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Animals acquire motor skills to better survive and adapt to a changing environment.

The ability to learn novel motor actions without disturbing learned ones is essential to

maintaining a broad motor repertoire. During motor learning, the brain makes a series

of adjustments to build novel sensory–motor relationships that are stored within specific

circuits for long-term retention. The neural mechanism of learning novel motor actions

and transforming them into long-term memory still remains unclear. Here we review the

latest findings with regard to the contributions of various brain subregions, cell types,

and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore

the motor memory in relative neurodegenerative disorders, we also briefly describe the

common experimental tests and manipulations for motor memory in rodents.

Keywords: motor skill learning, neurotransmitter, neural circuitry, neurodegeneration, Parkinson’s disease,

Huntington’s disease

INTRODUCTION

Motor learning implies a process of change or improvement in motor action to perform the
requested task by practicing and refining (1). There are three components of motor learning: motor
skill learning, motor adaptation, and motor action selection (2). Motor skill learning, including
motor sequence learning, consists of a series of relatively slow changes inmotor functions leading to
improved performance. Motor adaptation refers to faster changes in motor behavior that preserve
stable performance of learned behavior despite small fluctuations in the environment. Besides the
abovementioned motor learning categories, motor action selection is an intermediate one, which
is described as the task of choosing which of several possible behaviors to execute (2, 3). In daily
life, different categories of motor learning often overlap (4). In this review, we mainly concentrate
on motor skill learning. The learning of new skills involves three stages: the initial acquisition
phase with fast amelioration in performance, the following consolidation phase with more gradual
ameliorations as skills are automatized, and the final retention phase in which the long-lasting
memory is formed (5–9). The basal ganglia, cerebellum, and motor cortex are the brain areas
involved in motor learning through their circuits (5, 10–12). Motor skill learning is extremely
critical for optimizing behavior (13, 14). From a computation-neurobiological perspective, a good
motor task should be able to be repeated, emulating a reference model as precisely as possible,
aiming to attain the best performance (15). On the other hand, extensive studies have proved that
motor skill learning is damaged in patients with Parkinson’s disease (PD) (16–20), presymptomatic
and symptomatic Huntington’s disease (HD) (21–23), and primary dystonia (24). However, the
mechanisms on how the brain links various actions together into fluid chains of behavior which
are able to be recalled later are still not clear (25). This review addresses the latest findings
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in motor skill learning, aiming to better comprehend the
functional contribution of various brain subregions, cell types,
and neurotransmitter systems to this type of memory, evaluate
the impact of genetic and pharmacological manipulations, and
identify potential treatments for related neurological disorders.

COMMON BEHAVIOR TESTS FOR MOTOR
SKILL LEARNING IN RODENTS

In the investigations of motor skill learning, smaller animals like
rodents are preferred by investigators due to rapid reproduction
and relatively low costs. The single use of one test may not be
comprehensive for detecting all aspects of learning dysfunction.
In light of this, a few of behavioral tests have been applied
to evaluate and quantify the presence of motor skill learning
impairments in rodents.

Rotarod Test
The rotarod test is a frequently used paradigm to measure a
rodent’s ability to keep itself on a rotating rod at accelerating
speeds (26). This requires mice to keep balance on the rod and
measures their latency to drop down which generally correlates
motor skill learning (26, 27). The speed is gradually accelerated
from 0 to 40 rpm over 5min, and the rodents are tested for several
trials a day (28). Motor skill learning can be assessed by repeated
daily testing and suggested by the decrease in latency to drop
down during sequential testing sessions (29). Most performance
improvements occur on the first day of training (30). However,
with longitudinally repeated tests, the animals can learn that
the consequences of falling are harmless (28). Thus, individual
animals may refuse testing and directly fall once they are put
on the rod. In this case, we tend to appropriately increase the
sample size, so as to remove the individual outliers with extremely
abnormal results in statistical analysis.

Food-Reaching Task
Animals are trained to reach for a food pellet through a
narrow slot with a preferred limb (31–33). As a reinforcement
learned behavior, it requires acquisition of a skilled reaching
movement through daily training over several weeks (33). A
successful reach is scored when the animal grasps the food
pellet and brings it into the cage and to its mouth without
dropping the pellet (34). The basic measures include (a) total
number of reach attempts, (b) number of sensory errors, and (c)
percentage of successful reaches (33). The shortcoming is that
the evaluation is a readout of the learning sequence order rather
than focusing on improvements of motor behavior itself (2).
After all, the reaching movements themselves are simple without
speed-accuracy constraint (35).

Wheel-Skill Learning
Although developed to measure the animal’s voluntary activity
in home cage (28), the running wheel is also used to investigate
procedural learning (36, 37). At the beginning of the training,
rats usually could not run on the wheel without causing it to
swing (37). Over continued training sessions, they gradually learn
how to adjust their movements on the wheel so as to stabilize it

and avoid swinging. Within the first training sessions, rats learn
the wheel skill fast and the wheel swings provide a measurement
of performance error during skill learning (37). The factors that
affect wheel-skill learning include the number of trails in each
session and the total amount of training sessions (38). However,
it does not depend on motivational manipulations, such as
forced locomotion in rotarod, food deprivation in instrumental
learning, and electric shocks in avoidance learning (39). It is
noteworthy that the running-wheel behavior in female animals
could be affected by estrous cycle (40). Thus, mixed-gender
cohorts should be avoided in these tests (28).

In addition to the tests described above, there are also other
assays being used to assess motor learning, such as the beam-
walking test. With several days of training followed by one day
of testing, the goal is for the tested rodent to keep balance and
walk through a narrow viaduct beam to a safe platform (41).
Performance of the subjects, including the time to walk across
the beam and the times of paw slips during the test, has been
validated as a measure of fine coordination. The beam walking
test can be useful especially when assessing balancing capacity
and subtle deficits in motor skills which are uneasy to be detected
by other tests (41).

SPECIFIC BRAIN SUBREGIONS AND CELL
TYPES INVOLVED IN MOTOR SKILL
LEARNING

By means of neuroimaging, lesions, electrical stimulation, and
electrophysiological recordings, the major brain regions involved
in motor skill learning have been disclosed, including primary
motor cortex (M1), basal ganglia (BG), and cerebellum. Each
region consists of various intermingled cell types connected in
specific circuitry and motor skill occurs via changes in neuronal
excitability, synaptic strength, and circuit connectivity (42).

Primary Motor Cortex (M1)
Compared to other nuclei involved in motor learning, M1 acts
as a controller which sends commands directly or indirectly
to motor neurons (2, 43, 44). The motor cortex provides
independent limb control to execute specific actions with high
speed and precision and allows flexible synergies of performance
related with novel tasks or objects (45, 46). Motor training can
induce functional and structural synaptic plasticity in motor map
organization (47–50), which is not simply caused by increased
use (51). Not like pure exercise or recall of learned skills,
a new motor skill learning is able to efficiently trigger the
spine formation of pyramidal neurons in the layer V motor
cortex (51). Moreover, the tested subjects’ performance is closely
related with the degree of new spine formation (51–53). In
addition, learning-triggered newly formed spines provide a
structural basis for enhancing synaptic strength, which are given
priority to be stabilized and retained with new skill memory
(52, 53). However, longer training could lead to increased spine
elimination, indicating that skill refinement might be based on
removal of inappropriate connections (52, 53). The skill learning-
related spinogenesis could be further induced in the same place
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where baseline control originates by training the pretrained
animals (52, 53). In the sensorimotor cortex, functional synaptic
plasticity including long-term depression (LTD) and long-term
potentiation (LTP) is the crucial mechanism for acquiring motor
skills (54). In humans, improved performance of sequential finger
movements are identified to be related with elevation of blood-
oxygen level-dependent (BOLD) signal in M1 (55, 56), which is
enhanced by transcranial direct current stimulation of M1 (56,
57) and inhibited by repetitive transcranial magnetic stimulation
(TMS) of M1 (10). Moreover, TMS could induce piano-playing
behaviors in pianists but not in controls, suggesting that
M1 can encode novel skills via continuous practicing (58).
In rats, the skill acquisition can be completely abolished by
destroying dopaminergic (DAergic) projections to the motor
cortex, demonstrating that skill learning needs to occur in M1
directly (59).

Basal Ganglia (BG)
The BG, preponderantly involved in movement control and
skill learning (60–66), are highly conserved in both anatomy
and neurotransmitter localization that consist of cortico-striato-
pallido-thalamocortical loops (67). In rodents, BG circuits are
critical in task improvement through promoting execution
quality. The tested mice’s improvement of their performance in
rotarod is correlated with synaptic strength enhancement in the
striatum (6, 68). In the food reaching task, protein synthesis
inhibition in the striatum could impair early stages of learning
in rats (69).

The striatum is the main input nucleus of the BG. It works
as the central meeting point which compiles and integrates the
information from the thalamus, the cortex, and the midbrain
DAergic innervation before processing of motor output (70–
74). The ventral striatum is involved in reward-related learning
due to its anatomical connection with limbic structures (75–
78). The dorsal striatum gets involved in movement and action
selection, and it mainly receives innervation from the substantia
nigra (SN) and cortex (79–84). For the direct pathway, the
net effect of activating D1-expressing medium spiny neurons
(MSNs) is facilitation of movement by disinhibiting neurons in
the motor cortex (85). For the indirect pathway, the net effect
of activating D2-expressing MSNs is suppression of movement
by inhibiting neurons in the motor cortex (85). When dopamine
(DA) is released from DAergic neurons of the substantia nigra
pars compacta (SNc) to the dorsal striatum, the direct and
indirect pathways are enhanced and attenuated respectively, and
vice versa (25). To be noted, the cortical inputs to the BG are
unevenly distributed across the two pathways, with the indirect
pathway receiving more from the motor cortex and the direct
pathway receiving more from somatosensory and limbic systems
(74). Within the dorsal striatum, the medial and lateral parts
also play various roles in instrumental learning (25, 86). In
the rotarod task, improvement of early stage (action selection)
depends on striatal projection to the prefrontal cortex (6, 8),
while improvement across training days (execution of sequence
elements) depends on striatal projection to the sensorimotor
cortex (6). In the BG, the motor functions are closely related
with non-motor functions. For instance, most of striatal neurons

are involved in both reward- and movement-related activities
through combining both reward information and motor actions
to obtain the reward (87–89). A neuronal system showing such
property usually indicates its role in habit learning and goal-
directed behavior (89–91).

Cerebellum
From the phylogenetic perspective, the cerebellum is a highly
conserved brain architecture across all the vertebrates (92,
93), indicating a sustained evolutionary requirement for a
specific computation ability (2). The cerebellum is necessary
for adaptation of eye and limb movements, which is engaged
in finetuning movement and learning novel motor tasks in
real-time (94), through its feed-forward structures from parallel
fibers to Purkinje cells, which inhibit the inferior olive and
the deep nuclei of the cerebellum (15). The cerebellum is
believed to be a site of supervised learning, aiming to adjust the
movement pattern by using feedback from the system and further
improve future performance (95). Generally, our procedural
memories formed in the cerebellum exhibit at least two types
of information coding: rate coding and temporal coding (96–
99). In the cerebellum, different coding schemes are used within
different modules to produce and express various memories.
For example, zebrin-negative zones predominantly form the
memories by inhibition mechanisms and express the memories
partially by temporal coding. While zebrin-positive zones mainly
form the memories by enhancement mechanisms and express
the memories by rate coding (100). The rotarod performance
can be damaged by inhibiting the LTD at parallel fiber-Purkinje
cells in the cerebellum (101). The cortico-BG-thalamo-cortical
loop is essential for skilled motor coordination, and the LTD
in cerebellum plays a role in movement optimization for
environmental conditions (102).

Differential cortical and subcortical regions activated by long
(days to weeks) (5) and short (minutes to hours) (103, 104) times
of motor learning have been shown by numerous functional
studies. Among all these brain areas, M1 is a critical structure for
skill execution but it is still in the location for stereotypy which
is learned initially through BG dependent processes (2). During
the motor skill learning process, BG is likely to infuse variability
for exploration and then when the best performance matures,
variability is decreased and stereotypy and automatization arise
(105). The cerebellum controls fine motor skills as well as motor
adaptation and coordination (95).

NEUROTRANSMITTERS AND
NEUROMODULATORS

Ahuge emphasis has been put into newmethodologies for precise
cellular localization of neurotransmitters and neuromodulators,
enzymes involved in their synthesis or degradation, receptors,
and transporters, which markedly improved our understanding
of the molecular pathways that govern motor skill learning. In
this section, we review current progress on the mechanisms by
which differential modulators get involved in a pathway-specific
manner during motor skill learning.
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Dopaminergic System
DA functions by binding to its receptors, which are a group
of G protein-coupled receptors (GPCR) and function through
the second-messenger system (106, 107). In the primary motor
cortex, inhibition of either D1 or D2 receptors could impair skill
acquisition (108). In the motor cortex, D1 and D2 receptors
play different roles in the regulation of synaptic plasticity:
predominantly modulate spine elimination and spine formation,
respectively (51). As mentioned above, there are two distinct
pathways for DAergic modulation of primary motor cortex
including (1)mesocortical projections: directly project fromVTA
and SNc to directly modulate primary motor cortex (108–110)
and (2) nigrostriatal projections: activate a set of BG nuclei and
indirectly modulate the primary motor cortex (111, 112).

In physiological conditions, DA exerts an irreplaceable effect
in regulating bidirectional plasticity of MSNs (113). For the
striatal MSNs, the spine density is significantly decreased in
the absence of DA by means of 6-hydroxydopamine lesion
of the medial forebrain bundle (MFB) (114). In the motor
cortex of various mouse models of PD, abnormal remodeling
of neuronal circuits has been disclosed by 2-photon in vivo
imaging microscopy (115). DA is required for the formation
of LTP, which likely is a fingerprint mechanism of a motor
memory trace within M1 (116). In 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-injected mice, DA depletion leads
to marked instability of synaptic connections and significant
spine remodeling in the motor cortex (115). In such mice,
motor learning-induced newly formed spines failed to stay
stable and were eliminated then, which is associated with
impaired retainment of motor memory in PD (115). Although
motor symptoms of PD can be alleviated by levodopa (L-dopa)
treatment, it was unable to ameliorate functional plasticity in the
motor cortex (117), as well as motor skill learning (118).

Cholinergic System
The cholinergic system is correlated with a wide range of
neural processes, such as motor, attention, learning, and memory
functions (119). In the striatum, acetylcholine (ACh) mainly
arises from cholinergic interneurons (CINs), which is involved in
controlling the late component of the motor skill learning (120,
121). The cholinergic inputs are activated by ACh binding to
nicotinic receptors (nAChRs) on the DAergic axons (122). Thus,
the striatum DA release can be directly triggered by CINs tonic
firing, independent of the activity of DAergic neuron activity
(123, 124). However, in the absence of ACh, DA release is found
to be proportional to the firing rate of DAergic neurons (122).
Meanwhile, the computational modeling study of PD showed
that the lower DA concentration in turn leads to shortening of
CIN activity pause in the striatum, and the phasic DA excursion
drives learning (125).

In the primary motor cortex, the diffuse cholinergic afferents
regulate the synaptic efficiency of horizontal connections (126).
Blocking cholinoreceptors is able to alter the learned reaching
task in rats (127). Another study of rat showed that increase
in ACh levels during early sleep prevented motor memory
consolidation in experiments with physostigmine (128). The
role of cholinergic connections in motor cortex plasticity also

highlights how inhibition of interfering coordinations forms
when new movements are learned (129).

Endocannabinoid (eCB) System
In the brain, cannabinoid receptor 1 (CB1) abundantly distribute
across the cerebellum, cortical layers I and IV, BG, CA1 pyramidal
cell layer, and dentate gyrus (130). Cannabinoid receptor 2
(CB2) was later identified to be highly expressed in the immune
system (131, 132). Then, CB1 and CB2 could be activated by
the lipids anandamide and 2-arachidonoyl-glycerol (2-AG) with
high affinity and efficacy in the brain and intestinal system, which
were named eCBs (133–135). The eCB system also includes
enzymes involved in eCB biosynthesis and inactivation. The
biosynthesis of 2-AG and other monoacylglycerols is catalyzed
by diacylglycerol lipase α and β (DAGLα, DAGLβ) (136). The
hydrolysis of 2-AG and other monoacylglycerols is catalyzed by
monoacylglycerol lipase (MAGL) (137). CB1 is predominantly
located in presynaptical membranes of inhibitory and excitatory
neurons, which can suppress vesicular release of gamma-
aminobutyric acid (GABA) or glutamate and voltage-gated Ca2+

channels in a feedback way (138, 139). In addition, DAGLα is
located in postsynaptic membranes andMAGL is located in axon
terminals (138). It is suggested that eCBs, especially 2-AG, are
inhibitory retrograde neuromodulators (140).

The endocannabinoids, acting as retrograde messengers, are
critical for fine-tuning neuronal excitability and synaptic
plasticity and involved in neurobiological mechanisms
underlying mood, perception, cognition, locomotion,
reward-seeking, and motivation-processing (141–144). The
cannabinoids have been found with neuroprotective functions
in animal models of stroke, epilepsy, HD, PD, multiple sclerosis,
and Alzheimer disease (145–150). Biphasic dysregulation of CB1
was disclosed in different PD animal models: hypoactivity at
presymptomatic/early stages and hyperactivity at later stages
(151–153). The key influence of eCBs in motor behavior,
especially in motor learning, has been highlighted (94, 154).
The mice without CB1 receptors show less voluntary running
behavior in a housed running wheel than wild-type littermates
(155). It is suggested that CB1 receptors control the running
behavior rather than the locomotor behavior (156, 157).
CB1 knockout mice were demonstrated with impairment of
cerebellum-dependent discrete motor learning (158). In turn,
the motor skill training was found to rescue nicotine-induced
damage of synaptic plasticity mediated by eCB in the dorsolateral
striatum (159).

GABA and Glutamate
In the BG circuitry, the strength of glutamatergic neurons
is dynamically adjusted through long-term plasticity, which
regulates motor function and information flow within the BG
network (160). In the BG, long-term plasticity of glutamatergic
synapses is an essential contributor to adapted motor execution,
among which LTD is the most common form of synaptic
adaptation (160). Ninety five percent of striatal neurons are
MSNs, including direct-pathway MSNs (dMSNs) and indirect-
pathway MSNs (iMSNs): (I) dMSNs expressing dynorphin
and substance P bear M4 muscarinic and D1 receptors on the
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membrane and send projections to the BG output structures
and (II) iMSNs expressing enkephalin bear adenosine 2A
(A2A) and D2 receptors and send projections to GPe (161–
163). In the striatum, LTD exerts effects on the postsynaptic
activation of metabotropic glutamate receptors (mGluR),
leading to eCB production and CB1-mediated reduction of
presynaptic glutamate release. Meanwhile, SNr-LTD depends
on N-methyl-D-aspartic acid receptor (NMDAR)-triggered
endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) and is independent
of mGluR and eCB (160).

A magnetic resonance spectroscopy (MRS) study in human
showed that motor sequence learning is associated with a reduced
GABA concentration in M1 motor cortex (164, 165). In rat,
motor learning-dependent plasticity was found to be regulated by
AMPA/GABA receptors of the horizontal connection layer II/III
in M1 (102). Motor training could rapid eliminate inhibitory
boutons of distal dendrites in layer II/III (166). Specifically, an
immediate decrease of axonal boutons occurred on somatostatin
(SST) expressing GABAergic neurons after motor training
began (166).

In summarization, motor skill learning is the integrative
result of different neuromodulator systems, among which
every part contributes to a different aspect of learning.
Different neural mechanisms check and balance each other
to acquire and store motor skills efficiently. The circuitries
involved in motor skill learning are summarized in Figure 1,
representing the main connections and neuromodulator systems
among BG, M1, and cerebellum of rodent brain in a
sagittal diagram.

GENETIC MANIPULATIONS

Optogenetics and chemogenetics are now widely used circuit-
based techniques to acutely and reversibly suppress or
activate cell-type-specific neuronal firing activity through
the use of a genetically mediated actuator expressed on the
cell membrane. Here we introduce the mechanisms and
applications of major genetic manipulations in exploring
specific brain areas and cell types related with motor
skill learning.

Optogenetics
Optogenetics, by using genetically encodable light-activated
proteins, allows for cell-type (167–169) and projection-specific
(170, 171) manipulation of neural circuit elements with precise
temporal control. In neural systems, the most commonly
used are the channelrhodopsins (ChR2, ChR1, VChR1, and
SFOs) to excite neurons, as well as archaerhodopsin-3 (Arch)
and enhanced halorhodopsin (eNpHR2.0 and eNpHR3.0) to
inhibit neuronal activity (168, 172–174). Within the striatum,
optogenetics helped characterize the inhibition of MSNs by
CINs as well as confirm the opposing relationship between
direct and indirect pathway MSNs (175). In the dorsal striatum,
through expressing ChR2 in iMSNs and dMSNs, activation
of dMSNs increased locomotion and reduced freezing, while
activation of iMSNs induced freezing gait, bradykinesia,

and hindered locomotor initiations (176). Using a similar
method, dMSNs and iMSNs of the dorsal striatum also showed
opposing influences on reinforcement (177). In the mouse
cerebellum, the memory of oculomotor learning could be
artificially implanted by optogenetic stimulation of the Purkinje
cells or the climbing fibers (178). Optogenetic suppressions
of different brain regions at different stages of skill training
enable us to better understand when and how each region
gets involved into learning: (1) primary visual cortex (V1)
suppression could reduce accuracy across all training stages; (2)
anterior cingulate cortex (ACC) suppression decreased accuracy
during learning; and (3) hippocampus suppression affected
learning more mildly (179). The combination of optogenetics,
in vivo imaging, and pharmacological manipulations revealed
that sensory experience transduced through the granule
neuron pathway could orchestrate motor learning through
remodeling chromatin architecture and neural circuit
activity in the anterior dorsal cerebellar vermis of mouse
brain (180).

Chemogenetics
By means of mall molecules that activate engineered receptors
targeting to specific cell types, genetically encoded neuron
manipulation tools have been developed to remotely control
diverse neuronal/non-neuronal functions (181). Early
chemogenetic technologies were based on GPCRs (182).
According to the downstream effector system initiated, GPCRs
could suppress or excite neuronal firing (183). However,
these early-generation tools have not been broadly adopted
in vivo studies due to the relatively weak potency of synthetic
ligands (184) and adenosine (185–187) or given modest
signaling (188). To overcome these problems, a new platform
called DREADD (designer receptor exclusively activated by
designer drug) was developed (189), which uniquely get
activated by inert molecule and influence neural processes
(190, 191). The most commonly used DREADD receptors
include the human muscarinic excitatory and inhibitory
receptors (hM3Dq and hM4Di), which can be activated by
clozapine-N-oxide (CNO) or low concentration of clozapine
(CLZ) (191, 192). In the lever-pushing learning paradigm,
by combining chemogenetics and two-photon imaging, mice
were trained to perform the task in response to a sound cue,
followed by monitoring striatal neuron activity. It helped
distinguish that D1 neuron silencing impaired initiation
of the learned motor, while D2 neuron silencing increased
false performance of lever pushing (193). In the MPTP-
injection mouse model, chemogenetic re-activation of SST
inhibitory interneurons could alleviate the structural and
functional deficits of dendritic spines, as well as enhance rotarod
learning (194).

To be noted, it is critical to set stringent experimental controls,
because even a slight alteration in designing behavior tests or
in choosing DREADD receptor or opsin can make cross-study
comparisons difficult (195). Therefore, it is strongly emphasized
to study the replication and pay attention to the reported
technical challenges or negative findings.
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FIGURE 1 | Motor skill learning circuitry in rodents. Schematic representing the main connections of the basal ganglia network in a sagittal section of the rodent brain.

Dopaminergic, GABAergic, and glutamatergic projections are depicted in blue, purple, and red, respectively. Cerebellar related circuitry is in brown. DS, dorsal

striatum; NAc, nucleus accumbens; GP, globus pallidus; VP, ventral pallidum; STN, subthalamic nucleus; SNc, substantia nigra pars compacta; SNr, substantia nigra

pars reticulata; VTA, ventral tegmental area.

PHARMACOLOGICAL MANIPULATIONS

6-Hydroxydopamine (6-OHDA)
6-OHDA, also known as oxidopamine or 2,4,5-
trihydroxyphenethylamine, is a catecholamine neurotoxin
used to destroy DAergic and noradrenergic neurons in the brain
(196). Although there are different techniques for DA depletion,
the most commonly employed way is to inject 6-OHDA into
the striatum or into MFB (33). Intrastriatal injections consist
of four infusions of 6-OHDA spanning the entire length of
the striatum. This induces direct toxic damage to the DAergic
axon terminals and gradual DA depletion occurs over 4 weeks
(197). However, MFB injection involves one infusion into the
DAergic projections from the SN to striatum and DA depletion
and Parkinson’s symptoms occur more rapidly and usually
within 48 h. The degree of DA depletion can be verified by using
immunostaining to assess the levels of tyrosine hydroxylase (TH)
(197). Previous studies have demonstrated impaired rotarod
behavior in rats with 6-OHDA lesion of striatum during the
pre-motor stage of PD (197, 198).

1-Methyl-4-phenyl-1,2,3,6-
Tetrahydropyridine
(MPTP)
MPTP is a highly lipophilic compound and easy to cross
the blood–brain barrier. In the brain, under the catalysis of
enzyme monoamine oxidase-B (MAO-B), it is converted to the
active metabolite, 1-methyl-4-phenylpyridinium (MPP+) (199).
A series of cytotoxic mechanisms leading to apoptotic cell death

are induced by MPP+, such as oxidative stress, mitochondrial
dysfunction, and energetic failure (199). MPP+ induces vesicular
DA into the cytoplasm, leading to the production of cytotoxic
substances (200). MPTP-injected primate model, manifesting
profound parkinsonian syndrome, has been widely used for
development of novel therapeutics of PD (201). However, MPTP
has been less used in rats due to the absence of MAO-B leading
to limited toxicity of MPTP in rat brain. Conversely, MPTP does
produce obvious DA depletion in mice through downregulating
the activity of TH in the biosynthetic pathway for catecholamines
in DAergic neurons (201).

Rotenone
Rotenone is an insecticide and piscicide that has been related to
a high risk of PD (202, 203). Rotenone impairs mitochondrial
transport and abolishes the potentiation of the synapse by
inhibiting mitochondrial electron transport chain complex I
and inducing mitochondrial reactive oxygen species (ROS)
generation (204, 205). Rotenone also inhibits microtubule
formation from tubulin (206–208). Chronic administration of
rotenone could induce a dose- and time-dependent nigro-striatal
degeneration by oral administration for mice or intravenous or
s.c. infusion for rats (209–212). The administration of rotenone
can impair motor behavior, learning, and memory functions
in animal model (213–215). In the rotarod test, rotenone-
infused rats showed a significantly decreased balancing ability
with an increased falling frequency in comparison with control
group (216).
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HOW TO RESTORE MOTOR LEARNING
AND CLINICAL APPLICATION

DAergic Enhancement
The DAergic system, critical for motor learning, experiences a
parallel decline even with normal aging (217–219). This age-
dependent decline, contributing to the faded learning ability,
involves DA metabolism, receptors, and transporters (219–
221). Thus, pharmacologic strategies that enhance DAergic
neurotransmission have been tried in patients with motor
learning deficiency during stroke recovery and have been proven
a promising adjuvant therapy in motor rehabilitation (222–
224). In animal studies, DA and DA-receptor agonists have
been proved with a positive role in synaptic plasticity, recovery,
and learning after brain lesions (220, 225, 226). Experimental
studies in healthy humans showed that premedication with L-
dopa (precursor of DA) (227) and cabergoline (D2R agonist)
(228) improved the elementary motor memory formation (228).
The deficiency in motor skill learning in the PITx3(−/−) mice,
a commonly used DA deficiency model (229–231), could be
rescued with levodopa treatment (232). However, the PITx3(−/−)

mice showed a gradual deterioration after cessation of L-dopa
treatment (232). Although the clinical strategies of alleviating
DA-related symptoms in PD by DAergic replacement have been
proved highly successful in treating the motor symptoms (233),
the effects on motor learning ability remained controversial
probably due to different motor tasks being used. One clinical
trial on the effect of L-dopa on patients with mild-moderate
PD showed improved learning of upper extremity task (234).
Another two clinical trials suggested that the L-dopa medication
did not significantly alter learning performance of the stepping
task in PD patients (235, 236). However, some studies hold that,
since exogenous DA is delivered systemically, it may suppress the
striatal activation during the acquisition stage of motor learning
(237–239). Moreover, long-term administration of L-dopa could
lead to L-dopa-induced dyskinesia in advanced stage of PD (240–
242).

Deep Brain Stimulation (DBS)
Deep brain stimulation (DBS) is the gold standard for surgical
treatment in PD patients by modulating specific neural pathways
(243). Recently, a clinical trial on PD patients engaged in a
visuomotor tracking task disclosed that the impaired sequence
motor learning in PD could be partially restored through
subthalamic nucleus (STN)-DBS (4). Actually, the disynaptic
connections between the cerebellum and BG have been proved
in nonhuman primates by viral tracing (244). STN output
projects to the ipsilateral cerebellum through pontine synapse
and dentate projections form the thalamo-striatal circuitry.
Another clinical study in PD showed an obvious positive
association of functional connectivity between cerebellar and
DBS contacts during STN-DBS. In addition, the PD patients
treated with STN-DBS showed the significant learning-related
spatial covariance pattern including increased activity in the
para-hippocampal gyrus, dorsal premotor cortex, and lateral
cerebellum, with covarying reduction in the orbitofrontal
cortex and supplementary motor area (SMA) (236). It is

suggested that the pathological STN activities could interfere
cerebellar functions due to higher firing rate and lacking
desynchronization, whereas the electrical stimulation of DBS
could liberate or decorrelate the cerebellum from abnormal BG
input (245).

Neurofeedback (NFB) Training
NFB works as a biofeedback technology. In NFB, by displaying
the sensory signals (reflecting real-time neural activity) to
subjects, they can learn to modulate activity in targeted
neural areas involved in specific behaviors or brain functions
(246, 247). By using functional magnetic resonance imaging
(fMRI), researchers are able to monitor the task-induced
changes in neural activation and provide neural signal feedback
to the participant in a real-time way (rt-fMRI-NFB) (246,
248). In stroke, PD, and Huntington’s disease, rt-fMRI-
NFB was proved to alter neural activity in motor-associated
areas and to modify specific motor behaviors after the self-
regulation training was completed (249–251). A clinical study
of PD patients of early stage with NFB training showed
an improvement in motor speed during tasks as well as
activation in STN and GP, which are connected to SMA (252).
This model is consistent with a motor learning study in a
healthy population, where the functional coupling between
BG and SMA increased with practice (253). The increased
activation of SMA could raise the input to STN and the
activity of GPi, leading to a changed neural activation pattern
within the BG network and thus causing an improvement of
symptoms (252).

Physical Exercise
Given that physical exercise leads to synaptic reorganization and
neuroplasticity changes in the corresponding motor cortex (52,
53). Such exercises usually need specially designed movement
patterns, which should consider multiple key factors, such as
the visual and other external cues, compliance, and attrition
of the patients (254). There are many types of exercise which
can be grouped into “motor-skill” exercises, such as various
kinds of dancing or Tai Chi, which require participants to
keep learning and training of novel movements (254, 255). It
seems reasonable that sustained “motor skill” exercises may
be more beneficial for PD patients (51). In addition, patients
diagnosed with Alzheimer’s disease taking part into a waltz dance
training were significantly improved with procedural learning
(256). To be noted, extra auditory cues could be provided
by the music during these physical exercises that access the
motor cortex via the cerebellum and SMA via the thalamus,
causing improvement of gait speed, initiation, coordination, and
cadence (254). There is no doubt about the clear benefits to
physical exercises, including the increase of endurance, strength,
and balance stability. However, the current overall level of
evidence for studies in human beings with neurodegenerative
disease is still very low, and thus much remains to be known
regarding the mechanisms of exercise-mediated relief of motor
symptoms (257).
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CONCLUSION

Here we briefly reviewed the current discoveries of motor
learning across rodent and clinical studies on the basis of
neural circuitries and neurotransmitter systems in M1, BG, and
cerebellum involved in motor learning. In the past few decades,
the exploration of the mechanism underneath motor learning
has never stopped and kept guiding us better comprehend how
the motor memories are formed, stored, recalled, faded, or
disturbed as well as restored. With the development of neuro-
computational and neuroimaging technologies, along with the
combination of genetic and pharmacological manipulations, we
could see more essence through the surface than ever. Yet,
we believe that more work combining the theoretical progress
in rodent models, the use of well-controlled experiments of
in vivo neuroimaging, and the newly discovered biomarkers
for neuron subtypes by genomics and proteomics methods
helps to understand the precise nature and the determinants
of specific roles played by precisely-defined cell subtypes when
spatiotemporally participating into this form of memory.
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