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ABSTRACT

Due to the rapid cost decline of synthesizing and se-
quencing deoxyribonucleic acid (DNA), high informa-
tion density, and its durability of up to centuries, uti-
lizing DNA as an information storage medium has re-
ceived the attention of many scientists. State-of-the-
art DNA storage systems exploit the high capacity of
DNA and enable random access (predominantly ran-
dom reads) by primers, which serve as unique iden-
tifiers for directly accessing data. However, primers
come with a significant limitation regarding the max-
imum available number per DNA library. The number
of different primers within a library is typically very
small (e.g. ≈10). We propose a method to overcome
this deficiency and present a general-purpose tech-
nique for addressing and directly accessing thou-
sands to potentially millions of different data objects
within the same DNA pool. Our approach utilizes a
fountain code, sophisticated probe design, and mi-
croarray technologies. A key component is locality-
sensitive hashing, making checks for dissimilarity
among such a large number of probes and data ob-
jects feasible.

INTRODUCTION

The amount of digital data created worldwide is growing
exponentially and at an ever-increasing pace. Despite the
growing storage density, today’s storage technologies such
as HDD and tape are out-paced and cannot keep up with
the growth of these data rates. It is estimated that by the year
2025 we will have reached 175 Zettabytes globally of total
stored data (1). Nearly 80% of it is considered ‘cold’ data
that is not frequently accessed, making it an optimal candi-
date for DNA storage. Furthermore, storing data into DNA
has become more prominent due to its unmatched storage
density. The theoretical data density for DNA is estimated
to be around 455 EB per gram (2), about 50 million times
higher than that of traditional media such as HDDs. The
durability of DNA plays another important role, exceed-
ing centuries, while HDDs and tapes require replacement
every 5 or 30 years, respectively (3). When storing digital
data into DNA, one first needs to map digital bits to DNA

bases, the building blocks of DNA. There are four bases
for DNA: adenine (A), thymine (T), cytosine (C) and gua-
nine (G). All sequences are not equally viable, so this map-
ping cannot be done in a naive way. For example, sequences
with multiple repeats of the same base (homopolymers), e.g.
‘AAAAAAA’ are more error-prone in the sequencing (read-
ing DNA) process (4) and thus can not be used. Following
the mapping process, the resulting DNA strands can be syn-
thesized (writing DNA). To read data from DNA storage,
it is first necessary to sequence the target DNA strands. A
significant aspect making DNA storage a promising future
alternative to traditional hardware is the sequencing cost,
which has been dramatically declining over the past years.
But even when considering the sharp decline in costs asso-
ciated with DNA data storage, without the ability to access
specific information directly, DNA data storage would still
be too time and cost-intensive to be a viable alternative to
traditional long-term storage devices. In this paper, we will
address the following challenges in parallel:

(1) How do we encode information into DNA at very high
densities and minimize errors?

(2) How do we enlarge the DNA address space and enable
efficient random access at a large scale?

Considering (1), recent studies outline challenges in loss-
less information retrieval (perfect recovery) from DNA.
However, synthesizing and sequencing errors have been re-
duced dramatically, and sequencing costs have dropped by
a factor of nearly 100 000 in the past few years. We will
show that it is possible to encode information into DNA
with little redundancy and no errors. Challenge (2) remains
an open question. In particular, most of the current DNA
storage systems only provide up to ≈10 different data ob-
jects that can be addressed within a single DNA pool. This
restriction is due to the biochemical limitations of the poly-
merase chain reaction (PCR). The main problem with ad-
dressing data objects is the limited number of available
primers.

Primers are special pre-known sequences used to identify
a single DNA strand within a pool uniquely. Usually, each
DNA strand has a unique primer pair attached to each of
its ends, which unambiguously identifies that strand. These
primers are also used to amplify, i.e. copy the sequences
for sequencing and synthesizing purposes. There are exten-
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sive restrictions considering primers and the target DNA
strands that contain the information. For example, primers
cannot overlap with any of the DNA strands within the
same library.

This disadvantage is often mitigated by splitting the
DNA library into multiple DNA pools, each physically sep-
arated and thus treated as separate DNA libraries. This en-
ables up to ten addressable data objects per pool, allowing
us to address a total of 10n objects for n pools. However, the
usage of multiple pools introduces additional overhead and
greatly decreases the information density, which is a crucial
advantage of DNA. It was demonstrated that one could use
special DNA prefixes to address DNA strands that extend
the address space beyond ten (5). The authors designed a
system called ‘DORIS’ that offers a maximum of 12 000 ad-
dresses. Nonetheless, this address space is insufficient con-
sidering the theoretical capacity of DNA storage systems,
even when assuming that each DNA strand represents a sin-
gle data object. Most recent studies (2,3,6–11) do not sup-
port random access on their DNA storage medium (12) or
it is very limited. To reduce errors, these systems require a
5–3000-fold physical and logical redundancy, which leads to
a substantial reduction of storage density. In addition, most
of the works mentioned do not encode information such
that the resulting DNA is sufficiently stable for long-time
archival or perfect decoding. In particular, only a few en-
coding schemes are aware of, e.g. 50% GC content and mini-
mization of complex secondary structure formation such as
hairpins. It was often necessary to increase the sequencing
coverage to perfectly decode the data, i.e. multiple reads of
the same sequence and additional redundancy were needed
for retrieval.

In this paper, we present a proof-of-concept for a method
that enables encoding arbitrary digital data into DNA and
supports random access to up to millions of addressable
data objects within the DNA.

MATERIALS AND METHODS

General biochemical restrictions on DNA

DNA can form complex shapes as it winds and coils around
itself. The shape of DNA depends on its nucleotides’ ar-
rangement and the surrounding temperature. Each possi-
ble shape is referred to as a secondary structure, and a sin-
gle DNA strand (or double-helix) can have different sec-
ondary structures depending on the temperature. Note that
sequencing machines fail to read DNA that forms complex
secondary structures, and thus these structures have to be
minimized. To obtain stable DNA, we have to consider the
following biochemical constraints (7,13):

(C1) GC content (number of G’s and C’s) should be around
50%.

(C2) Consecutive repeats of the same nucleotide (homopoly-
mers) should be minimized.

(C3) Similarities between primers’ sequences should be min-
imized.

(C4) Similarities between strands and primers should be
minimized.

(C5) Similarities between strands’ sequences should be min-
imized.

(C6) Secondary structures such as hairpins should be mini-
mized.

Constraint C1 and C2 are known to be highly corre-
lated with sequencing and synthesizing errors. Moreover,
G and C form three hydrogen bonds while A and T form
two, with each hydrogen bond requiring energy to break.
Thus, G and C bonds are more thermostable than A and
T bonds. Despite this, the hydrogen bonds themselves do
not significantly increase DNA stability, which is primarily
achieved by molecular interactions referred to as base stack-
ing (14). A uniform distribution of the number of A’s, T’s,
C’s andG’s yields a more stable DNA in general. Constraints
C3 and C4 assure that PCR is targeted at selected primers
and does not falsely amplify subsequences of other DNA
strands. C5 minimizes cross-hybridization: If the DNA pool
contains fragments that overlap, similar strands compete in
hybridization and partially bind to the wrong halves. This
can result in altering the DNA pool and hindering the cor-
rect hybridization. Fulfilling C6 ensures that DNA is stable
enough for further storing, sequencing and synthesizing.

Microarrays and probe design

Microarrays, often called DNA chips, are solid surfaces
usually made of glass used to identify several hundred to
thousands of genes simultaneously. Typical applications are
gene-expression analysis, detection of diseases such as can-
cer, genotyping, and other medical diagnostics (15–17). The
solid substrate of a microarray contains a large number of
spots/sites, each smaller than 200 microns (18,19) where
DNA can be immobilized to. This process is referred to
as ‘DNA downloading’, and each DNA sequence that is
downloaded is referred to as a probe or barcode. Probes are
usually single-stranded DNA sequences. Note that immo-
bilization does not affect the correct binding ability of the
probes, even when one end is fixed to the surface of the ar-
ray. Furthermore, the DNA chip can comprise up to mil-
lions of sites in an area of 1−2 cm2. Additionally, some ar-
rays are designed such that already immobilized probes can
be replaced. An alternative to microarrays is the bead cap-
ture method (20). Microarrays and bead captures are used
to select specific sites within a DNA pool and thus can be
used interchangeably with marginal differences. Through-
out this paper, we will further only use microarrays and not
bead captures.

Microarrays are flexible, and the same array can be reused
and adapted to new projects without inducing high replace-
ment costs (21). Generally, a microarray answers the ques-
tion, ‘Is a specific DNA sequence contained in the library?’.
To answer this question, we follow the steps below:

(1) Identify DNA sequences of interest.
(2) Immobilize (download) corresponding probes onto the

microarray sites.
(3) Place the DNA library onto the microarray.
(4) Wash the microarray and insert it into a scanning de-

vice.

In step (1), we need to identify one or more DNA se-
quences of interest and will refer to these sequences as tar-
gets. For example, we would select genes associated with
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Figure 1. A microarray with three probes selecting the corresponding three
targets out of a DNA library of five DNA strands.

a specific trait, disease, behavior, etc. Then, we define our
probes as the complementaries to chosen targets. For ex-
ample, if our targets were {TGAC, GCTG, CTAG}, then our
probes would be {ACTG, CGAC, GATC} respectively. Since
probes are single-stranded and targets are usually stored as
double-stranded DNA, probes are also contained in the tar-
get strands. In step (2), we download the probes to our mi-
croarray by synthesizing them onto the microarray’s sites.
In step (3), under certain thermal conditions, we pour our
DNA library over the microarray, enabling the targets to
hybridize to the probes of the microarray. After that, tar-
gets that bonded weakly in step (4) due to mismatches are
washed away, leaving only the strongly bonded targets. Fi-
nally, the remaining bonded targets can be sequenced and
retrieved in-silico. In Figure 1, five DNA strands are placed
onto a microarray that has three probes {ACTG, CGAC,
GATC} downloaded to. As shown, the array successfully se-
lects the strands that contain its probes’ complementaries as
subsequences and ignores the strands that mismatch with
the probes. Target sequences can be very long when short
subsequences are sufficient to unambiguously identify the
targets. Hence, probes are usually chosen as shorter sub-
sequences of the complementary targets. Note that targets
that hybridize to their corresponding probes can be read out
entirely, not only the bonded region. Probes are typically
around 18−25 bp in length, each theoretically allowing us
to address up to 425 targets. Nevertheless, to reduce cross-
hybridization noise, probes have to be sufficiently different
from each other and thus require careful design. This prop-
erty is referred to as the specificity of probes. The higher
the specificity, the less cross-hybridization noise of probes.
Additionally, all DNA sequences, including probes, have to
fulfill the constraints C1, C2 and C6. Factoring in all con-
straints, an appropriate probe design results in a notice-
able reduction of available sequences. For example, if probes
are too similar, target regions complementary to the probes
would compete while hybridizing and produce false posi-
tives.

Furthermore, the absence or presence of a target can be
directly determined from the microarray without sequenc-
ing. This is done by labeling the targets with a light-sensitive
chemical, such as a fluorophore that re-emits light after ex-
citation. After hybridization, these targets cause light emis-

sion, creating an image captured with a specially-designed
camera. The obtained image contains the light intensity for
each spot of the array, indicating the presence or absence of
the respective target. The strength of this light signal is ad-
ditionally used to calculate relative concentrations of target
DNA. In this work, we do not need to mark or label the
targets and only consider sequencing the bonded sequences
for further in-silico analysis. Since a single microarray can
contain up to millions of different probes, it allows millions
of tests in parallel and is highly scalable. In other words,
one can search and find millions of specific sequences in a
given DNA pool in one operation simultaneously. In addi-
tion, only targeted DNA strands are sequenced, and thus
sequencing costs can be further reduced.

Approximating DNA similarities

Limiting overlaps between Info-DNA and probes are cru-
cial for maintaining low hybridization noise between DNA
strands and probes. Therefore, in addition to the biochemi-
cal constraints we mentioned before, we will add the follow-
ing constraint:

(C7) Similarities between Info-DNA and probes should be
minimized.

A naive approach to identifying similar sequences is
not scalable as it requires every sequence to be tested
against all the other sequences. To calculate the similarity
of two DNA sequences efficiently, we implemented locality-
sensitive hashing (LSH) that enables approximating the
similarity with low computational overhead (22). In par-
ticular, we approximated the Jaccard similarity for DNA
sequences utilizing MinHash (23–26). To calculate the Jac-
card similarity of two DNA sequences, we first convert each
of the sequences to a set of k-mers. Let Sk(q) be the k-mer
set of sequence q, i.e., the set that contains all continuous
subsequences of q of length k. For example, the sequence q
=ACTACC, is mapped to the 3-mer set S3(q) ={ACT, CTA,
TAC, ACC} and for k = 4, the same sequence is mapped to
S4(q) = {ACTA,CTAC,TACC}. After that, we calculate the
Jaccard similarity (simk) of two sequences q1 and q2 as fol-
lows:

simk(q1, q2) = |Sk(q1) ∩ Sk(q2)|
|Sk(q1) ∪ Sk(q2)| (1)

Furthermore, for two sequences q1, q2, a threshold t, and
an approximation factor c > 1, LSH uses r hash functions
h1, ..., hr from a function family F , for which the following
holds:

dk(q1, q2) ≤ t ⇒ Pr [h(q1) = h(q2)] ≥ p1 (2)

dk(q1, q2) ≥ c · t ⇒ Pr [h(q1) = h(q2)] ≤ p2 (3)

where Pr denotes the probability, dk = 1 − simk is the
distance function, and h ∈ F is a randomly selected (uni-
formly) hash function. If the distance of q1 and q2 is be-
low threshold t, the probability of q1 and q2 mapping to the
same hash value is at least p1. Conversely, if the distance of
q1 and q2 is above c · t, the probability of q1 and q2 mapping
to the same hash value is at most p2. Moreover, we amplify
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our LSH by the OR-construction that reduces false nega-
tives (27,28). Every m hash functions further refer to a band.
Hash values of a band of a single sequence are combined to
a signature, which is mapped into a band hash table. There-
fore, LSH finds sequences of which signatures match in at
least one band. The resulting LSH algorithm approximates
Equation (1) and is parameterized by the number of hash
functions r, the k-mer length k, and the number of bands
b = r

m . As demonstrated in Supplementary Figure S6, when
the number of bands is small, i.e., the signatures are com-
posed of many hash values (large m), the signatures of two
sequences are less likely to match in any band, even if the
actual similarity is high. However, if b is large (small m),
the signatures only contain a few hash values and thus are
more likely to match in at least one band, even if the actual
similarity is low.

By utilizing LSH for similarity checks, we can quickly de-
cide if a new DNA sequence is similar to a given collection
of DNA sequences or not. Furthermore, we use a single
primer pair for our DNA sequences, which would allow the
amplification of the whole library if necessary. Note that the
primer sequences also have to be avoided while encoding the
data. We will first explain how we generated probes, then
briefly introduce fountain codes, which is the basis of our
encoding scheme. After that, we will describe the encoding
pipeline that produces DNA that fulfills all constraints C1
to C7 and enables random access.

Probe generation

To provide the keys for our encoding approach, we need
to generate a probe for each value. Since the probes are
computed prior to encoding the data, we do not need to
check for their similarities to Info-DNA sequences at this
stage. As presented in Algorithm 1, we specify a GC content
range [gcMin, gcMax] of which the probe p will be sampled.

Figure 2. A fountain code generating encoded symboles captured by four
receivers via a lossy channel.

Next, an empty sequence of length probeLen is initialized
in line 2. In line 3, we calculate the number of G’s and C’s
the probe will have. Then, from line 4 to line 8, we fill ex-
actly gcCount indices of p with randomly G or C. After
that, we fill the rest of p with randomly A or T in line 9
to line 13. This allows a uniform distribution of the differ-
ent bases and yields more stable DNA. Finally, if p does
not satisfy DNAConstraints, which resemble constraints
C1, C2, C4 and C6, we start over until p eventually fulfills
the given constraints. Note that constraint C4 can be effi-
ciently checked by utilizing LSH. If the generated sequence
satisfies these constraints, we insert it into the list of probes
(probesList) and update LSH. This process is repeated
until a desired number of probes is generated.

Fountain code overview

Fountain codes are a class of rateless erasure codes that gen-
erate a potentially infinite sequence of encoded symbols for
a given k-symbol message. In particular, they can create an
arbitrary amount of redundancy symbols that can be used
to recover the source message. For a k-symbol source mes-
sage, any subset of length k + ε encoded symbols can be used
to fully recover all k source symbols with high probability,
where ε is called the ‘overhead’ and is usually a small num-
ber. The idea is to enable senders to send encoded symbols
(packets) over a network, where the receiver can signal its
sender once the message was successfully decoded. In Fig-
ure 2, a fountain code is deployed that sends packets over a
lossy channel to four receivers. Note that in order to recover
the original message, each receiver requires k + ε arbitrary
packets. Moreover, faulty packets that contain unrecover-
able errors can be ignored by the receiver. Even if some of
the packets were lost during transmission, the sender could
continue sending packets (overhead) until the signal from
the receiver is captured.

Luby Transform (LT) codes were the first fountain codes,
published by Michael Luby in 2002 (29) that are near-
optimal erasure codes. LT codes were further improved (30),
and the latest improvement of this class of codes is the Rap-
torQ (RQ) code (31) and was used to encode and decode
our data. The key advantages of LT codes are the simple
encoding and decoding algorithms, which are based on the
exclusive-or operation and have linear time complex-
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ity. There is a trade-off between overhead (redundancy) and
recovery probability as follows:

• Overhead ε = 0 ⇒ Pr [′′recover y′′] > 99%
• Overhead ε = 1 ⇒ Pr [′′recover y′′] > 99.99%
• Overhead ε = 2 ⇒ Pr [′′recover y′′] > 99.9999%

A typical use case for RQ codes is data transmission over
lossy networks. If the data were successfully transmitted,
the receiver is very likely to decode and fully recover the
message. Even if some part of the message was lost during
transmission, the receiver could still recover the message if
sufficient overhead was provided.

RQ probe-aware encoding pipeline (RQPAP)

The original RaptorQ code takes a binary data object as in-
put and outputs a binary stream of packets, which can be
decoded to recover the input object. Typically, for a source
message with source symbols (x1, . . . , xk), the encoder gen-
erates a stream of encoded symbols (y1, y2, . . . ) such that
xi = yi, i ≤ k. The first k encoded symbols are equal to the
source message, and the following symbols yk + i, i > 0 are
repair symbols (overhead). Hence, only if transmission of
the original message was faulty, i.e., the receiver did not sig-
nal to the sender, we will need repair symbols to recover er-
rors. This variant of fountain codes is referred to as system-
atic codes. To further encode the output stream to DNA, we
map every two consecutive bits to a nucleotide (base). For
example, we map (01 10 10 00 11) to (TCCAG) and (00 00 00
00 00) to (AAAAA). Note that if the original message con-
tains a vast number of consecutive 0’s or 1’s, the resulting
DNA message will inevitably contain long homopolymers,
which are highly error-prone. To make our RQPAP work
for arbitrary binary data objects, even for ones containing
long chains of 0’s or 1’s, we used a non-systematic RaptorQ
code, where the first k symbols of the encoder are ignored,
and only repair symbols are considered. This is key since re-
pair symbols are computed from a range of source symbols
(see Supplementary Figure S7) and are thus less susceptible
to being encoded as unwanted homopolymers. In the next
section, we will show how we generate DNA packets for a
given data object. We will then show how to combine DNA
packets of a single data object to a DNA sequence (Info-
DNA). As mentioned above, we can use a single primer
pair for all generated DNA strands, which will be used to
amplify the pool as a whole, and is not used to perform
random access. Note that according to the constraints C1
to C7, overlaps of two different Info-DNAs, overlaps with
probes, and with the primer pair should be minimized. We
will call these constraints encoding constraints. Hence, we
utilized the RaptorQ code for encoding a given data object
while effectively solving the present encoding constraints.
That means it iterates over its unbounded stream of DNA
packets (y1, . . . ) and selects a subsequence of that stream
(yi, ..., yj), j > i, that is decodable and satisfies all of the en-
coding constraints. For example, in Supplementary Figure
S8, (y2, y3, y4) is a decodable subsequence that satisfies all
encoding constraints, while (y1, y2, y3) is not decodable but
satisfies the encoding constraints, and (y1, y2, y3, y4) is de-
codable but does not satisfy the encoding constraints.

Generating DNA packets

To generate DNA packets for a given data object, we split
the object into equally sized chunks, as depicted in Supple-
mentary Figure S7. Then, we randomly select a pre-defined
number of chunks, which are fed into the RQ’s encoder that
creates a binary packet. Note that these are repair packets
and do not contain the plain source message. Next, every
two consecutive bits are mapped to a corresponding nu-
cleotide by the mapping rules (00�→ A, 01�→ T, 10�→ C, 11�→
G), resulting in a DNA packet. The obtained DNA packet is
then parsed, and DNA constraints C1, C2, C3, C4, C5 and
C7 are checked. Suppose the DNA, e.g. contains too long
homopolymers, too low or high GC content, or a signifi-
cant overlap with primers, probes, or other Info-DNA. In
that case, the packet is discarded, and the next packet is
computed. RQ can generate a potentially infinite number of
packets, of which the first k + ε packets that allow decoding
and satisfy the constraints are selected. Note that comput-
ing the overlaps is done efficiently by calculating similarities
using LSH and can be scaled up without noticeable compu-
tational overhead. The advantage of RaptorQ is that it can
generate a large variety of binary packets in parallel and
thus eventually produces a DNA packet that fulfills all en-
coding constraints. Constraint C6 is not considered at this
step since multiple packets are further combined to create
an Info-DNA strand.

Combining DNA packets to DNA strands

To create the Info-DNA strand for a given data object,
we must combine multiple DNA packets generated as de-
scribed above. The resulting Info-DNA strand needs to con-
tain enough DNA packets to recover the input data object
fully. At the final stage, a probe is annealed to its begin-
ning. As illustrated in Algorithm 2, we first initialize the
output strand s with an empty sequence in line 1. Next, a
DNA packet is generated and appended to s. While s does
not contain enough packets to fully recover the input data
object, the algorithm loops, appending an additional DNA
packet every time. Eventually, s contains a sufficient number
of packets, allowing for successful decoding of the object.
Note that canDecode can be configured such that it only
returns positive once s is decodable and contains a certain
overhead. The given constraints (DNAConstraints) are
then evaluated in line 6. If s fulfills them, probe p is annealed
to its beginning. At this point, the strand resembles the fully
encoded data object. Furthermore, the mapping table (DOI
�→ probe) and LSH are updated in line 8 and line 9. Note
that we check the GC content (C1) for each DNA packet,
which yields a more uniform distribution over the result-
ing Info-DNA. Parameters such as similarity thresholds,
GC content, DNA stability (max homopolymer length, sec-
ondary structure stability, etc.) can be tweaked and adapted.
Moreover, we provide a tunable redundancy parameter for
the creation of encoded data objects. Nevertheless, if some
of the parameters, e.g. similarity threshold, are too strict,
the pipeline could loop forever, failing to encode the given
objects successfully. Additionally, if the similarity threshold
is set very low, most sequences will get checked by LSH, thus
slowing down the encoding speed. Furthermore, each data
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object can be encoded in parallel, which significantly in-
creases the speed. This requires the probes’ list, mapping ta-
ble, and LSH to be synchronized, inducing a minimal over-
head.

RESULTS

DNA-based storage system

We organized our DNA pool as follows: each DNA strand
is composed of a probe and an information-carrying part
(Info-DNA). The probe acts like a primer and uniquely iden-
tifies the strand but is not used for PCR amplification. For
information encoding, we use a fountain code, i.e. Rap-
torQ code (RQ) that enables variable forward error cor-
rection (FEC) and redundancy. Finally, a microarray with
printed probes is used to select and then sequence a target
DNA strand. To efficiently calculate unwanted overlaps of
DNA sequences, we implemented a locality-sensitive hash-
ing (LSH) algorithm incorporated into the probe design
and the fountain code’s pipeline. We used LSH to approx-
imate the Jaccard distance of two DNA sequences as de-
scribed in Materials and Methods. Furthermore, our encod-
ing pipeline incorporates probes that were computed before
encoding the data. Each data object is mapped to a single
probe, and the mapping table (data object �→ probe) is stored
in-silico. Each data object could be referred to by a unique
data object identifier (DOI), i.e. a number that unambigu-
ously identifies that data object. Hence, the mapping table
would store a collection of (DOI �→ probe) pairs. More-
over, the encoding scheme must be aware of the probes’ se-
quences and avoid overlaps, i.e., similarities between DNA
sequences of encoded data (Info-DNA) and the probes. The
resulting DNA strands, which resemble the final DNA se-
quences, are each composed of a probe (key) annealed to an
Info-DNA sequence (value) as shown in Figure 3. This kind
of organization is therefore called key-value store.

Random access

As described above, the resulting DNA strands resemble a
collection of key-value pairs, which can get synthesized and

stored in a DNA library or even in a single pool. We refer to
random access as a random read operation. In other words,
random access resembles a search operation that opts to
find and read a specific data object (Info-DNA) by its key
(probe) within a library of key-value pairs. Since the DNA
strands are double-stranded, they contain the correspond-
ing probe and its complement. As illustrated in Figure 4,
we need to obtain the specific probe’s sequence that was an-
nealed to the corresponding object. This is determined by
performing a lookup in the mapping table in-silico. Next,
the probe is downloaded (or printed) onto a microarray.
Then, the whole library (or pool) is placed onto the array to
allow the desired target DNA strand to hybridize to the se-
lected probe. Finally, we can sequence the hybridized strand
with a scanning device, parse and decode the Info-DNA by
RQ code to recover the data. Note that even if parts of the
DNA were damaged, RQ can still perfectly restore the data
object if sufficient redundancy was implemented.

Furthermore, we can select and sequence multiple data
objects in parallel. Since a microarray allows download-
ing up to millions of probes, we can randomly access up to
millions of different data objects simultaneously. Addition-
ally, one can create and manage several microarrays with
selected probes that are used frequently prior to random
access. Hence, a lookup query can be mapped to an exist-
ing microarray and does not require preparing a new array.
Some microarrays allow probe replacement and thus enable
further adaptation if needed.

Experimental setup

In order to evaluate the feasibility of our probe-aware en-
coding approach that provides highly scalable random ac-
cess on DNA, we ran several in-silico experiments. We im-
plemented our probe generation algorithm in Java, and the
RQ probe-aware encoding pipeline (RQPAP) was written in
Rust. Furthermore, we performed a warm-up run for each
experiment before the actual experiment. All our experi-
ments were performed on a server machine equipped with
1TB of RAM and 256 logical processor cores, each operat-
ing at 1.5–2.25 GHZ. Furthermore, we first experimentally
prove that our probes generator can produce up to millions
of probes of high specificity. After that, we evaluate our RQ-
PAP and show that it can encode up to millions of different
data objects in a reasonable time.

Evaluating probe generation

We computed one million different probes that satisfy all
DNA constraints we outlined in Materials and Methods.
Furthermore, we only allowed the GC content to vary be-
tween 40% and 60%, with most of the sequences being close
to 50%, and further restricted the maximum length of ho-
mopolymers to 5 bp. LSH with parameters (r = 200, b =
20) was used to determine the similarity of newly encoded
probes and data objects to existing ones. Throughout this
section, we fixed the length of k-mers to k = 4, where a
k-mer is a contiguous subsequence in the DNA of length
k. These k-mers serve for computing the Jaccard distance
among DNA subsequences. The parameters r and b were
unchanged for all experiments. Similar sequences, matched
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Figure 3. DNA strands are computed by annealing a probe (key) to an encoded data object (value). The probe is obtained from the list of probes generated
by the probes generator and the corresponding value (Info-DNA) is computed by the fountain code.

Figure 4. Performing random access on a data object using a microarray.

by LSH, were checked explicitly via the Jaccard distance,
and sequences with similarities that exceeded 60% were dis-
carded. Finally, each sequence was checked for complex sec-
ondary structure formation, and only stable (no complex
secondary structures) sequences were accepted.

Given a certain number of previously computed probes,
we show the computational cost (in milliseconds) for each
additional probe computed in Supplementary Figure S1.
Longer probes required more time to compute than shorter
sequences. This is mainly due to extra computation over-
head from the secondary structures formation prediction,
requiring more computation for longer sequences. In gen-
eral, we observed that shorter sequences are less prone to
building complex secondary structures.

In Figure 5, we show how using LSH for similarity checks
speeds up probe generation significantly. The probes’ length
is set to 60 bp. The blue line represents the computational

cost per probe using LSH and the red line (naive) for com-
puting the Jaccard distance for each newly created sequence
with the previous ones. Note that we made use of the
great parallelism available on the testing machine for the
naive method, parallelizing similarity computations when-
ever possible. Nevertheless, despite the high parallelism, we
had to limit naive probe generation to a total of 100k due to
its large computational overhead. Using LSH for similarity
checks resulted in a larger memory footprint, but it allowed
us to scale the generation up to several million probes.

Evaluating probe-aware encoding pipeline

For our experiments on the encoding-pipeline, we used the
data sets ds1 and ds2 described in the Supplementary Ma-
terial. Note that throughout this subsection, we change the
k-mers length to k = 5 while keeping the setting of the LSH
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Figure 5. Computation cost per additional probe (LSH versus naive).

parameters unchanged (r = 200, b = 20). We restricted the
maximum homopolymer length to 5bps if not otherwise
specified. We required all DNA sequences to have a min-
imum Jaccard distance of 30% to each other, and similar-
ity checks were only performed on the final DNA strands.
First, we computed 100k probes that serve as keys, which
were inserted into the LSH table. We used two different
LSH instances, one solely for the probes and another for
the generated DNA strands of the values. Next, using ds1,
we fed each line into our RQPAP and varied the RQ’s over-
head ε = 0, 1, 2. As shown in Supplementary Figure S2, a
larger ε led to significantly more run time. This is due to the
great increase in computation time of finding complex sec-
ondary structures, as we show in Supplementary Figure S3.
The resulting DNA strands for ε = 0, 1, 2 contain an aver-
age of 133, 161 and 189 bp, respectively. This means, with
each increase of ε by 1, we gain around ≈20% redundancy.
Note that these time measures also include decoding time
since we only stop generating DNA packets once the DNA
strands were decodable with respect to the specified ε.

Furthermore, we wanted to evaluate how varying strin-
gency of the constraints on the DNA strands would affect
the overall performance. In Supplementary Figure S4, we
encoded the same 100k lines again, setting ε = 0 and vary-
ing the constraints’ stringency. We restricted the maximum
homopolymer length to Max HP Length =4, 6, 8, 10. We
only observed a slight change in performance. We repeated
this experiment several times, which returned the same re-
sults (even with different ε). Contrary to our expectations,
the RQ code could generate a large number of packets with-
out significantly sacrificing performance, of which a suffi-
cient number of the packets were viable according to Max
HP Length. Moreover, the run time of secondary structure
checks was slightly higher for larger Max HP Length. In
Supplementary Figure S5, we encoded ds1 in three modes:
LSH, mixed and naive. These modes are defined as:

- LSH: All similarity checks were performed with LSH.
- Mixed: Similarity checks between DNA strands and

probes were performed with LSH. However, similarity
checks between a newly created DNA strand and pre-

Figure 6. Cumulative time measure for encoding (+decoding) 1 million
compressed data entries (lines). The red line is obscured by the blue line
because Sec. Struct. time dominates.

viously generated DNA strands are performed naively,
i.e. the Jaccard distance was evaluated on each of them.

- Naive: All similarity checks were performed explicitly by
evaluating the Jaccard distance.

Similar to the results in Figure 5, LSH speeds up en-
coding time substantially compared to the mixed and naive
runs. As expected, the naive run was the slowest, followed
by the mixed run, since both require additional evaluations
of the Jaccard distance compared to LSH.

In Figure 6, we used 1 million pre-computed probes as
keys and encoded ds2, containing 1 million compressed lines
(entries). We show that our approach works on larger data
sets, even with 1 million entries. Furthermore, we required
a single probe to resemble a key for exactly one data entry
or line. This restriction can be further loosened to provide a
single key for multiple values. We repeated this experiment
with 100k instead of 1 million probes, where a single probe
addresses ten data entries. As expected, the results were very
similar, and the total run time was lower.

DISCUSSION

Utilizing DNA as a storage medium offers a great poten-
tial to store an enormous amount of data in just a few
grams. However, current DNA storage systems fail to pro-
vide a sufficiently large address space, and thus the num-
ber of directly accessible data objects within a single DNA
pool is very limited. In addition, a major challenge for all
DNA-based systems is error-free storage and retrieval of the
data. While mutation is crucial for living organisms as they
evolve and adapt to changing environments, this leads to
an unwanted altering of stored information and even unre-
coverable losses. To combat this issue, DNA systems typi-
cally increase data redundancy or implement error correc-
tion codes to ensure data integrity.

This paper proposed a new approach to random access
on DNA that supports address spaces up to several mil-
lion addresses. Instead of relying on primer sequences for
random access, we used sufficiently distinguishable and sta-
ble probes, for which fewer biochemical restrictions apply.
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These probes are stored each as a prefix to the associated
information on DNA. Since the naive method of checking
similarities of DNA sequences is not applicable for gener-
ating large address spaces due to its unacceptably high run
time, we proposed a scalable method based on LSH and the
Jaccard similarity. Our experiments confirm the feasibility
of generating millions of probes that obey all conditions re-
quired for storing them in a DNA pool. To read informa-
tion from DNA, we proposed using microarrays, which are
capable of selecting specific target DNA strands from mil-
lions of other strands. We utilized a fountain code for data
encoding that provides forward error correction and miti-
gates producing error-prone DNA. Our implementation of-
fers various parameters such as redundancy, maximum ho-
mopolymer length, and GC content that can be tuned and
adjusted. As a proof-of-concept, we showed that our ap-
proach is functional and enables massive up-scaling of ad-
dresses within DNA. In addition, we submitted our DNA
to Twist Bioscience (https://www.twistbioscience.com/) that
confirmed the production readiness of our DNA.

In our future work, we will address a notable disadvan-
tage of our approach that still requires a mapping table
(DOI �→ probe) to be stored in-silico. We are particularly
interested in designing semantic probes that would allow
looking up information in an ad-hoc manner. Furthermore,
while we presented a promising in-silico analysis to achieve
a substantial up-scaling of key-value stores on DNA, exper-
iments on real DNA will ultimately prove the true feasibility
of our approach. Finally, the examined data sets were in the
order of megabytes, but we are interested in applying our
method to larger data sets. We look forward to exploring
and optimizing our approach in the future.

DATA AVAILABILITY

The original data sets used are available (download links)
in the Supplementary. The preparation (transformation)
of the data sets to ds1 and ds2 is explained in the Sup-
plementary. Additionally, we provide one million probes
that can be directly downloaded from https://github.com/
alexelshaikh/Probes.

The RQPAP is available at https://github.com/
alexelshaikh/RQPAP.

The probes generator is available at https://github.com/
alexelshaikh/PG.

SUPPLEMENTARY DATA

Supplementary data are available at NARGAB online.
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