about the nature of the transformation 
itself, allowing for a wealth of possible deformation models to be 
true. Finally, it has the additional benefit of being one of the few 
methods for non- rigid registration that can accommodate large point 
clouds (5,000+ points) with slightly different numbers of points 
(Myronenko & Song, 2010).

ALPACA's implementation of CPD contains two free parame-
ters (β and α), and uses a partial eigenvector decomposition of large 
matrices during the M- step of the Expectation– maximization (EM) 
algorithm to improve speed (following Myronenko & Song, 2010). 
Parameter β refers to the width of the Gaussian filter used when 
applying smoothness constraints, representing one approach to 
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regularization. High values of β create large directional correlation 
among the displacement vectors of neighbouring points during de-
formation, and vice versa (Hirose, 2020b). Parameter α, on the other 
hand, represents a trade- off between goodness- of- fit and model 
regularization, with high values leading to overall structural rigidity 
and low values to more structural fluidity (Hirose, 2020b).

Following the deformation, ALPACA has a final and optional 
post- processing step in which the predicted landmarks are projected 
to the target surface mesh. This step guarantees that the landmarks 
will lay on the most exterior surface of the original mesh, limited by 
a user- adjustable point displacement (the default being 1% of the di-
agonal size of the image). Each point is projected from the deformed 
model to the original surface using the following steps: (a) cast a ray 
from a landmark point on the deformed model in the direction of its 
normal vector. Select the final intersection with the original model 
as the intersection point; (b) If there is no intersection, reverse the 
direction of the normal vector and select the first intersection with 
the original model; (c) In the case no intersection is found, select the 
closest point on the original model.

2.3 | Prediction parameters

The parameters used when running ALPACA on all four datasets are 
present in Table 1. When running the pipeline for the mouse dataset, 
we have used the synthetic population template presented in Maga 
et al. (2017) as the initial source mesh. While the ALPACA pipeline 
does not require a synthetic source template, that is the recom-
mended single- template approach given its demonstrated ability to 
maximize the performance of registration methods by minimizing the 
average deformation magnitude (Young & Maga, 2015). Additionally, 
by using the same template used for another automated landmark-
ing approach, we can directly compare the results obtained by each 
method.

To provide users with a clearer picture of the impact of template 
choice on the pipeline's performance, we also ran the pipeline with 
five extra template specimens (A/J, SF/CamEiJ, CB6F1/J, SPRET/EiJ 
and C3H/HeJ), representing specimens that are increasingly distant 
from the population centroid (in 0.01 Procrustes units). These extra 
templates were used to estimate the relationship between distance 

from the centroid and pipeline performance, in such a way as to pro-
vide users with useful parameters regarding the impact of template 
choice on the outcome of the analysis (Figure 2a).

When running the pipeline on the three non- human primate 
datasets, a randomly chosen specimen was used to generate the 
predictions for the remaining ones. Specimens with missing skull 
elements (e.g. teeth) or damaged skulls were not added to the pool 
of specimens from which random samples were drawn, as the al-
gorithm assumes the presence of corresponding structures in the 
source and target meshes.

Note that all datasets used here to test the performance of the 
method are intraspecific datasets represented by adult specimens 
at similar ontogenetic stages. As such, caution is advisable when ex-
trapolating the pipeline's performance reported here to, for exam-
ple, interspecific study questions. We anticipate, however, that the 
ALPACA pipeline could be confidently used in interspecific contexts 
involving topologically simple skeletal elements, such as long bones 
or mandibles.

2.4 | Evaluating performance

We evaluated the performance of ALPACA's approach not only in 
terms of the Euclidean distance between the manual and predicted 
landmark locations, but also in terms of the patterns of morphologi-
cal variation and covariation among landmarks. Note that the under-
lying assumption in doing so is that the manual dataset represents 
the ground truth, which is almost certainly incorrect (e.g. Robinson 
& Terhune, 2017). For that reason, the term accuracy, as used in the 
remaining of this manuscript, should be understood in that context.

2.4.1 | Euclidean distance

One way in which automated landmarking datasets can be evaluated 
is through the calculation of the root mean squared error (RMSE) 
between the landmark positions as predicted by the pipeline and 
as manually annotated (e.g. Percival et al., 2019). RMSE values cal-
culated for such datasets include not only the errors committed by 
the automated pipeline, but also observation errors committed by 

TA B L E  1   Point cloud registration parameters used for each dataset. Parameters are divided according to the corresponding step of the 
pipeline. See main text for details

Dataset Source

Subsampling RANSACa  ICPa  CPD

Voxel size (mm)
Normal search 
radius

FPFH search 
radius Max distance Max distance α β

Mus Template 0.5 2 5 1.5 0.4 2 2

Pan USNM220063 5.4 2 5 1.5 0.4 1 6

Pongo USNM588109 6.5 2 5 1.5 0.4 1 6

Gorilla USNM176211 7.5 2 5 1.5 0.4 1 6

Abbreviations: CPD, coherent point drift; ICP, iterative closest point; RANSAC, random sample consensus.
aParameters are defined relative to voxel size.
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the anatomical expert. While the pipeline error can be minimized, 
intra- observer error is unavoidable. Therefore, the error produced 
by the pipeline should always be evaluated on a relative basis 
(Percival et al., 2019). We here consider the intra- observer error 
as the minimum possible error the approach could hope to achieve 
and, therefore, use it to evaluate relative performance. While 
measurements of intra- observer error are difficult to be obtained 
for most datasets, the mouse skull and mandible have become a 
standard dataset in many automated landmarking algorithms (e.g. 
Devine et al., 2020; Maga et al., 2017; Percival et al., 2019; Young 
& Maga, 2015). Consequently, there are precise published estimates 
of intra- observer error for most of our landmarks (35 of 45; Percival 
et al., 2019). We here assume that the intra- observer manual anno-
tation errors reported by Percival et al. (2019) are, to a large extent, 
representative of the morphometric community at large.

Since the non- human primate datasets have not been measured 
repeatedly, we report their overall RMSE values but evaluate these 
datasets purely in terms of their ability to accurately characterize 
size and shape variation.

2.4.2 | Size and shape

To quantify the impact of the choice of method on the results of size 
and shape analyses, we performed a joint generalized Procrustes 
superimposition across datasets (Rohlf & Slice, 1990). We then per-
formed a Procrustes ANOVA (Anderson, 2001, 2014; Goodall, 1991) 
with landmarking method as a factor using the procD.lm function 
in geomorph 4.0 (Adams et al., 2021). This led us to quantify the 
percentage of the total variance in shape that is associated with the 
choice of landmarking methodology and its corresponding standard 
score (Z).

We also use the joint superimposition to test whether Procrustes 
variances obtained by each method are significantly different from 
one another using a permutation procedure where the vectors of re-
siduals are randomized among groups, as implemented in the morphol.
disparity function in the geomorph R package (Adams et al., 2021).

To evaluate the ordination of specimens in size and shape space, 
we correlate the manual predictions with the automated ones in 
terms of size (centroid size) and shape, represented here by the pair-
wise Euclidean distances between specimens in the tangent shape 
space.

Finally, to evaluate the similarity in the distribution of mor-
phological variation in multivariate space, we perform a principal 
component analysis of the manual dataset and project the au-
tomated landmark configurations into the manual PC space. We 
then reduce the Procrustes shape coordinates to the first six prin-
cipal components to avoid collinearities, following Le Maître and 
Mitteroecker (2019). After that, we calculate variance/covariance 
matrices for both automated and manual configurations in this 
shared space and test the proportionality of these matrices using 
a maximum likelihood method as implemented in the vcvComp R 
package (Le Maître & Mitteroecker, 2019). Finally, we compare the 

trace (i.e. overall shape variance) of these matrices using a resam-
pling procedure following Devine et al. (2020), therefore testing 
whether observed differences in overall shape variance are larger 
than differences that should be expected solely based on sampling 
error. The rationale used when comparing measurement error to 
sampling error is simple. Automated methods allow for substan-
tial increases in the sample sizes of most studies (e.g. Porto & 
Voje, 2020). Consequently, the smaller the error produced by the 
pipeline relative to sampling error, the less significant measure-
ment error becomes in terms of its effect on the study's outcome, 
depending on the hypothesis being tested.

2.5 | Bias correction

In many situations, researchers might be interested in combining 
datasets generated by automated landmarking methods with manu-
ally annotated ones (Percival et al., 2019). That is often a challeng-
ing task, since there is the possibility that both the means and error 
variances are different across landmarking methods. Hence, when 
possible, it is generally not advisable to do so. However, there are a 
few situations in which such interest might be justified. For exam-
ple, a researcher might be interested in combining multi- year (large) 
datasets that were acquired using different methods by a labora-
tory producing advanced intercross lines (e.g. Cheverud et al., 2014). 
In another example, a researcher might have detected a consistent 
bias in the way ALPACA has predicted landmark positions for their 
specimens. In that case, we here propose the usage of a paramet-
ric empirical Bayes framework (ComBat model, Fortin et al., 2018) 
to robustly adjust the tangent space coordinates for these effects. 
This batch- effect correction framework assumes that the expected 
values of the tangent space coordinates can be modelled as linearly 
dependent on (landmarking) method- specific effects, and whose er-
rors are also method specific. The underlying assumption is that the 
landmarking method has both additive and multiplicative effects on 
the tangent space coordinates (Fortin et al., 2018).

The outputs of this linear model represent the bias- corrected 
tangent space coordinates, if we assume the manual landmarking 
method to be the reference one.

In our case, the only dataset large enough to apply bias correc-
tion was the mouse dataset. To do so, we selected a small percentage 
of the original samples (20%) to estimate the ComBat model param-
eters and use such parameters to correct the automated predictions 
for all remaining samples (80%), we then evaluate the impact that 
such procedure has on RMSE estimates and overall mean configu-
ration plots.

2.6 | Implementation— SlicerMorph module

All algorithms were implemented as a SlicerMorph (Rolfe 
et al., 2020) module using the following external python libraries: 
open3d v.0.10.0 (Zhou et al., 2018) and pycpd 2.0.0. Source code 
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for SlicerMorph is Python based and can be found at https://github.
com/Slice rMorp h/Slice rMorph or downloaded directly from the 3D 
Slicer Extension Manager. The ALPACA module provides a graphi-
cal user interface, and it can be run on any operating system. As 
Supporting Information, we provide installation instructions and 
links to a detailed ALPACA tutorial. The ALPACA pipeline was im-
plemented with two different modes of functionality: a pairwise and 
a batch processing. The pairwise branch should largely be used to 
perform a user- guided search for the best combination of param-
eters (including template) for their dataset, which can then be ap-
plied to a larger array of samples in batch mode. Note, however, that 
SlicerMorph module was developed with a larger array of use cases 
than the four datasets we present here and, therefore, presents 
default parameters that might not be necessarily ideal for all study 
systems. While rigid registration parameters are robust to a large 
array of scenarios and are unlikely to require change, deformation 
parameters often need to be slightly adjusted across study systems 
for maximal performance. Similarly, largely due to the underlying 
RANSAC implementation, ALPACA is not strictly deterministic, due 
to one of its python dependencies. In the mouse dataset, repeated 
runs using the same specimens and the same hyperparameters will 
produce final predictions that are 0.03 mm apart, on average. Note, 
however, that all results presented in this manuscript are robust to 
multiple independent runs of the pipeline and yield, at the popula-
tion scale, virtually identical qualitative and quantitative results on 
each run. For example, multiple runs of the pipeline for the mouse 
dataset result in average RMSE values that are identical up to the 
third decimal (1/1,000th of a millimetre). In other words, imprecision 
at the single landmark level does not imply the same level of impreci-
sion in the population mean RMSE.

3  | RESULTS

3.1 | Implementation speed

We used the mouse dataset (N = 51) to benchmark the speed of the 
pipeline, using a Linux Mint OS laptop with an Intel Core i7- 6700HQ 
2.7Ghz CPU and with 16 GB of RAM. The complete ALPACA work-
flow for 51 samples took approximately 1.47 hr. Most of the time 
(>50%) was spent on the deformable registration step. When run 
pairwise, the breakdown per specimen (on average) is as follows: 
0.67 s for downsampling, 1.42 s for global registration, 8.27 s for 
local registration (2.23 s of which are devoted to the calculation of 
surface normals) and 105 s for deformable registration.

3.2 | Manual landmarks versus ALPACA landmarks

3.2.1 | Euclidean distances

In terms of their Euclidean distances to manual landmarks, which 
we treat as the gold standard, the majority of ALPACA's landmarks 

were accurately placed by the pipeline. We here report the observed 
RMSE values both in millimetres and as percentages relative to the 
maximum skull length.

In the mouse dataset, median RMSE values varied from 0.12 mm 
(0.5%) to 0.87 mm (3.8%; Figure 3a), with an average of 0.22 mm 
(0.95%). These RMSE values are within the same range as to those 
obtained by other image- based registration methods (Figure 3, blue 
dots, Percival et al., 2019), and also within 0.03 mm of the manual 
(intra- observer) error (Figure 3, green squares). Note that intra- 
observer error represents the theoretical minimum error the pipe-
line could hope to achieve. Only landmarks 2 and 3 present much 
higher than average error (>2 SD from mean) when compared to the 
manual dataset and those are associated with a methodological bias 
in the estimate of the population mean, as it will be further explored 
in the Procrustes analysis section.

Bias correction considerably reduced mouse RMSE values for 
most landmarks and effectively corrects it for the biases on the pop-
ulation means (Figure 3b). On average, mouse RMSE values after cor-
rection are 0.032 mm lower than the uncorrected ones (Figure 3b), 
resulting in a mean value of 0.188 mm (0.82%).

Finally, we should also highlight that the maximum improve-
ment that could be expected in any future automated algorithm 
is in the order of 0.03 mm, given the difference between bias- 
corrected RMSE values (~0.19 mm) and manual RMSE values 
(0.16 mm).

F I G U R E  3   Boxplots illustrating the landmark- specific 
distribution of prediction errors for the mouse dataset, measured 
as root mean squared error (RMSE). (a) Initial predictions. (b) Bias- 
corrected predictions. RMSE values are calculated based on the 
difference between the predicted landmark positions and their 
manually annotated counterparts (in mm). The median error across 
landmarks is illustrated with a red line. Prediction errors calculated 
for an image- based registration approach are illustrated with blue 
circles (Percival et al., 2019). Intra- observer errors calculated by 
Percival et al. (2019) are presented as green squares
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Among the great apes, median RMSE values were generally 
more homogeneous across landmarks and largely comparable across 
species relative to their overall skull size (Figure 4). Gorilla median 
RMSE values varied from 1.41 mm (0.4%) to 7.57 mm (2.3%), with an 
average of 3.12 mm (0.95%). Pan median RMSE values varied from 
1.7 mm (0.87%) to 6.11 mm (3.13%), with an average of 2.42 mm 
(1.24%). Finally, Pongo median RMSE values varied from 1.58 mm 
(0.65%) to 5.43 mm (2.26%), with an average of 3.13 mm (1.3%).

When standardized by the maximum skull length, median RMSE 
values observed across species are equivalent to 0.95% (Mus), 0.95% 
(Gorilla), 1.24% (Pan) and 1.3% (Pongo), indicating similar perfor-
mance of ALPACA across different organisms.

3.2.2 | Procrustes analysis

In Figure 5, we report a joint generalized Procrustes analysis (joint 
GPA) of manual-  and ALPACA- based landmark datasets. ALPACA- 
based landmark configurations broadly overlap (>0.7 intersection 
over union) with those obtained through manual digitization (blue 
vs. red, Figure 5a,d– f). On the mouse dataset, the manually digitized 
dataset possesses larger Procrustes variances than ALPACA data-
set, as revealed by the morphological disparity test (p < 0.001). This 

difference is particularly noticeable for landmarks in the lateral parts 
of the nasal/premaxilla sutures (Figure 5a, landmarks 2 and 3) and 
is effectively removed by the bias- correction procedure (Figure 5c, 
p = 0.124). No other dataset presents significant differences in the 
degree of morphological disparity (p = 0.147 for Pan, p = 0.246 for 
Pongo and p = 0.174 for Gorilla).

A Procrustes ANOVA conducted in the joint GPA data reveals 
that the landmark placement method (ALPACA vs. Manual) explains 
around 15% of the total variation around the mean shape in the 
mouse dataset (p < 0.001, Z = 4.8, Table S2). After bias correction, the 
landmark placement method loses its explanatory power (p = 0.49, 
R2 = ~1%, Z = −0.001, Table S2). Landmark placement method ex-
plains comparable percentages of variation in all three ape datasets 
(R2 = 14.4% and Z = 3.47 for Pan; R2 = 12.4% and Z = 3.67 for Pongo; 
R2 = 8.2% and Z = 2.94 for Gorilla; Table S2).

Automated- manual correlations of specimen ordinations in 
terms of centroid size were high in all four datasets, varying from 
0.98 (Pan) to 0.99 (Figure 6, first column). The correlations between 
the Euclidean distances in shape space, on the other hand, were 
moderate– high and less homogeneous than for centroid size, with 
correlations varying from 0.76 (Pan) to 0.87 (Mus; Figure 6, second 
column). Note, however, that Pan contains the smallest sample size 
(N = 11) of all four datasets.

When measured in terms of covariance matrix trace, automated 
shape variances were consistently and significantly lower than their 
manual counterparts (Figure 7, first column), with variance reductions 
varying from 35.2% (Mus, after bias correction) to 48% (Pan). Despite 
the difference in overall variances, we could not reject the propor-
tionality of automated- manual matrices in either of the ape datasets 
(p = 0.96, Pan; p = 0.64, Gorilla; p = 0.65, Pongo). The only dataset 
to present significant differences across manual- automated matrices 
was the mouse dataset prior to bias correction (p = 6.5 × 10−5). After 
bias correction, however, we could not reject the proportionality of 
automated- manual matrices in the mouse (p = 0.14).

Finally, automated- manual PC correlations were generally 
high (>0.8) for most higher ranking PCs (Figure 7, second column). 
Correlations varied from 0.93 to 0.98 for PC1, 0.82 to 0.97 for PC2 
and 0.67 to 0.94 for PC3. Correlations between PCs ranking 4 and 
lower varied more widely across datasets, with the mouse dataset 
presenting correlations as low as 0.39 for PC5. Note that PC scores 
were calculated in the PC space of the manual dataset.

3.3 | ALPACA landmarks versus 
diffeomorphic landmarks

Since the mouse dataset reported in this study has been used to 
develop an image registration pipeline (Maga et al., 2017), we also 
report a joint GPA comparing ALPACA to more traditional image reg-
istration workflows.

The ALPACA- based landmarks show broadly overlapping (>0.7 
intersection over union) distribution relative to the diffeomorphic 
ones after a joint superimposition (Figure 5b).

F I G U R E  4   Boxplots illustrating the landmark- specific 
distribution of prediction errors for all three great ape datasets, 
measured as root mean squared error (RMSE). RMSE values are 
calculated here based on the difference between the predicted 
landmark positions and their manually annotated counterparts (in 
mm). The median error across landmarks is illustrated with a red 
line. (a) Pan; (b) Gorilla; (c) Pongo
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A Procrustes ANOVA conducted in the joint GPA reveals that 
there is a significant difference between the multivariate means ob-
tained for both datasets (p < 0.001). However, contrary to manual 
datasets, the morphological disparity test indicates that one could 
not distinguish such approaches in terms of the level of morpho-
logical disparity (p = 0.797), with ALPACA having higher PC score 
correlations to the diffeomorphic dataset (Figure 8). Finally, both 
the centroid sizes and the pairwise Euclidean distances between 
specimens in shape space are also highly correlated across the two 
methods (Figure 8).

4  | DISCUSSION

Dense morphometric characterizations of biological structures 
have become an essential component of morphological studies 
in ecology and evolution (Bardua et al., 2019; Collins et al., 2019; 
Goswami et al., 2019; Souter et al., 2010). Consequently, the 
gold standard for morphometric data collection (i.e. manual 
digitization) has become an important bottleneck for morpho-
metric research pipelines. Here, we propose a fast and accu-
rate intraspecific pipeline for automated landmarking in any 
3D biological structure. Our approach is based on a lightweight 
point cloud registration approach, which can be used to trans-
fer landmarks from a single source specimen to one or multiple 
targets, accurately placing landmarks of interest on unmeasured 
specimens.

4.1 | ALPACA advantages

One main benefit of our approach relative to other automated methods 
is that it is more broadly applicable to intraspecific studies in ecology 
and evolution, for two main reasons. First, it works directly on surface 
meshes. While one can always generate a mesh from a volume, the same 
is not true when starting with a mesh. Since a substantial amount of 
3D work utilizes surface scanners (both laser and lidar), ALPACA tends 
to be more generally applicable than volume- based methods. Similarly, 
ALPACA allows for the use of a single reference specimen as the source 
mesh. While anatomical atlases are available for mouse datasets (e.g. 
Maga et al., 2017), they are rare for non- model organisms and represent 
an important constraint for image- based approaches. As demonstrated 
in the mouse dataset (Figure 2a), around 50% of the individuals in the 
population could be used as template and still yield results that are only 
10% less accurate than using a synthetic template.

Other advantages of our framework are its accuracy, speed, con-
sistency and its low hardware requirements.

4.1.1 | Accuracy

When applied to the mouse dataset, our approach obtains results 
that are as accurate (or more) than other image- based registration 
techniques (Figure 3) and recovers patterns of morphological varia-
tion that are statistically indistinguishable from those obtained by 
manual digitization (p = 0.14), provided bias correction is performed. 

F I G U R E  5   Two- dimensional projection 
(XY) comparing the ALPACA landmark 
predictions (light blue) with other methods 
(red) after joint GPA superimposition. 
Crosshairs indicate the consensus 
shapes of each method under the joint 
superimposition. Other methods are, 
in order: (a) Manual landmarking (Mus); 
(b) Diffeomorphic approach described 
in Maga et al. (2017) (Mus); (c) Manual 
landmarking after bias correction (Mus); 
(d) Manual landmarking (Pan); (e) Manual 
landmarking (Gorilla); and (f) Manual 
landmarking (Pongo)
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While we observe greater Procrustes variances in the manually an-
notated mouse dataset when compared to automated one, this is a 
common observation in many image registration- based approaches 
(e.g. Boyer et al., 2011; Devine et al., 2020; Maga et al., 2017; Percival 
et al., 2019) and is partially explained by the intra- observer error pre-
sent in manually annotated ones. As a matter of fact, we can calculate 
how much room still exists for methodological improvement based on 
the mouse dataset and this value seems to be in the order of 0.03 mm, 
given the small difference between bias- corrected RMSE values and 
manual error values (Figure 3). Furthermore, since we have produced a 

SlicerMorph module that has a graphical user interface, any apparent 
error produced by the pipeline can be instantly corrected using the 3D 
Slicer's fiducial tools (Fedorov et al., 2012; Kikinis et al., 2014).

4.1.2 | Speed and consistency

The other large benefit of automation is its overall speed and 
consistency. Calculating speed in morphometric data collec-
tion is fraught with difficulty, since both manual and automated 

F I G U R E  6   Comparison of centroid size 
(a– c– e– g) and shape (b– d– f– h) measures 
as predicted by ALPACA and by manual 
annotation. Note the high and statistically 
significant correlations (p < 0.001) across 
all datasets. Correlation values for each 
PC are presented in Figure 7. (a, b) Mus; (c, 
d) Pan; (e, f) Gorilla, (g, h) Pongo
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approaches require some pre- processing steps whose speed is 
hard to quantify. For manual landmarking, the researcher anno-
tating the dataset will need to spend time getting used to the 
order of landmarks and the overall layout of the annotation soft-
ware. These steps are not necessary in automated approaches. 
Automated approaches will require, on the other hand, a more 
thorough cleaning of each sample's mesh, due to the need for 
structural correspondence across samples. This cleaning step will 
often require segmentation of the morphological elements of in-
terest and removal of any extraneous information (e.g. removal 
of neck vertebrae from a skull mesh). In other words, if sample 
pre- processing cannot be automated, the speed of the algorith-
mic pipeline can be counterbalanced by bottlenecks in sample 
preparation. Cleaning steps are often much simpler for manual 
landmarking, since the user can start from an image sequence 
containing a myriad of extraneous morphological elements. As 

such, ALPACA's speed, as reported below, should be evaluated 
with this caveat in mind.

The ALPACA pipeline performs landmark prediction for the en-
tire mouse dataset (N = 51) in 1.47 hr. Note that the number of land-
marks annotated in each mouse skull is on the smaller side of current 
morphometric approaches (Bardua et al., 2019; Collins et al., 2019; 
Goswami et al., 2019; Souter et al., 2010) and that ALPACA's execu-
tion time is largely independent on the number of landmarks. Given 
the recent popularization of high- density semi- landmark approaches 
in ecology and evolution (Gunz & Mitteroecker, 2013), ALPACA 
would allow high- density morphometric characterizations of numer-
ous specimens in a matter of hours.

More importantly, ALPACA's main advantage over manual an-
notation is its consistency. As mentioned before, manual annota-
tion is subject to significant amounts of intra-  and inter- observer 
bias. These biases are often in the same order of magnitude as 

F I G U R E  7   (a– d) Estimates of overall 
craniofacial variance obtained by 
bootstrap resampling the trace of each 
covariance matrix. (e– h) Correlation 
between the automated and manual PC 
scores for the first six PCs in the manual 
PC space. First row = Mus; Second row 
= Pan; Third row = Gorilla; Fourth row = 
Pongo

(a)

(b)

(c)

(d)

1 2 3

0.
0

0.
00

1
0.

00
2

0.
00

3
M

at
rix

 tr
ac

e

1 20.
00

0
0.

00
2

0.
00

4
M

at
rix

 tr
ac

e

1 2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

M
at

rix
 tr

ac
e

Automated
Bias-corrected

Automated

Automated

Manual

Manual

Manual

1 2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

M
at

rix
 tr

ac
e

Automated

Manual

(e)

(f)

(g)

(h)

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.93

0.17

0.05

−0.08

0.04

−0.05

0.17

0.82

−0.33

−0.07

−0.07

0.03

0.43

−0.29

0.71

−0.08

0.05

0

−0.08

−0.02

0.24

0.54

−0.1

0.23

0.11

−0.09

0.39

0

0.39

0.33

0.38

−0.06

0.1

0.27

0.03

0.43

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.95

0.13

0.05

−0.08

0.1

0.07

−0.04

0.86

−0.01

−0.25

−0.03

0.18

−0.14

0.1

0.93

0.07

−0.07

−0.31

0.08

−0.06

0.11

0.94

0.11

0.01

−0.12

0.32

−0.01

−0.07

0.79

−0.02

0.04

0.35

−0.29

0.36

0.25

0.66

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0.98

0.08

−0.08

−0.02

−0.06

0.04

0.05

0.97

0.02

0.12

0.01

−0.07

−0.39

0.07

0.67

−0.04

−0.14

0.11

−0.23

0.08

−0.32

0.8

0.25

−0.06

0.09

−0.23

−0.12

0.32

0.75

0.15

−0.02

−0.24

0.26

−0.07

0.28

0.81

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.80.94

0.16

0.11

0.05

−0.1

0.08

0.29

0.92

−0.04

−0.03

0.01

−0.15

0.11

−0.04

0.94

0.03

−0.18

0.04

−0.02

−0.12

−0.01

0.81

0.15

−0.46

−0.42

0.21

−0.14

0.16

0.78

0.09

−0.18

0.17

0.08

0

−0.1

0.81

1



     |  2141Methods in Ecology and EvoluonPORTO eT al.

intraspecific differences (Robinson & Terhune, 2017) and repre-
sent an important and understudied issue in the field. Currently, the 
only way to address concerns about bias in morphometric studies is 
through the use of multiple expert annotators. By using ALPACA, 
a single template can be used by a research group throughout the 
years, allowing for a better standardization of landmarking protocols 
and increasing its reproducibility. Similarly, even multiple research 
groups can use the same template, allowing for data to be combined 
across studies from different laboratories.

4.1.3 | Hardware and ease- of- use

Finally, another major advantage of our framework is the ability to 
obtain high- throughput phenotyping with consumer- grade, off- the- 
shelf hardware. As currently implemented, the SlicerMorph module 
can be run on any machine with Windows 7 64- bit, MacOS X Lion, 
or recent Linux distribution, 8 GB of RAM memory, 1,280 × 1,024 
monitor resolution, and graphics card with at least 1 GB memory. 
For ease- of- use, the pipeline was implemented with two branches: 
pairwise and batch processing. The pairwise branch can be used to 
explore and fine- tune the registration parameters by going through 
the process of registering a single (target) sample to its reference 
(source), step- by- step. This step- by- step approach allows users to 
find the best combination of parameters for their task, which can 
then be applied to a larger array of samples in batch mode. In other 
words, the batch processing branch opens up the possibility of a 
simple automated pipeline for high- throughput high- dimensional 
phenotyping, which will greatly increase the scale morphometric ap-
proaches in ecology and evolution.

4.2 | ALPACA limitations

The main limitation of the proposed pipeline, which is largely shared 
with other deformable registration approaches, is that it can lead to 

spurious results when the initial shapes are too dissimilar and/or reg-
istration parameters are poorly chosen (Boyer et al., 2011; Percival 
et al., 2019). In other words, when working in a broad phylogenetic 
context, with species that are highly divergent in shape and form, the 
ability to find corresponding landmarks can breakdown. In our view, 
the proposed pipeline is better employed within species or among 
closely related species. In broad phylogenetic contexts, a more care-
ful consideration of the source meshes will likely be necessary. One 
possible approach would be to use multiple source meshes, each cor-
responding to a clade or morphotype. In that case, ALPACA would 
still increase the speed and reproducibility of morphometric data 
collection, but it would have to be applied separately for each clade 
or morphotype. The application of ALPACA in this context would, 
as a consequence, allow researchers to sample more deeply within 
a clade or morphotype, thus increasing the overall sample size and 
improving the robustness of the morphometric results. Another pos-
sibility would be to use homology- free landmark approaches (Boyer 
et al., 2015). One should note, however, that homology- free ap-
proaches, such as Auto3DGM (Boyer et al., 2015), generally do not 
allow for the addition of samples post- hoc. In other words, if a new 
sample needs to be incorporated into the dataset, the pipeline has 
to be rerun for all samples. This limitation is not present in ALPACA, 
since the use of a reference specimen (or template) allows for the 
addition of new samples post- hoc, giving the user more flexibility.

Another limitation of the ALPACA is its sensitivity to the pres-
ence of noise in the form of additional skeletal structures or dam-
aged parts (Myronenko & Song, 2010). In mouse datasets, for 
example, neck vertebrae and limbs are often still attached to the 
base of the skull. If skull segmentation is not properly carried out 
and rigidity constraints in the deformable step are not correctly fine- 
tuned, the addition of such skeletal elements to the 3D surface can 
lead to spurious results. Similarly, primate skulls frequently present 
missing canines/incisors and males tend to present largely devel-
oped sagittal crests. Such missing, extremely dimorphic or damaged 
skeletal elements can potentially lead to increased prediction error. 
Note, however, that several of the primate skulls used in the current 

F I G U R E  8   Comparison of centroid size (a) and shape (b) measures as predicted by ALPACA and by the diffeomorphic method of Maga 
et al. (2017) based on the mouse dataset. Note the high and statistically significant correlations (p < 0.001) between the two methods.  
(c) ALPACA and diffeomorphic PC score correlations for the first six PCs
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manuscript do present such artefacts and, therefore, the results 
presented here represent the actual performance of the method 
even when faced with significant challenges. In other words, due to 
the rigidity constraints in the deformable step, damaged or missing 
skeletal structures can be overcome (to some extent) by the pipe-
line when properly tuned (Figure S2). At some point, however, the 
differences will be too extensive for rigidity constraints to account 
for them. ALPACA is not unique in this sense, since these constraints 
(i.e. completeness, and sensitivity to additional objects) are common 
in almost all automated morphometric analysis.

A significant limitation of ALPACA that is also shared with other 
image registration approaches is its inability to respect qualitative 
boundaries. While ALPACA is quantitatively accurate (Figure 3), it 
does not impose qualitative constraints in landmark placement. For 
example, craniofacial researchers will often want their landmarks to 
fall precisely at suture lines. However, it is not uncommon to have 
automated approaches predict landmarks slightly off- suture. To 
a large extent, this limitation embedded in image registration ap-
proaches is a direct consequence of the concept of homology under-
lying deformation- based approaches. In such approaches, the ability 
to maintain homology is dependent on the ability of statistical de-
formations to mimic biological deformations. Certain disorders, such 
as the formation of the interfrontal bone in specific mice strains, will 
lead to spurious results due to a breakdown of equivalency between 
structures. In such cases, we suggest the use of Slicer fiducial tools 
to correct ALPACA predictions. Slicer has click- and- drag functional-
ity for objects loaded into the scene, allowing the user to slide each 
landmark along the surface of the target mesh, and therefore allow-
ing for an immediate correction of ALPACA predictions.

4.3 | Future directions

While the current version of ALPACA is geared towards intraspecific 
studies in ecology and evolution, we have plans to expand the ALPACA 
pipeline to more diverse datasets. Currently, there are two expansions 
under development. In one, we are developing a multi- template ver-
sion of ALPACA. The multi- template version will eliminate many of 
the issues associated with template choice, since the use of multiple 
templates has been demonstrated to greatly decrease template bias in 
similar contexts (e.g. Devine et al., 2020). Likewise, we are working to-
wards a closest- template approach that is geared towards interspecific 
datasets. Given a group of templates, the closest- template approach 
allows the user to automatically choose the source sample that is clos-
est in shape to the specimen at hand when generating the predictions. 
In other words, we want ALPACA to be viewed as an extensible plat-
form from which more targeted pipelines can be developed.

5  | CONCLUSIONS

We have developed a lightweight point cloud registration approach 
(ALPACA) for automated landmarking of 3D biological structures 

represented by surface meshes. The method is implemented as a 
SlicerMorph module and provides fast landmark transfer from a 3D 
model and its associated landmark set to target 3D models through 
point cloud alignment and deformable point cloud registration.

ALPACA's main strengths are its speed, which is at least an order 
of magnitude faster than other automated approaches, and accu-
racy, given its ability to replicate results obtained through manual 
digitization. It is, however, sensitive to missing, damaged or strongly 
dimorphic morphological elements.

We expect that ALPACA will greatly increase the scale of 3D 
geometric morphometrics, and that it will open up new research av-
enues for morphometric research.
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