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ABSTRACT: This paper details the use of computational and informatics methods to
design metal nanocluster catalysts for efficient ammonia synthesis. Three main problems
are tackled: defining a measure of catalytic activity, choosing the best candidate from a
large number of possibilities, and identifying the thermodynamically stable cluster
catalyst structure. First-principles calculations, Bayesian optimization, and particle
swarm optimization are used to obtain a Ti8 nanocluster as a catalyst candidate. The N2
adsorption structure on Ti8 indicates substantial activation of the N2 molecule, while the
NH3 adsorption structure suggests that NH3 is likely to undergo easy desorption. The
study also reveals several cluster catalyst candidates that break the general trade-off that
surfaces that strongly adsorb reactants also strongly adsorb products.

1. INTRODUCTION
The Haber−Bosch process1 is used in industrial ammonia
synthesis. In this process, ammonia is synthesized from
nitrogen and hydrogen molecules as follows

V+1
2

N
3
2

H NH2 2 3 (1)

Ammonia synthesized has diverse applications, including its
use as a nitrogen fertilizer, in the production of explosives, as
refrigerants, and as materials for energy storage. The uses of
the synthesized ammonia are diverse, including nitrogen
fertilizer, explosive production, refrigerants, and energy storage
materials.2 Among the many uses for ammonia, nitrogen
fertilizer accounts for a very large proportion, and this method
supports a food supply that feeds about half of the world’s
population.3

The reaction Gibbs free energy change for the reaction in eq
1 is −32.37 kJ/mol at 300 K.4 However, the reaction barrier is
extremely high, so without a catalyst, the nitrogen−hydrogen
mixture would not produce ammonia to any appreciable
degree. In the Haber−Bosch process, the catalyst is active α-
Fe, which is made by reducing Fe3O4 mixed with K2O, an
electronic promoter that improves catalytic activity, and SiO2
and Al2O3, structural promoters that stabilize the catalyst
structure.5 In the equilibrium reaction shown in eq 1, the
formation of ammonia is favored in a low-temperature, high-
pressure environment. However, a high-temperature environ-
ment is necessary to increase the reaction rate. The Haber−
Bosch process is usually operated at 400−500 °C and 102−103
atm in the presence of the catalyst.6

As mentioned above, the implementation of the Haber−
Bosch process requires high-temperature and high-pressure
conditions, which is a high energy-consuming process, emitting
very large amounts of CO2 and placing a significant burden on
the natural environment. It is said that ammonia synthesis
plants emit CO2 equivalent to 1.44% of the world’s CO2
emissions.7 Therefore, most of the recent research is aimed at
realizing a more environmentally friendly and economical
method than the Haber−Bosch process. There are many
examples of homogeneous catalysts that mimic the mechanism
of catalytic conversion of nitrogen by a metalloenzyme called
nitrogenase.8,9 Heterogeneous catalytic ammonia synthesis
using metal nanoparticles supported on electride surfaces10−12

and hydrides of early transition metals such as Ti and V13−15

has also been studied extensively. In addition, various materials
such as nitrides,16,17 alloys,18,19 and intermetallic com-
pounds20,21 are being considered as potential catalysts for
ammonia synthesis. Since we cannot review here all of the
efforts of many researchers in creating innovative heteroge-
neous catalysts for ammonia synthesis, we refer the reader to
some review articles22−24 for more details.
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Many of the heterogeneous catalysts cited above are
characterized by metal nanoparticles supported on inorganic
material surfaces. Recently, catalytic reactions by metal
nanoclusters and metal sub-nanoclusters, which are even
smaller groups of metal atoms than metal nanoparticles, have
attracted much attention.25,26 Metal clusters exhibit unique
properties beyond those expected from bulk metals, and the
reactivity of metal clusters changes discontinuously when the
number of constituent atoms is changed one by one.27,28 Such
reactivity is attributed to the fundamental physical properties
of clusters, including their overall shape, geometric structure,
electronic structure, and thermodynamic properties.29,30 In
particular, clusters have a larger proportion of surface area than
nanoparticles, and the increase in the number of sites with
coordination unsaturation, such as edges and corners, is
thought to be one reason why chemical reactions occurring on
the cluster surface are efficient.31−33

So far, we have reviewed what is generally known about
cluster catalysts. Now we will look at how clusters can be of
benefit to ammonia synthesis specifically. Li et al.34 synthesized
Ru catalysts ranging in size from atomic clusters and
subnanometer clusters to nanoparticles, and found that Ru
atomic clusters exhibit a very high turnover frequency (TOF)
in ammonia synthesis. As the size of Ru decreases to the
nanolevel, the number of B5 and terrace sites decreases, and
the N2 activation pathway changes; the reaction pathway for
NH3 synthesis is altered, thus improving catalytic performance.
The enhanced intra-cluster interactions of Ru3-atom clusters
shift the d-band center of Ru and promote the adsorption and
activation of N2 on the catalyst, leading to the formation of
NH3 via a low activation barrier. Liu et al.

35 proposed the use
of Fe3 clusters supported on the θ-Al2O3 (010) surface as
heterogeneous catalysts for ammonia synthesis: due to the
large spin polarization of the Fe3 cluster, the low oxidation
state of iron, and its multistep redox capacity, the TOF of the
Fe3 catalyst was found to be comparable to that of the
conventional Ru catalyst. Ma et al.36 found that the bimetallic
cluster of Rh1Co3 dispersed on the surface of CoO (011)
exhibits high catalytic activity for ammonia synthesis due to the
charge buffering ability of the doped low-valent metal Rh and
the complementary role of the synergistic metal Co. Peng et
al.37 successfully synthesized a catalyst consisting of Co dimers
dispersed on an N-doped carbon support. They found that
electron-rich Co serves as an efficient site for promoting
donation and back-donation behavior between Co and N2
molecules during NH3 synthesis, facilitating the activation of
N2 and its subsequent stepwise hydrogenation to NH3.
As detailed above, metal nanoclusters can be found to

combine a number of properties to facilitate ammonia
synthesis. The properties will depend on the type of metal
elements that make up the cluster, the number of metal atoms,
and the support. Selecting the best catalyst from among these
myriad candidates is a very difficult task. We would consider
tackling this challenge with the help of informatics techniques
that have been advancing in recent years. A field called catalytic
informatics is emerging. Several review and concept articles
have been written on this field.38−41 Indeed, a wide variety of
informatics methods are becoming available to aid in catalyst
development.
Our goal in this study was set to search for suitable metal

nanoclusters for ammonia synthesis. In many cases, catalytic
informatics research is very compatible with computational
methods such as first-principles calculations and is also

combined with high-throughput calculations.42−44 Therefore,
we have combined first-principles calculations with informatics
methods in this study to tackle the challenge of ammonia
synthesis.
We focused on Bayesian optimization (BO)45,46 to achieve

the objectives of this study. BO is a powerful machine learning
technique that can optimize a black box function with a limited
number of evaluations.47−49 In the context of nanocluster
catalyst design, BO can be used to efficiently explore the vast
space of possible combinations of the type and number of
metal atoms constituting a nanocluster and to identify the
optimal composition of nanoclusters that maximizes the
desired catalytic properties.
The use of BO for the design of nanocluster catalysts has

several advantages over conventional methods. For example, it
can efficiently search for higher dimensional spaces of possible
compositions. Traditional methods such as brute-force
enumeration and random sampling quickly become computa-
tionally infeasible as the number of possible compositions
increases.50,51 BO, on the other hand, uses a stochastic model
to perform the search,52,53 which allows the space to be
explored efficiently.
In recent years, many examples of the use of BO have been

reported in a wide range of catalyst development and catalyst
applications. Pedersen et al.54 reported that they performed
BO on a model based on density functional theory (DFT) to
predict the most active high-entropy alloy composition for the
electrochemical oxygen reduction reaction with as few
sampling compositions as possible. Nugraha et al.55 demon-
strated that BO can efficiently aid in designing experiments to
discover the optimal composition of metal precursors, yielding
mesoporous ternary metal PtPdAu alloys with enhanced
electrocatalytic activity in methanol oxidation. Nagai et al.56

applied BO to the drying process of catalyst inks for polymer
electrolyte fuel cells to determine optimal drying conditions
with a small number of trials. Okazawa et al.19 used a
combination of BO and DFT calculations to find the optimal
binary alloy catalyst for the nitrogen activation reaction.
The combined approach of DFT calculations and BO is

becoming more common, not only in catalyst development,
but also in various other areas of materials development.47,57,58

However, to our knowledge, this approach has not been
applied to the development of nanocluster catalysts. One of the
reasons for this may be the structural diversity of the
nanoclusters. Consider choosing the catalytic activity of a
nanocluster as the objective function for BO and evaluating it
with a DFT calculation. To perform a DFT calculation, one
must first determine the structure of the nanocluster.
Predicting the ground-state structure of a cluster correspond-
ing to the global minimum of the potential energy surface is a
difficult task. In general, the number of local minima increases
exponentially with increasing cluster size.59

To address this problem, it is effective to utilize evolutionary
algorithms, such as genetic algorithm (GA) and particle swarm
optimization (PSO).60−63 The comparison between PSO and
GA in terms of cluster structure search has already been
discussed in the literature,64,65 but the main difference may be
that GA has a selection process characterized by survival of the
fittest, whereas PSO has no such process. PSO requires a
relatively small population size and converges more quickly
than GA.65 That is why we focus on cluster structure search
using PSO.
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The PSO algorithm was proposed by Kennedy and Eberhart
in 1995, inspired by the social behavior of a flock of birds or
fish.66 In the context of predicting the structure of metal
nanoclusters, PSO can be used to search for the most stable
arrangement of atoms within a cluster. The objective function
is usually defined as the total energy of the system, calculated
using quantum mechanical methods such as DFT. We have
been using the PSO algorithm to search for cluster
structures.67−69

The purpose of this study is to attempt to explore metal
nanocluster catalysts for ammonia synthesis by combining
DFT calculations with two informatics tools, namely, BO and
PSO. We will model the complex phenomenon of catalysis and
theoretically challenge the development of catalysts with the
support of informatics and computational chemistry. The
evaluation of catalytic activity based on DFT calculations and
the structure search combining DFT calculations and PSO
algorithm are very computationally demanding tasks. By
combining BO here, we have planned to improve the efficiency
of our work. This paper describes our efforts to do so. The
structure of this paper is as follows. We first address the

problem clarification. We then consider how to model the
problem and apply the tools of informatics and computational
chemistry to it. Finally, we analyze the results.

2. RESULTS AND DISCUSSION
2.1. Clarification of Issues to Be Addressed. The

properties of a metal nanocluster catalyst for ammonia
synthesis are affected by the type and number of atoms that
make up the cluster and the type of support. However, as it
stands, the problem is too complex to be expected to be solved
at all, so let us simplify the problem just a bit more. In this
study, (1) we ignore the influence of the support, and (2) we
assume that there is only one type of metal element that makes
up the metal nanocluster.
Figure 1 shows the 44 elements targeted for exploration in

this study. Based on our investigation of previous studies,34−37

we defined the target of our search as a part of the periodic
table dominated by transition metals. In previous stud-
ies,34,35,37 clusters consisting of relatively few atoms such as
Co2, Ru3, and Fe3 have been thoroughly investigated. We have
selected clusters consisting of four or more atoms as an

Figure 1. List of elements (part of the periodic table) constituting the metal nanoclusters targeted for exploration in this study.

Figure 2. Schematic diagram of four typical ammonia synthesis pathways that are known to occur on solid surfaces: (a) dissociative, (b) alternative
associative, (c) distal associative, and (d) enzymatic pathways.
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unexplored area worth exploring. Nevertheless, due to
computational resource limitations, we set an upper limit of
10 atoms for the size of the clusters we explore. Based on the
above, the size of our search space in this project consists of
308 nanocluster candidates.

2.2. Evaluation Method for Nanocluster Catalytic
Activity. We intend to evaluate the catalytic activity for
ammonia synthesis for the candidate metal nanocluster
catalysts and use it as the objective function for BO. In this
way, we will be able to efficiently extract a cluster with the
optimal catalytic activity from the 308 metal nanocluster
candidates discussed in the previous section. To do so, we
must define what we mean by catalytic activity for ammonia
synthesis. Catalytic activity is generally defined by the rate of
reaction.70,71 One idea to estimate the catalytic activity
computationally would be to use the activation barrier of the
rate-limiting step. If it is low, the reaction rate will be high, and
the catalytic activity of such a catalyst will be high.
What is the rate-limiting step in ammonia synthesis? Figure

2 shows the generally accepted typical mechanisms of
ammonia synthesis.72−74 In the Haber−Bosch process with
iron- or ruthenium-based catalysts, it is known that the
reaction proceeds along the dissociative pathway, as shown in
Figure 2a.75−77 The rate-limiting step in this process is known
as the dissociative chemisorption of N2.

5,75,76,78 Since the
computational cost of DFT calculations of transition states for
estimating activation barriers is very high, it may be possible to
use, for example, the reaction heat of dissociative adsorption of
N2 as an indicator of catalytic activity.19 In such a study,
Hammond’s postulate79 and the Bell−Evans−Polanyi princi-
ple80,81 are assumed. If the reaction mechanism is limited to
the dissociative pathway only, the search for catalysts can be
based on the adsorption energy of nitrogen atoms; Nørksov
and co-workers argue that this is the best descriptor.82 In fact,
the design of high-entropy alloy nanoparticles based on
nitrogen adsorption energy has recently been reported.83

Previous studies have suggested that the mechanism of
cluster-catalyzed ammonia synthesis is more complex. In most
cases, ammonia synthesis on cluster catalysts proceeds by an
associative mechanism.34−36 That is why it does not seem
possible to use the dissociative adsorption energy of N2 as an
indicator of catalytic activity in the search for the optimal
cluster catalyst.
As such, we decided to focus on one elementary process

common to all pathways. It is the physisorption of N2. In fact,
the sticking coefficient (probability) of N2 on the surface of
iron catalysts in the Haber−Bosch process is known to be very
small, around 10−6,84,85 and the ease of N2 adsorption on the
catalyst surface is likely to affect the reaction rate. Surface
science measurements by Ertl et al.86 showed that the addition
of potassium to Fe catalysts increased the magnitude of the
adsorption energy of molecular nitrogen and enhanced the
dissociation of nitrogen molecules.
In light of the above, and considering that the first step in

any ammonia synthesis process is the adsorption of N2,
without which nothing will happen, using the adsorption
energy of N2 as an indicator of catalytic activity is still not a
bad choice. The adsorption energy of N2 (Eads) is defined by
the following equation:

= +E E E E( )ads N /cluster N cluster2 2 (2)

where ENd2/cluster means the energy of a complex system with an
N2 molecule adsorbed on a cluster, ENd2

means the energy of
the N2 molecule alone, and Ecluster means the energy of the
cluster alone.
Figure 3 shows two typical adsorption modes of N2 on metal

nanocluster surfaces.87,88 If the side-on adsorption mode is

more stable than that of the end-on mode, it is assumed that
N2 adsorbed in the end-on mode would transition to the side-
on mode during the geometry optimization process. Therefore,
we used the end-on type adsorption structure as the initial
structure for the geometry optimization of the adsorption
structure for the calculation of the adsorption energy of N2
onto the nanoclusters. Geometry optimization was performed
using the end-on adsorption structure on all symmetrically
distinct metal atoms in the nanoclusters as the initial structure.
Thus, multiple values of Eads may be obtained for a single metal
nanocluster, in which case, the value with the largest
magnitude of Eads was adopted. For details on setting up
geometry optimization calculations, refer to Section 4 at the
end of this paper.
Here, we should not forget what Sabatier’s principle89 tells

us. So far, Sabatier’s principle has provided a conceptual
framework for the search for the optimal catalyst in catalyst
development. If the interaction between the catalyst and
molecule is too weak, the molecule cannot bind to the catalyst,
and the reaction will not occur. On the other hand, if the
interaction is too strong, the product will not be desorbed. In
other words, the optimal catalyst condition is to bind
molecules with an intermediate strength. That is why plotting
the reaction rate as a function of the strength of the interaction
between the molecule and the catalyst surface yields the so-
called volcano plot shown in Figure 4. Such a concept, of
course, also applies to ammonia synthesis.90,91

In light of the above, it would be unwise to rely solely on the
adsorption energy of the N2 molecule to search for an optimal
catalyst. This is because the catalyst may be poisoned and
inactivated. Therefore, the ease of product desorption, i.e., the
NH3 desorption barrier, should also be taken into account.

92

We need to introduce a term in the objective function that
relates to the acceleration of product desorption. The barrier to
desorption of NH3 from metal nanoclusters (Edes) is calculated
by the following equation:

= +E E E Edes NH cluster NH /cluster3 3 (3)

where ENHd3/cluster means the energy of a complex system with
an NH3 molecule adsorbed on a cluster and ENHd3

means the
energy of the NH3 molecule alone. As adsorption sites for NH3
to calculate ENHd3/cluster, on-top type adsorption modes at all
symmetrically unique metal atom positions were considered, as

Figure 3. Two typical adsorption modes of N2 on metal nanocluster
surfaces: (a) end-on and (b) side-on.
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in the calculation of N2 adsorption. In other words, an
adsorption structure was assumed in which a lone pair on the
N atom of NH3 coordinates on a single metal atom in the
cluster.
In general, when N2 is adsorbed, the energy of the system

goes down, so Eads < 0. On the other hand, when NH3 is
desorbed, the energy of the system goes up, so Edes > 0. To
achieve Sabatier optimal, Eads should be more negative. That is,
the absolute value of Eads should be as large as possible. On the
other hand, Edes should be as small as possible and close to 0.
In other words, its absolute value should be as small as
possible. In light of the above, we define y = |Eads| − |Edes| as a
measure of catalytic activity. The larger the value of y, the
higher the catalytic activity is expected. In this study, we utilize
BO to find metal nanoclusters in which the value of y is as large
as possible. In other words, we set y as the objective function
for BO.

2.3. Determination of Initial Data Set Size in
Preparation for BO Execution. In this study, BO was
performed using PHYSBO (optimization tool for PHYSics
based on Bayesian Optimization),93,94 a Python library for fast
and scalable BO. It is an enhanced version of COMBO95 for
materials science. Recently, many examples of BO applications
in the field of materials science using PHYSBO have been
reported.19,96−99

The space to be explored by BO is prepared in advance.
That is, the explanatory variables for the candidate materials
are represented by a vector x and listed. At this stage, the value
of the objective function is not known. Among these, a few
candidates are selected for the construction of the initial data
set, and the value y of the objective function is estimated by
DFT calculations. This yields the training data D =
{xi,yi}(i = 1,···,N), where N represents the number of initial data
points. To perform BO, at least two or more objective function
values must be obtained.100 The number of initial data points
required depends on the problem to be optimized, the size of
the search space, etc.100

In this study, we set N = 5. As discussed in Section 2.1, our
search space consists of 308 candidate nanoclusters. Therefore,
the proportion of the initial data set to the total number of data
samples is 5 out of 308 (approximately 1.6%). Compare this
ratio with previous studies: the ratio of initial data sets in the
BO-based screening by Seko et al. is 0.2%58 and that by
Hashimoto et al. is 0.4%.47 In light of the above, we can say
that the initial data set size of N = 5 is a large enough size.

2.4. Selection of Explanatory Variables. BO can only
begin after the candidate compounds have been encoded with
an appropriate set of feature vectors (explanatory variables). In
BO, the selection of appropriate feature vectors is the most
important and often the most difficult part, so considerable
research activity is devoted to the development of feature
vectors.101−103 The feature vector xi for the i-th candidate is
written down as follows:

= ···x x xx ( , , , )i
i i

n
i

1
( )

2
( ) ( ) (4)

where n is the dimension of vector xi, i.e., the number of
explanatory variables. We assume that the value of the
objective function for the i-th substance, i.e., yi, is expressed
as a function of xi

= = ···y f f x x xx( ) ( , , , )i i
i i

n
i

1
( )

2
( ) ( )

(5)

Thus, of course, the elements of xi should have a meaningful
relationship to yi. However, it is very difficult to find such
variables. Moreover, such variables need to be quite easily
measurable compared to the objective variable. Otherwise,
there is no need to bother with BO.
Higher dimensioning of xi may be one way to address such

an issue. A wide variety of features such as ionization energy,
electronegativity, electron affinity, number of valence electrons,
and atomic size have been used in machine learning studies for
the design of various inorganic materials, including perov-
skites104 and high-entropy alloys.105 However, such an
approach should not be taken too easily in BO implementa-
tion. This is because the inclusion of many variables through
higher dimensioning of xi might badly affect the assessment of
similarity between candidate materials,101 which is calculated
from the distances between feature vectors for different
candidate materials and plays a crucial role during the
calculation of the posterior distribution. It is reported that
BO using high dimensional feature vectors often performs very
poorly.101 As such, in order to efficiently perform BO, it is first
necessary to identify a minimum set of features related to the
material properties of interest and to construct a low-
dimensional feature vector. That is why we decided to
consider the type of metal atom and cluster size as the
minimum required feature vector elements to dictate the
composition of metal nanoclusters in this study. The type of
metal atom is specified by its atomic number, and the cluster
size is specified by the number of atoms in the cluster.

2.5. Preparation and Analysis of the Initial Data Set
for BO. We need to calculate Eads for N2 adsorption and Edes
for NH3 desorption for five metal nanoclusters and determine
the value of the objective function y. To do this, we need to
determine the structure of the five metal nanoclusters. We do
this using a combination of DFT calculations and the PSO
algorithm. This is a very costly calculation. We thought we
would save a little bit of computational resources. We had
already determined the structures of the Fe5, Ni5, and Cu5
clusters in our previous work.69 So, we used those structures to
evaluate Eads and Edes. We determined that the number of metal
nanoclusters comprising the initial data set was 5, so we
needed 2 more. We randomly selected Sc8 and Ce9.
Table 1 lists the Eads, Edes, and y = |Eads| - |Edes| values

calculated for the clusters selected above. The index of catalytic
activity, y, spans a wide range from −0.40 to 2.57 eV,
suggesting that proper sampling has been achieved. Based on

Figure 4. Schematic diagram qualitatively representing the Sabatier
principle. This is what is called a volcano plot.
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the initial data, Sc8 is the best nanocluster catalyst candidate
that meets our requirements for the catalyst.
It would be instructive to look for differences in structure

between those with the highest and lowest y values in Table 1.
Figure 5 shows the structures obtained by geometry

optimization of N2 and NH3 adsorbed on Sc8 and Cu5. The
Sc8 cluster, optimized using the PSO algorithm, has an
adjacent bicapped octahedron structure; the Cu5 cluster has a
planar trapezoidal two-dimensional structure. The most stable
structures of these metal clusters have been reported in
previous studies.106−108 The structures of these clusters that we
have identified using PSO are in perfect agreement with those
reported in the previous studies. Ideally, one would like to
compare the computationally determined structures with
experimental results, as has been done in recent studies,109,110

but a comparison with the structures presented in the literature
provides some evidence that the PSO algorithm is good at
accurately searching for stable structures. On Sc8, N2 is
adsorbed in the side-on mode, while on Cu5 it is adsorbed in
the end-on mode. In both cases, N2 was set to the end-on
adsorption mode in the initial structure of the optimization,
but during the optimization process, a transition from the end-
on to the side-on mode occurred in the case of Sc8. The N−N
bond length of N2 adsorbed on Sc8 is 1.39 Å, whereas that on
Cu5 is 1.13 Å. The N−N bond length is an indicator of
nitrogen activation,13 suggesting that N2 on Sc8 is more
activated than that on Cu5. On the other hand, the bond
distance between the metal atom and the N atom in the NH3

adsorption structure would be considered an indicator of the
desorption barrier: on Sc8, the distance between the Sc atom
and NH3 is 2.32 Å, while on Cu5, it is 2.03 Å. Thus, it is
expected that Sc8 is more likely to release NH3. From these
observations, we may conclude that our definition of y is a
good indicator for conveniently estimating catalytic activity.
Note, however, that this is only a formulation of the necessary
conditions that a catalyst must satisfy, not a sufficient
condition. Other indicators may be useful if one wants to
search for catalysts only for a particular reaction mechanism
(e.g., dissociative pathway). In this study, our research is
designed with the intention of optimizing cluster catalysts with
diverse catalytic reaction pathways at the lowest possible
computational cost.

2.6. Learning Initial Data Using Gaussian Processes. A
Gaussian process regression (GPR) is performed using y in
Table 1 and the atomic number of the metal atom and the
number of metal atoms in each metal cluster, x. The GPR
prediction of catalytic activity, μ(x), and the variance, σ(x),
associated with the uncertainty of the prediction are calculated
according to the following equations:95,100

= +x k x K I y( ) ( ) ( )T 1 (6)

and

= + +kx x x k x K I k x( ) ( , ) ( ) ( ) ( )T 1 (7)

where I is the unit matrix and k is a function called a kernel.
GPR is a regression model that can express various functions
by designing kernel functions. In GPR, the kernel function k(xi,
xj) can be used to express the similarity of two input data
points xi and xj, among a set of data points.

47 There are various
kernels available, but the following Gaussian kernel, or radial
basis function (RBF) kernel, is generally used100
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λ and η that appear in the above equations are called
hyperparameters; PHYSBO has the ability to optimize these
values. Using the RBF kernel, k(x) and K are calculated as
follows
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N is the number of samples in the training data. In this study,
N = 5. By applying eqs 6 and 7 to all candidate points for
which y values have not yet been observed, we can estimate the
predicted value of y and the uncertainty of the prediction at
each candidate point. Based on the predictions and their
uncertainties thus obtained, the value of the acquisition
function (AF) at each candidate point is evaluated to
determine the next observation point.
As an economical search method, it is important that the

algorithm maintains a balance between exploring regions of
high uncertainty and updating the optimal value by exploring

Table 1. List of Eads and Edes Values Calculated for Each
Cluster Comprising the Initial Data and the Index of
Catalytic Activity y = |Eads|−|Edes| Calculated from Thema

Eads (eV) Edes (eV) y = |Eads| − |Edes| (eV)
Fe5 −0.98 0.24 0.74
Ni5 −1.47 1.32 0.15
Cu5 −0.59 1.00 −0.40
Sc8 −3.40 0.84 2.57
Ce9 −2.94 0.83 2.11

aAll numbers are rounded to two decimal places. y was calculated on
the data before rounding, and the result is rounded to two decimal
places.

Figure 5. Optimized adsorption structures of N2 and NH3 on (a) Sc8
and (b) Cu5. Selected bond distances are shown.
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the neighborhood of the point that tentatively gives the
optimal value. Such a process is what is represented by the so-
called “exploration−exploitation trade-off.”47,111 In order to
maintain this balance properly, the AF must be chosen
appropriately. PHYSBO includes methods for calculating AFs
called EI (expected improvement), PI (probability of improve-
ment), and TS (Thompson sampling).100

EI was used as the AF in this study because it offers a good
balance between exploration and exploitation and is a common
AF used in BO of material product design.46 EI is probably the
most frequently used of the three AFs.47,111,112 EI is the
expected value of how much ymax, the maximum value of y
currently available, will be updated when x is observed, and is
defined as93,113

= [ ]y yx xEI( ) max( ( ) , 0)max (11)

At the next observation point suggested by the AF, DFT
calculations are performed, and y is determined. The results are

then added to the series of equations from eqs 6 to 10. This
increases the dimensions of k and K. The AF is then updated,
and we are led to the next search location. This is repeated.
It will be useful here to provide a framework of how we

proceeded with this study. Figure 6 shows the scheme. Our
study consists of three main components: first, BO, which was
performed using PHYSBO as detailed above; second, cluster
structure exploration using PSO, which was performed using a
combination of CALYPSO (crystal structure analysis by
particle swarm optimization)114−116 and VASP (Vienna Ab
initio Simulation Package);117−120 and third, evaluation of the
catalytic activity of metal nanoclusters using DFT calculations,
which was performed using VASP. Detailed information on
each part, including setting up detailed calculation conditions,
can be found in Section 4 at the end of this paper.

2.7. Results of BO. Let us see how the optimization of the
metal nanocluster catalyst by BO proceeded. Figure 7 shows
the update of the maximum value of the objective function y.

Figure 6. Schematic diagram representing the flow of cluster catalyst search conducted in this study.

Figure 7. How the maximum value of y, a measure of catalytic activity, is updated as iteration progresses (solid line). The dashed line shows the
evolution of the y value calculated for the metal nanocluster actually proposed by BO at each step.
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We can see that once every 2 or 3 times, the update of the
maximum value occurred. However, after the eighth cycle, the
maximum value was not updated for five consecutive cycles.
Since the computational cost of running one of the cycles
shown in Figure 6 is prohibitive, we decided to terminate our
search here.
Let us see which metal nanocluster was actually proposed in

each step of the BO. Table 2 summarizes the metal nanocluster

proposed at each step. There are also shown the calculated Eads
and Edes values for each metal cluster. It can be read from these
data that large values of y are often the result of large absolute
values of Eads. Calculating unbiased variance for the Eads and
Edes values listed in Table 2 yielded values of 0.64 for the
former and 0.08 for the latter. In other words, Eads has a larger
variance, suggesting that the variation in y is more influenced
by the variation in Eads than by that in Edes.
In Section 2.2, we introduced the objective function y. At

that time, we did not have reliable information on the variation
of Eads and Edes, so we treated their contributions as equal.
However, to make the resulting contributions of both equal, we
may be required to define y with a weighting that takes their
variance into account. Addressing such issues remains a
challenge for the future.
The best metal nanocluster found in the process of BO is

Ti8. It was found in the 8th BO cycle. After 5 clusters had
already been computed for initial data construction, 8 clusters
were computed as dictated by BO, and we arrived at Ti8,
achieving our goal by actually computing only 13 clusters out
of 308 candidates. This clearly shows the advantage of BO over
standard combinatorial approaches. It is interesting to note
that for Ti-containing species, Shima and co-workers reported
that a trinuclear Ti hydride complex induced N2 cleavage and
partial hydrogenation.121 The adsorption structures of N2 and
NH3 on it are shown in Figure 8; the N−N bond is 1.38 Å,
suggesting that N2 is substantially activated as the result of
adsorption. The distance between NH3 and the cluster is also
very long at 2.28 Å, suggesting that ammonia is easily desorbed
from the cluster. The optimized structure of Ti8 in Figure 8
seems to be similar to the DFT-based one reported by
Lazauskas and co-workers.122 The index of catalytic activity for

Ti8 was as high as 2.33, but could not exceed that for Sc8,
which happened to be included in the initial data. However,
Figure 7 shows that the maximum value of y is steadily being
updated, suggesting that BO itself is working well. Several
interpretations may be possible for this result. For example,
one might conclude that Sc8 was the best catalyst after all, since
Figure 7 suggests that no further improvement in y value is
expected as the BO cycle progresses. Alternatively, a few more
steps of the BO cycle might have found a catalyst with a y value
higher than Sc8. But there would be no end to it. This relates to
the difficult question of at what step the BO cycle should be
stopped. If the cost of each step is small, it is possible to run
many BO cycles, but if the cost of each step is very high, as in
this study, the trial must be terminated as early as possible.
As described above, Ti8 is one of the promising metal

clusters as a candidate catalyst for ammonia synthesis.
However, this BO study does not take into account the
stability of the metal cluster. Hopefully, it is possible to set up
an objective function that includes stability. That is left as a
future issue. Since there is a previous study on the stability of
Tin clusters,

123 we would like to build on it to discuss the
stability of the Ti cluster. In Sakurai et al.’s study,123 time-of-
flight (TOF) mass spectra showed that the TOF intensities at
n = 7, 13, and 15 (so-called magic numbers) were much higher
than those at the neighboring n values such as n = 8. The
magic-number clusters have large Ti−Ti bond energies, which
can be associated with high symmetrical geometries
(pentagonal bipyramid for Ti7, icosahedron for Ti13, and bcc
structure units for Ti15). As such, the preparation of the Ti8
cluster could be difficult because Ti8 is likely to lose one Ti
atom to give Ti7. Therefore, we also investigated the catalytic
activity of Ti7. The adsorption structures of N2 and NH3 on
Ti7 are shown in SI, and it is clear that the binding strength of
Ti7 to NH3 is strong. Therefore, even if NH3 is formed on its
surface, it is expected to be difficult to desorb. After all,
stabilizing Ti8 without loss of catalytic activity seems to be the
most promising strategy. There has also been much research
on the stabilization of metal clusters with polymers and
dendrimers.29,124

We performed BO and consequently performed calculations
for the 12 metal clusters, as shown in Table 2. Since there may
be more than one possible adsorption site per metal cluster,
the pairs of Eads and Edes we calculated are actually more than
12. A combined data set of all of the data from the results of
those calculations is shown in Figure 9. Note the region
enclosed by the dashed line in this figure; as the absolute value
of Eads increases, so does Edes. This means that metal clusters
that strongly adsorb N2 also strongly adsorb NH3 in the same
way. This is inferred from the so-called scaling relation125−127

and is considered a natural result. A catalyst must strongly

Table 2. The Metal Nanocluster Proposed in Each Step of
the BO Cycle, the Eads and Edes Values Calculated for Them,
and the Value of the Index of Catalytic Activity y Calculated
from Thema

iterations metal nanoclusters Eads (eV) Edes (eV) y (eV)

1 V8 −1.32 0.98 0.34
2 Os6 −1.36 1.67 −0.32
3 Nd10 −1.55 0.87 0.68
4 Ir9 −1.23 1.40 −0.17
5 Pr9 −2.41 0.71 1.70
6 La9 −1.74 0.83 0.91
7 Nb10 −0.73 1.06 −0.32
8 Ti8 −3.21 0.88 2.33
9 V10 −0.69 0.96 −0.27
10 W5 −1.07 1.29 −0.22
11 Hf4 −2.39 0.82 1.57
12 Lu4 −0.58 0.81 −0.23

aAll numbers are rounded to two decimal places. y was calculated on
the data before rounding, and the result is rounded to two decimal
places.

Figure 8. Optimized adsorption structures of N2 and NH3 on Ti8.
Selected bond distances are shown.
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adsorb reactants, but on the other hand, it must also effectively
release products. In other words, it is crucial to break the trade-
off that usually exists between adsorption of reactants and
desorption of products. The dashed area truly reflects such a
trade-off.
Let us focus on the region not enclosed by the dashed line in

Figure 9. The metal nanoclusters in that region exhibit an
interesting property: as the absolute value of Eads increases, the
value of Edes hardly changes. In this region, the trade-off
between adsorption and desorption is broken. Since the best
catalyst is one that strongly binds N2 but weakly binds NH3,
we would expect it to be as far to the lower left as possible in
this scatter plot. We can then conclude that Ti8 is the best in
this diagram.

3. CONCLUSIONS
In this paper, we present our efforts toward the theoretical
design of metal nanocluster catalysts for efficient ammonia
synthesis. We tackled mainly three problems that stand in the
way of this task using computational methods. The first
problem was how to define a measure of the catalytic activity
required for the catalyst for ammonia synthesis. For an optimal
catalyst, it is necessary to promote both the adsorption of
reactant (N2) and desorption of product (NH3), and we
proposed to use the difference between the absolute values of
the adsorption energy of N2 and the absolute value of the
desorption barrier of NH3 as a measure of catalytic activity.
These energy values were evaluated using first-principles
calculations. The second problem was the large number of
candidate metal nanoclusters. The combinations of metal
elements and the number of metal atoms that make up the
metal nanocluster are enormous, and it is necessary to
effectively choose the best one (the one with the highest
measure of catalytic activity). BO was utilized for this purpose.
The third problem was the large number of isomers of the
metal nanocluster. As the number of metal atoms constituting
the metal nanocluster increases, the number of isomers
increases exponentially. It is necessary to identify the
thermodynamically stable cluster structure effectively. To
solve this problem, we utilized PSO, a type of swarm
intelligence, in combination with first-principles calculations.
By utilizing the three tools of first-principles calculations, BO,
and PSO, we succeeded in obtaining the Ti8 nanocluster as a

catalyst candidate. In the N2 adsorption structure on Ti8, the
N−N bond is elongated, indicating that the N2 molecule is
activated. In the NH3 adsorption structure, the distance
between NH3 and the cluster is elongated, indicating that NH3
is likely to easily be desorbed. However, the measure of
catalytic activity calculated for Ti8 could not exceed the value
calculated for Sc8, which happened to be included in the initial
data for BO. As a result, we found Ti8 through BO, and Sc8
accidentally. However, BO also brought another important
discovery. Among the metal nanoclusters found in the BO
process of this study, there were several candidates that broke
the general trade-off that surfaces that strongly adsorb
reactants also strongly adsorb products.

4. COMPUTATIONAL METHODS
4.1. Exploration of Metal Nanocluster Structures.

CALYPSO v.5.0114−116 was used to search for the most stable
structure of each metal nanocluster; the population of each
generation generated by CALYPSO was set to 20. Sixteen of
these were generated using PSO, and the remaining four were
randomly generated to ensure diversity. To ensure that
metastable structures are also searched for, a local PSO
algorithm with Metropolis criterion was employed.62 We
decided to search for up to 70 generations, but if the
magnitude of change in the energy update of the most stable
cluster was less than 0.001 eV for 10 consecutive generations,
the calculation was terminated at that point.
The initial structures of the metal nanoclusters generated by

CALYPSO were optimized using VASP 5.4.4. VASP can only
optimize structures with imposed periodic boundary con-
ditions. Since nanoclusters are not periodic systems,
calculations were performed with a nanocluster placed within
a large orthorhombic unit cell surrounded by a vacuum layer.
The distance between the nanocluster and the periodic images
in the vicinity was set longer than 15 Å. The need for a
distance greater than 15 Å is based on the literature.67−69 The
results of the literature survey,128−130 which shows that a
vacuum layer thicker than 15 Å is generally introduced when
building a slab model, also support the validity of setting this
distance. We refer to previous studies for the calculation of
clusters using such a method.67−69,131−133 In the VASP
calculation, the Perdew−Burke−Ernzerhof (PBE) function-
al,134 a generalized gradient approximation (GGA), was used.
Grimme’s D2 dispersion correction was applied.135 The cutoff
energy was set to 300 eV, and the energy convergence
condition in the self-consistent field (SCF) cycle was set to 1.0
× 10−3 eV. Spin-polarized calculations (collinear) were
performed. We have verified the validity of spin polarization
calculations using VASP in our previous work.68 The magnetic
moments calculated for all optimized metal clusters are
tabulated in the SI. The convergence condition for geometry
optimization was set to 1.0 × 10−2 eV. The abovementioned
computational conditions are set slightly loose. This is to
accelerate the structure search.
After the structural search was completed, more rigorous

computational conditions were applied to the most stable
metal nanocluster structures found, and the cluster structures
were re-optimized. The modifications to the calculation
conditions are as follows. The cutoff energy was increased to
500 eV, and the convergence condition for the SCF cycle was
set to 1.0 × 10−6 eV. The interatomic force was adopted as the
convergence condition for geometry optimization, and its value

Figure 9. Correlation between Eads and Edes values calculated for all
metal nanoclusters investigated in the course of BO. The Eads and Edes
pair that gives the largest y value in each cluster is indicated by the
filled square marker. Others are indicated by filled circle markers.
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was set to 0.05 eV/Å. The other calculation conditions
remained unchanged.

4.2. Evaluation of Catalytic Activity. Calculations of the
adsorption and desorption energies of N2 and NH3 for the
evaluation of the catalytic activity were based on eqs 2 and 3,
respectively. Optimizations of the adsorption structures of
these molecules were performed using VASP. Adsorption
structures at all symmetrically distinct metal atom sites were
investigated. Thus, multiple adsorption structures were
obtained for each cluster. The lowest energy among them
was selected as the stable structure. One could do cluster
expansion and machine learning approaches to determine
adsorption sites on clusters that are more heterogeneous and
hence challenging than elemental metal surfaces.136 Catalysts
should be covered by reagents with higher coverage, but due to
limited computational costs, the investigation was limited to
the dilution limit.
The PBE functional was used, Grimme’s D2 dispersion

correction was applied, the cutoff energy was set to 500 eV,
and the energy convergence condition in the SCF cycle was 1.0
× 10−6 eV. Spin polarization was included within the
calculations being performed at the γ point. The force acting
between atoms was adopted as the convergence condition for
structural optimization, and its value was set to 0.05 eV/Å.
These conditions are the same as the “rigorous” condition
setting described above. The optimized structures were
visualized by VESTA.137

4.3. Execution of BO. PHYSBO, a Python 3 library, was
used to perform the BO. The RBF kernel was used as the
kernel function and EI as the AF. The optimization was
terminated when the best objective function value was not
updated for five consecutive runs.
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