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Abstract

Daily temperature measures are commonly used when examining the association

between temperature and mortality. In fact, temperature measures are available

24 hours a day and more detailed records may provide a better prediction of

mortality compared to daily statistics. In this article, monthly stratified analysis

modeling for mortality is conducted for the total population as well as the stratified

elderly and younger subgroups. We identified the most significant time during the

day that is associated with daily mortality. Surprisingly, the estimates of relative risk

and magnitude of associations derived from the hourly temperature measures are

similar or even stronger compared to those modeled by the daily statistics. This

phenomenon remains true for lagged hourly temperature measures and the

changing patterns of associations from January through December are revealed. In

summary, people are the most vulnerable to temperature variations in the early

morning around 5 am and the night time around 8 pm.

Introduction

Studies in several countries have suggested that either hot or cold temperatures

may significantly increase daily mortality rates [1–14]. In addition, people who

live in colder places are less affected by cold weather [1, 7], while those in hotter

climates are better adapted to extreme heat [12, 15]. High winter mortality during

cold temperatures was also reported in a subtropical city, Guangzhou, China [16].

Recently, susceptibility to mortality during extreme weather has also been

discussed [17].
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A distinctive pattern of temperature is that it recurs daily, and the range of

temperature during the day, which is measured by the difference between the daily

maximum and minimum temperature, can be quite broad. The daily maximum

temperature usually occurs in the middle of the day, which often coincides with

the peak time for outdoor activity. In contrast, the daily minimum temperature is

usually measured at night when most people are indoors. Generally speaking, the

daily mean temperature, which is an average of multiple observations in the same

day, is thought to be a good estimate of exposure and less affected by

measurement errors compared with other temperature data, has been shown to be

associated with mortality [1, 3, 4], while others have examined impact of the daily

minimum and maximum temperature [9].

The popular distributed lag model [18–19] examines time series data in which a

regression equation is used to predict current values of a dependent variable based

on both the current values of an explanatory variable and the lagged (past period)

values of the explanatory variable. The application of the distributed lag non-

linear model [20] was used to identify mortality risks based on all causes,

including circulatory and respiratory diseases for the elderly in Taiwan [21].

Adjusting for the monthly effect, the relationship between the heat index and

mortality in 6 major cities in Taiwan was identified [22].

Although the temperature data are measured hourly, the mortality data are still

recorded daily in our database. If the hourly mortality is available, the distributed

lag model could be implemented using 24-hourly temperature measures as the

joint predictors. However, mortality is recorded daily and the distributed lag

model may not be the optimal method for such data structure. Nevertheless, even

if the hourly mortality is available and the distributed lag model is fitted to the

hourly temperature measures, the interpretation is the overall temperature effect

in the past 24 hours to the current hourly mortality. Since the aim of this study is

to discover the specific time when people are most vulnerable to temperature

variations during their daily life, we implement Poisson regression using

generalized linear model for each hourly temperature measure.

Materials and Methods

Study area

This study carries out monthly stratified analysis and demonstrates various

impacts of temperature measures on mortality among different groups of

residents of all ages, as well as the younger group (population aged 64 years or

younger) and elderly (population aged 65 years or older) people in 6 major cities

(Keelung, Taipei, Taichung, Chiayi, Tainan, and Kaohsiung) in Taiwan from 1994

to 2008. The locations of the 6 major cities studied in Taiwan are shown Figure 1.
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Mortality data

In Taiwan, all deaths are reported to the township and district household registry

office; the National Death Registry database was obtained from the Department of

Health (with no personal information involved). Vital statistics contained

underlying cause-of-death, age, sex, place of death and household registration.

The total non-accidental causes mortality rate (per 100,000) for 6 cities was

estimated using the number of deaths due to non-accidental illness (ICD-9: 001–

799; ICD-10: A00-R99) as the numerator and the total population in the

Figure 1. The locations of meteorological and air pollution monitoring stations in 6 major cities in
Taiwan.

doi:10.1371/journal.pone.0113195.g001

Hourly Analysis of Temperature and Mortality

PLOS ONE | DOI:10.1371/journal.pone.0113195 December 2, 2014 3 / 13



corresponding region as the denominator. Mortality included the death rate of the

total population, the younger population and elderly population. Because the

National Death Registry database is a secondary database without detailed

personal information (e.g. ID number and address), all data were analyzed

anonymously.

Meteorological and air quality data

The 24 hour minimum, mean and maximum ambient temperature and relative

humidity data of the monitoring stations of the Taiwan Central Weather Bureau

(CBW) from six cities were acquired from 1994 to 2008. The hourly

concentrations of air polluters (O3, PM10 and PM2.5) of the monitoring stations of

the Environmental Protection Agency (EPA) of Taiwan from six cities were also

acquired from 1994 to 2008. The ArcGIS 9.3 system was used to denote the study

areas and map the locations of monitoring stations. The distribution of

meteorological and air pollution monitoring stations of 6 major cities in Taiwan

are shown in Figure 1.

Statistical analysis

Since the distributed lag model that utilize 24 hourly measures in one model is not

the optimal method for the hourly temperature data, the main association

between hourly temperature measures and daily mortality was assessed by Poisson

regression models. Let Y be the daily mortality, we have Y
e

Po(m). As a result, the

main model is log (m)~ log ( exp osure)zbtTemp, where ‘‘Temp’’ is the hourly

temperature measure and ‘‘log(exposure)’’ is the offset. Since 24 models were

fitted separately for each hourly temperature measure, the issue of co-linearity

using 24 hourly statistics is avoided.

Daily temperature measures (mean, minimum, maximum, and range) as well as

the hourly mean temperatures were the primary predictors analyzed as

continuous variables. Models were adjusted for air pollutants, city effects, calendar

year, daily relative humidity, and holidays. For air pollutant data, including all

daily statistics such as minimum, maximum, mean, and range, the maximum

PM10 and mean O3 were adjusted in the model, since they have the most

significant association with daily mortality in our data. Different daily PM10 and

O3 were analyzed as the sensitivity analysis. However, the effect estimates are quite

similar. Take the O3 for an example, the most significant association is in June for

both daily maximum and mean O3. The corresponding results are displayed in

Table S1. Regarding the city characteristics, researchers could perform time-series

analysis for one city with temporal correlations and then apply meta-analysis to

combine the effects of several cities. However, Taiwan is relatively small and

stratified analyses of the six cities yielded very similar results. Therefore, instead of

the meta-analysis approach, the city effect was considered as a fixed effect in the

Poisson model. Relative risk could be estimated since we employed a natural

logarithm to transform the population size of each city. Because the lag effects of
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hot, cold, the daily maximum, minimum, and mean temperature on morbidity

have been extensively studied to date, these statistics were included in the analysis.

Sixty-five years-old was the cutoff point to define the subgroups and the

differentiated effects of temperature on daily mortality among the younger and

elder populations were modeled separately.

Conventionally, the seasonal effect is either adjusted in the statistical model or

the analysis is stratified by the four seasons. However, we discovered extremely

significant interactions between the seasonal effect and daily temperature

measures when correlating daily mortality in Taiwan. The interactions between

the seasons and daily temperature measures on mortality were assessed by the

interaction P-values, which were calculated based on comparisons between the full

model (with interaction terms of season by temperature) and the reduced model

(with season and temperature as the main effect factors).

In Table 1, all daily temperature statistics are indicated in the first column,

adjustments for PM10 and O3 are indicated in the second column, and

stratifications by the four seasons are shown in the third column. Interaction p-

values are separately displayed for the elderly, the younger group, and the total

sample. We discovered that even when data were stratified by the four seasons, the

three months within each season still suggested mostly significant interactions

between temperature measures and months (the seasonal effect) additionally

adjusted for O3 exposure. Results additionally adjusted for PM10 instead of O3

were similar and thus the results are not shown. As a consequence, the adjustment

for the seasonal effect may mislead the associated findings. Thus, the monthly

stratified analysis could better reduce the interaction between the seasonal effect

and temperature, avoid erroneous estimates, and capture the fine patterns of

association between temperature measures and mortality throughout the year.

Therefore, all analyses were conducted in the monthly stratified manner as to

better avoid the issue of heterogeneity caused by the seasonal effect.

All statistical analyses were performed using SAS 9.3 and p-values less than 0.05

were considered statistically significant.

Results

The total population and total death count of Taiwan were 23,037,031 and

143,172 in 2008, according to the national statistics of the Taiwan Directorate

General of Budget, Accounting and Statistics of the Executive Yuan. The study

areas were 6 major cities of which the total population occupies 48.5% of the total

population of Taiwan (Keelung 1.7%, Taipei 11.4%, Taichung 11.4%, Chiayi

1.2%, Tainan 8.1%, and Kaohsiung 12.0%). Furthermore, the total death count of

six cities was 44.9% of the total for Taiwan (Keelung 1.8%, Taipei 10.9%,

Taichung 9.7%, Chiayi 1.2%, Tainan 9.1%, and Kaohsiung 12.2%).

In Table 2, we present the associations between mortality and different

temperature measures after controlling for potential confounding variables.

‘‘Mean’’, ‘‘Max’’, ‘‘Min’’, and ‘‘Diff’’ represent the most significant daily statistics
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and the corresponding months. In an effort to provide an easier application and

clearer presentation of the hourly temperature analysis, we selected ‘‘5 am’’ and ‘‘8

pm’’ instead of the most significant hours that vary slightly from month to

month. The most significant hourly associations are very close to these two

specific times. Regarding the issue of multiple testing due to 24 separate hourly

models, we could see that most p-values in Table 2 survive the stringent

Bonferroni’s correction for multiple testing, which is the significance level being

divided by the 24 hourly tests (0.05/24). In Figures 2 to4, the relative highs or lows

are mostly around 5 am and 8 pm. Results adjusted for PM10 are shown in the

Table S2. The hourly associations are consistently good surrogates for daily

analysis across the elderly, the younger group, and the total population. This

phenomenon remains for the analysis using lag 0 to lag 3 temperature measures.

We performed further analyses with more lagged hours and the results were

similar to those shown in Table 2. Therefore, results of more lagged hourly

measures are not included.

The patterns of associations in 24 hours adjusted for daily mean ozone

exposure are presented in Figure 2, Figure 3, and Figure 4 for the elderly, the

younger group, and the total population, respectively. Figures adjusted for the

daily maximum of PM10 are provided in the Figures S1–S3. Relative risks that are

statistically significant are in dots, while non-significant relative risks are in circles.

Relative risk of 1 is the reference line indicating no association between the hourly

Table 1. Month by temperature interaction by 4 seasons in the total, younger and elder population adjusted for O3
a.

Interaction P-values

Temperature measures Season Total Population Younger Population Elder Population

Lag 0 Lag 1 Lag 2 Lag 3 Lag 0 Lag 1 Lag 2 Lag 3 Lag 0 Lag 1 Lag 2 Lag 3

Mean Spring 0.546 0.254 0.847 0.499 0.790 0.995 0.846 0.859 0.367 0.174 0.655 0.649

Mean Summer 0.256 0.366 0.195 0.001* 0.043* 0.173 0.289 0.001* 0.154 0.056 0.382 0.151

Mean Fall 0.060 0.002* 0.011* 0.018* 0.018* 0.004* 0.119 0.161 0.753 0.140 0.073 0.133

Mean Winter 0.870 0.021* 0.004* 0.001* 0.033* 0.223 0.140 0.041* 0.345 0.076 0.015* 0.011*

Max Spring 0.113 0.025* 0.561 0.105 0.856 0.661 0.696 0.609 0.037* 0.055 0.492 0.266

Max Summer 0.431 0.952 0.220 0.002* 0.080 0.085 0.369 0.003* 0.474 0.189 0.516 0.141

Max Fall 0.025* 0.041* 0.118 0.014* 0.005* 0.018* 0.301 0.195 0.319 0.670 0.450 0.101

Max Winter 0.277 0.152 0.010* 0.001* 0.023* 0.806 0.196 0.045* 0.917 0.166 0.053 0.018*

Min Spring 0.979 0.549 0.469 0.526 0.723 0.898 0.982 0.947 0.944 0.331 0.479 0.599

Min Summer 0.020* 0.108 0.080 0.006* 0.347 0.174 0.140 0.003* 0.007* 0.039* 0.273 0.376

Min Fall 0.061 0.027* 0.041* 0.312 0.129 0.219 0.104 0.502 0.368 0.118 0.298 0.552

Min Winter 0.250 0.009* 0.035* 0.003* 0.401 0.030* 0.189 0.055 0.007* 0.078 0.058 0.033*

Range Spring 0.010* 0.000* 0.119 0.000* 0.907 0.083 0.404 0.372 0.001* 0.004* 0.077 0.000*

Range Summer 0.169 0.102 0.837 0.104 0.172 0.003* 0.947 0.356 0.153 0.941 0.570 0.197

Range Fall 0.206 0.140 0.374 0.071 0.084 0.141 0.804 0.366 0.367 0.236 0.485 0.134

Range Winter 0.004* 0.472 0.492 0.386 0.054 0.302 0.538 0.639 0.032* 0.210 0.662 0.507

aModels were adjusted for daily mean of ozone exposure, city effects, calendar year, daily relative humidity, and holidays.
*P-value ,0.05

doi:10.1371/journal.pone.0113195.t001
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measures and daily mortality. The associations are mostly significant in the colder

months (November - February) and some are significant in the hotter months

(June - September). In all figures, increasing hourly mean temperature, from lag 0

to lag 3 measures, consistently reveals a protective effect for human health in

colder months since the relative risks are below that reference line. However,

higher hourly mean temperatures show an adverse effect on human health in

hotter months, because the relative risks generally exceed 1. Comparing Figure 2

to Figure 3, we see that the elders are more affected by temperature variations

comparing to the younger population. Figure 4 shows the mixed information

from Figure 2 and Figure 3. In the significant associations, the early morning

Table 2. Relative risk of temperature on mortality adjusted for O3
a.

Elder Younger Total

Temp. month RR P-value month RR P-value month RR P-value

Lag 0

mean 6 1.019 0.0008 9 0.985 0.0135 6 1.015 0.0007

max 10 1.007 0.0179 9 0.986 0.0014 6 1.007 0.0121

min 6 1.017 0.0006 2 1.005 0.1564 6 1.011 0.0051

diff 4 1.011 0.0002 9 0.980 0.0002 9 0.987 0.0001

T5am 6 1.023 ,.0001 5 0.994 0.2235 9 1.007 0.057

T8am 7 1.015 0.0126 7 1.006 0.4555 7 1.012 0.0121

Lag 1

mean 7 1.022 0.0003 5 0.990 0.0395 7 1.020 ,0.0001

max 7 1.011 0.0111 5 0.990 0.0028 7 1.011 0.0012

min 2 0.991 0.0002 9 1.016 0.0086 2 0.994 0.0028

diff 10 1.013 0.0004 4 1.012 0.001 4 1.007 0.0017

T5am 2 0.990 ,.0001 4 0.990 0.005 2 0.993 0.0005

T8am 2 0.992 0.0003 9 1.012 0.034 2 0.993 0.0006

Lag 2

mean 7 1.023 ,.0001 4 0.992 0.021 7 1.017 ,0.0001

max 7 1.014 0.0003 9 1.008 0.0526 7 1.010 0.0008

min 1 0.988 ,.0001 4 0.989 0.003 2 0.991 ,0.0001

diff 6 1.009 0.035 2 1.008 0.0162 9 1.008 0.012

T5am 1 0.988 ,.0001 5 1.013 0.0098 1 0.992 ,0.0001

T8am 1 0.988 ,.0001 4 0.993 0.0148 1 0.992 ,0.0001

Lag 3

mean 2 0.989 ,.0001 5 1.015 0.0009 1 0.991 ,0.0001

max 2 0.994 ,.0001 5 1.009 0.007 1 0.994 ,0.0001

min 1 0.988 ,.0001 4 0.989 0.0032 2 0.991 ,0.0001

diff 7 1.013 0.0015 3 1.008 0.017 7 1.011 0.0006

T5am 1 0.988 ,.0001 11 0.989 0.0043 1 0.991 ,0.0001

T8am 1 0.988 ,.0001 4 0.992 0.0086 1 0.991 ,0.0001

Abbreviation: max, maximum; min, minimum; RR, relative risk; diff, daily range; T5am, temperature at 5 am; T8am, temperature at 8 am.
aModels were adjusted for daily mean of ozone exposure, city effects, calendar year, daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.t002
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Figure 2. Distribution of hourly relative risk in the elderly population adjusted for O3. (Abbreviations: max, maximum; min, minimum; RR, relative risk;
diff, daily range; T5am, temperature at 5 am; T8am, temperature at 8 am). Models were adjusted for daily mean of ozone exposure, city effects, calendar year,
daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.g002

Figure 3. Distribution of hourly relative risk in the younger population adjusted for O3. (Abbreviations: max, maximum; min, minimum; RR, relative
risk; diff, daily range; T5am, temperature at 5 am; T8am, temperature at 8 am.) Models were adjusted for daily mean of ozone exposure, city effects, calendar
year, daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.g003
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around 5 am and the night time around 8 pm show the greatest impact on

mortality. Therefore, the results suggest that elders in particular should be more

aware of temperature variations in the early morning and night time.

Discussion

To date, hourly temperature has not been modeled for daily mortality. It is worth

noting that hourly temperature models conveyed somewhat different messages

other than the daily analysis. Daily temperature models attempt to describe the

association between daily mortality and temperature [21-24], while hourly

temperature models not only assess such associations, but also indicate the

specific time of day that affects human health the most.

Our study finds that temperature in the early morning (e.g. 5AM), which is

usually the lowest daily temperature, is significantly associated with daily

mortality. This finding is consistent with previous studies that have found that

extreme temperatures are associated with mortality [25–29]. One previous study

also found that falls in ambient temperature contribute to excessive cardiovas-

cular-related mortality [29]. This could further verify the strong association

between early morning temperature with daily mortality, since people may

experience dramatic decreases in ambient temperature when exposed to relatively

cold outdoor temperatures compared with indoor ones when engaged in certain

Figure 4. Distribution of hourly relative risk in the total population. (Abbreviations: max, maximum; min, minimum; RR, relative risk; diff, daily range;
T5am, temperature at 5 am; T8am, temperature at 8 am.) Models were adjusted for daily mean of ozone exposure, city effects, calendar year, daily relative
humidity, and holidays.

doi:10.1371/journal.pone.0113195.g004
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activities, such as commuting by motorcycle or outdoor morning exercise. In

addition, the night time around 8 pm also revealed significant associations. Our

hypothesis is that when people are getting out of bed or going to bed, they wear

the minimum clothes and hence embrace the most impact from temperature

variations, especially the elderly whose sleep pattern is associated with health [30–

32].

This study adopts monthly stratified analysis and investigates the various

impacts of both daily and hourly temperature measures on daily mortality in

different populations. In the elderly population, without the considerations of

hourly temperature, the daily range of temperature had the most significant

impact on mortality in both spring and fall, while the mean, minimum and

maximum temperature measures were strongly associated with mortality in

winter and summer. The analysis of hourly temperature data provides the most

significant associations (the smallest p-values) in most scenarios. This phenom-

enon is similar in the younger population, who are affected the most by

temperature measures in hot months. Analyses show mixed information for the

total population, since the older populations were affected by temperature

differently comparing to the younger population. Nevertheless, the hourly

temperature measures outperformed the daily statistics in most situations and the

most crucial time of day that affects human health are quite consistent. A previous

study reported the U-shape relationship between temperature and all-cause

mortality among the Taiwanese elderly population, where the natural cubic spline,

which is a widely used statistical technique in time-series analyses, was

implemented to control for the unmeasured/residual confounding effects using

calendar time as a proxy [21]. However, the natural cubic spline assumes a

smoothing relationship between calendar time and mortality. Thus, this study

may be limited by imperfect controls for monthly confounding as well as

ignorance of monthly modifications in temperature-mortality relationship. There

are also more reports suggesting a non-linear association between temperature

and mortality [26, 27]. In contrast, our study assesses the association between

temperature and mortality by monthly stratification so as to minimize the

confounding effects of calendar time and to allow for the heterogeneous

association between temperature and all-cause mortality. We assume a linear-

relationship between the daily/hourly temperature measures and mortality given

the small range of temperature measures within each month, since the daily

temperature measures and the high resolution of hourly temperature measures

demonstrate a somewhat linear relationship with daily mortality.

Some of the limitations of this study are mentioned as follows. First, some

important factors that vary significantly by city may not be fully adjusted in the

regression models that incorporate the city as a covariate. Second, the

misclassification of temperature measurements may overestimate or under-

estimate the association with short-term mortality based on the scenario of

exposure misclassification (differential or non-differential settings).

The strengths of this study include: 1) monthly stratified analysis is influenced

less by the effect modification of seasons on the association between temperature
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measures and daily mortality when compared to other strategies such as seasonal

adjustments or stratifications, 2) fine resolution of hourly temperature measures

provides similar or even stronger association with daily mortality, 3) the proposed

method discovered the most crucial time of a day that affects human health and

various patterns of associations from January through December.

Based on the results, it is recommended that the public could be more aware of

the temperature forecast for the early morning around 5 am and night time

around 8 pm, rather than just focusing on the daily mean, minimum, maximum

and range.

Supporting Information

Figure S1. Relative risk of hourly temperature in the elderly population

adjusted for PM10. Models were adjusted for daily maximum PM10, city effects,

calendar year, daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.s001 (DOCX)

Figure S2. Relative risk of hourly week in the younger population adjusted for

PM10. Models were adjusted for daily maximum PM10, city effects, calendar year,

daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.s002 (DOCX)

Figure S3. Relative risk of hourly temperature in the total population adjusted

for PM10. Models were adjusted for daily maximum PM10, city effects, calendar

year, daily relative humidity, and holidays.

doi:10.1371/journal.pone.0113195.s003 (DOCX)

Table S1. Sensitivity analysis of O3 using the daily mean temperature in the

elderly population.

doi:10.1371/journal.pone.0113195.s004 (DOCX)

Table S2. Relative risk of temperature on mortality adjusted for PM10.

doi:10.1371/journal.pone.0113195.s005 (DOCX)
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2. Ballester F, Corella D, Pérez-Hoyos S, Sáez M, Hervás A (1997) Mortality as a function of
temperature. A study in Valencia, Spain, 1991–1993. Int J Epidemiol Rev 26: 551–512.

Hourly Analysis of Temperature and Mortality

PLOS ONE | DOI:10.1371/journal.pone.0113195 December 2, 2014 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113195.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113195.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113195.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113195.s005


3. Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, et al. (2000) Heat related mortality
in warm and cold regions of Europe: observational study. Br Med J 321: 670–673.

4. Braga ALF, Zanobetti A, Schwartz J (2001) The time course of weather-related deaths. Epidemiology
12: 662–667.

5. O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in
seven US cities. Am J Epidemiol 157: 1074–1082.

6. Goodman PG, Clancy L, Dockery DW (2004) Cause-specificmortality and the extended effects of
particulate pollution and temperature exposure. Environ Health Perspect 112: 179–185.

7. Barnett AG, Dobson AJ, McElduff P (2005) Cold periods and coronary events: ananalysis of
populations world wide. J Epidemiol Community Health 59: 551–557.

8. Basu R, Dominici F, Samet JM (2005) Temperature and mortality among the elderly in the United
States. Epidemiology 16: 58–66.

9. Schwartz J (2005) Who is sensitive to extremes of temperature? Acase-only analysis. Epidemiology 16:
67–72.

10. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, et al. (2008) Effects of cold weather on
mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168: 1397–1408.
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