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The majority of killer cell immunoglobin-like receptor (KIR) genes are detected as either
present or absent using locus-specific genotyping technology. Ambiguity arises from the
presence of a specific KIR gene since the exact copy number (one or two) of that gene is
unknown. Therefore, haplotype inference for these genes is becoming more challenging
due to such large portion of missing information. Meantime, many haplotypes and partial
haplotype patterns have been previously identified due to tight linkage disequilibrium
(LD) among these clustered genes thus can be incorporated to facilitate haplotype
inference. In this paper, we developed a hidden Markov model (HMM) based method
that can incorporate identified haplotypes or partial haplotype patterns for haplotype
inference from present-absent data of clustered genes (e.g., KIR genes). We compared its
performance with an expectation maximization (EM) based method previously developed
in terms of haplotype assignments and haplotype frequency estimation through extensive
simulations for KIR genes. The simulation results showed that the new HMM based
method outperformed the previous method when some incorrect haplotypes were
included as identified haplotypes and/or the standard deviation of haplotype frequencies
were small. We also compared the performance of our method with two methods that
do not use previously identified haplotypes and haplotype patterns, including an EM
based method, HPALORE, and a HMM based method, MaCH. Our simulation results
showed that the incorporation of identified haplotypes and partial haplotype patterns
can improve accuracy for haplotype inference. The new software package HaploHMM
is available and can be downloaded at http://www.soph.uab.edu/ssg/files/People/KZhang/
HaploHMM/haplohmm-index.html.
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INTRODUCTION
Population-based association studies including both genome-
wide mapping and fine mapping of complex disease genes have
become increasingly popular as they offer a potentially more
cost-effective and powerful approach than linkage analysis (Ardlie
et al., 2002; Botstein and Risch, 2003). The unphased genotype
data that are available from most of association studies can be
analyzed based on single markers, multiple markers, or haplo-
types. Haplotype based analysis can provide additional power
in defining effects associated with multiple disease-related alleles
within a single gene (Morris and Kaplan, 2002) or when a single
marker test fails to capture local complexity of linkage disequi-
librium (LD) between multiple markers (Akey et al., 2001). For
some diseases such as hypertension, rare haplotypes have been
shown to influence the disease susceptibility (Liu et al., 2005;
Zhu et al., 2005; Kitsios and Zintzaras, 2010). In addition, hap-
lotype information is crucial to better understanding of human
linkage disequilibrium (LD) patterns, impute untyped genetic
variants (Marchini et al., 2007), and infer human population
history (Tishkoff et al., 1996; Liu et al., 2004).

Practically, haplotypes within individuals of a set of study
samples can be experimentally obtained through laboratory tech-
niques such as long-range PCR or chromosomal isolation (e.g.,
Michalatos-Beloin et al., 1996; Yan et al., 2000; Douglas et al.,
2001), but these approaches are often too expensive and too cum-
bersome to be used effectively for large-scale studies. Therefore,
the vast amount of data generated from most of association stud-
ies is still mainly unphased genotypes. For such data, we need to
rely on statistical and computational methods to infer haplotypes
through estimation of haplotype frequencies and assignment
of haplotype pairs (diplotypes) within individuals. Accordingly,
effective and accurate methods for haplotype inference in various
situations are quite valuable.

Many methods for haplotype inference for genotypes have
been developed in recent years (e.g., Excoffier and Slatkin, 1995;
Hawley and Kidd, 1995; Stephens et al., 2001; Niu et al., 2002; Qin
et al., 2002; Zhang et al., 2005; Liu et al., 2006; Yoo et al., 2007).
Recently, more advanced methods based on Hidden Markov
Model have been developed and shown more accurate (Stephens
and Scheet, 2005; Scheet and Stephens, 2006; Li et al., 2010).
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Theoretically, aforementioned methods for haplotype inference
for genotypes at SNP loci can be extended for genotypes from
copy number variations. At the same time, several methods have
been developed for haplotype inference for copy number vari-
ations (Su et al., 2010; Kato et al., 2011; Ho Jang et al., 2013).
However, most of them haven’t been specifically tailored for anal-
yses of the Killer immunoglobulin-like receptor (KIR) gene family
as detected with locus-specific technology.

The human Killer-cell immmunoglobin-like receptor (KIR)
gene family is a cluster of genes located in a highly polymor-
phic region at the chromosome 19q13.4 (Hsu et al., 2002; Martin
et al., 2004; Middleton et al., 2005). KIR genes encode receptors
in the membrane of natural killer (NK) cells which are known
to regulate the killing function of NK cells by interacting with
major histocompatibility complex (MHC) class I molecules but
the exact mechanisms are not fully understood (Middleton et al.,
2005). To date, 17 genes and pseudogenes have been assigned
to the KIR gene family (Marsh et al., 2003). Discovery of allelic
variants within each KIR gene is still in the early stage (Hsu
et al., 2002), so current KIR genotyping is almost exclusively
restricted to locus-specific PCR, which detects the presence or
absence of target genes. Therefore, the exact number of copy of
gene (one or two) is not determined when that gene is detected
as the presence (Hsu et al., 2002; Middleton et al., 2005), result-
ing in limited genotype data. For such present-absent genotype
data of KIR genes, haplotypes defining gene contents could be
inferred using some simple logic rules if there is enough famil-
ial information for each individual (Hsu et al., 2002; Middleton
et al., 2005). Studies so far have revealed 42 different haplo-
types involving different combinations of 17 KIR genes (Khakoo
and Carrington, 2006), including four—3DL3, 3DP1, 2DL4, and
3DL2—that are found on all KIR haplotypes. In addition, a few
KIR genes (e.g., 3DS1 and 3DL1) are mutually exclusive since
they appear to be allelic variants from a single ancestral locus.
These known haplotypes and haplotype patterns can be incorpo-
rated into haplotype inference for genotyping data from unrelated
individuals.

To effectively use the previously identified haplotypes and hap-
lotype patterns to facilitate the haplotype inference for KIR genes,
Yoo et al. (2007) developed a hybrid approach combining a greedy
algorithm with the Expectation-Maximization (EM) method.
Their method was specifically tailored for haplotype inference
of KIR genes and was implemented in a software package,
HaploIHP. Their simulation results illustrated that HaploIHP had
superior performance compared with two commonly used meth-
ods for haplotype inference, the EM-based program HAPLORE
(Zhang et al., 2005) and the Hidden Markov Model based method
PHASE (Stephens et al., 2001). Their greedy algorithm starts
from the set of identified haplotypes to find a minimum num-
ber of haplotypes that can resolve the unknown haplotypes pairs
for a maximum number of individuals. Then new haplotypes
outside the set of identified haplotypes are then added until all
individual were solved. After a final set of haplotypes are identi-
fied, haplotype frequencies and compatible haplotype pairs with
their posterior probabilities for each individuals are estimated
by the EM algorithm. In the model of HaploIHP, previously
identified haplotypes are used as “true” haplotypes, which will

cause problems if some of the identified haplotypes are actually
not from the samples under study. Moreover, Fallin and Schork
(2000) reported that when the haplotypes are more or less equally
frequent, the frequency estimates from EM–based methods can be
less accurate.

Recently, several Hidden Markov Model based methods for
haplotype inference (Stephens et al., 2001; Scheet and Stephens,
2006; Li et al., 2010) have been developed. Inspired by these
methods, we developed a HMM for haplotype inference that
can effectively use previously identified haplotypes and haplotype
patterns. We evaluated and compared the performance of our
method with the method developed by Yoo et al. (2007) based on
simulations of KIR gene data from Caucasian populations (Hsu
et al., 2002). We also compared the performance of our method
with two methods that do not use previously identified haplo-
types and haplotype patterns, including an EM based method,
HPALORE, and a HMM based method, MaCH.

METHODS
NOTATIONS
We derive a Hidden Markov Model (HMM), called HaploHMM,
to improve the haplotype inference using previously identified
haplotypes and haplotype patterns. HaploHMM is an extension
of the HMM implemented in MaCH, so we will use the same
notations as those used in Li et al. (2010).

We denote N as the number of diploid samples, L as the
number of KIR genes under study, Gn

l as the genotype of n-th
sample at l-th gene. For genotypes composed of present-absent
genes, the genotype Gn

l at locus l (l = 1, . . . , L) for the individ-
ual n (n = 1, . . . , N) has only three possible alternatives: present,
absent, missing. For the absent status, the gene is absent on both
chromosomes, and the genotype is represented as (0, 0). For
the present status, only one copy is known to be present, and
the status of the other chromosome is unknown; in that case, the
genotype is represented as (1, ?). For the missing status, the sta-
tus of both copies is unknown, and the genotype is represented
as (?, ?).

THE HMM FOR HAPLOTYPE INFERENCE IN MaCH
For the HMM implemented in MaCH and Thunder (Li et al.,
2010), it assumes there is a set reference haplotypes spanning
L loci. The haplotypes of each individual are imperfect mosaic
of those reference haplotypes. We use a series of indicator vari-
ables, Sn

1, . . . , Sn
L to represent a hypothetical (and unobserved)

state sequence for the individual n. At a specific site l, diploid state
Sn

j = (xn
j , yn

j ) indicates what the two haplotypes of the individual
are and out of the reference haplotypes, respectively.

For the rest of manuscript, we will ignore the superscript since
we will build the HMM and infer the underlying mosaic state
for each individual separately for a given set of reference haplo-
types. The HMM in MaCH (Li et al., 2010) can be described as
following:

Pr (G1, . . . , GL, S1, . . . , SL)

∝ Pr(S1)
L∏

j = 2

Pr(Sj|Sj − 1)
L∏

j = 1

Pr(Gj|Sj).
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In the above model, Pr(S1) is the prior probability of the initial
mosaic state and is usually assumed to be equal for all possible
compatible haplotype configurations, Pr(Sl|Sl − 1) denotes the
transition probability between two mosaic states and reflects
the likelihood of historical recombination events in the interval
between l and l − 1, Pr (Gl|Sl) denotes the emission probability,
which is the probability of observed genotypes at each posi-
tion conditional on the underlying mosaic state and reflects the
combined effects of gene conversion, mutation, and genotyping
error. Please refer to Li et al. (2010) for the formulas of Pr(S1),
Pr(Sl|Sl − 1), and Pr(Gl|Sl), which are also used in our HMM
model.

The haplotype inference algorithm is basically a Gibbs
sampler: a random pair of haplotypes of each individual
is assigned according to the observed genotype data. Then,
S1, . . . , SL for each individual n are sampled separately accord-
ing to the likelihood function L(S1, . . . , SL|G1, . . . , GL) ∝
Pr(G1, . . . , GL, S1, . . . , SL). Specifically, SL is first sampled
according to Pr(GL, SL), then Sl(l = L − 1, . . . , 1) are sampled
according to Pr(Sl|Sl + 1, . . . , SL, Gl). Then S1, . . . , SL are used
to impute genotype of that individual according to Pr(Gl|Sl) and
determine the new pair of haplotypes of that individual. The sam-
pling procedure is performed over all individuals and repeated for
a number of times (e.g., 50–100). The consensus genotype and
pair of haplotypes of each individual can then be determined by
averaging results over repeats.

EXTENDED HMM WITH INCORPORATION OF ABSENT-PRESENT DATA,
PREVIOUSLY IDENTIFIED HAPLOTYPES AND PARTIAL HAPLOTYPE
PATTERNS
Since a KIR gene is either absent or present on a chromosome,
there are three possible true genotypes: (0, 0) (both absent), (0, 1)
(one absent, one present), and (1, 1) (both present). There are also
three observed genotypes from locus-specific genotyping tech-
nology: (0, 0), (1, ?), and (?, ?). The incorporation of such missing
data in the emission probability in HMM is straightforward: the
emission probability is the summation over all possible genotypes
that are compatible with the observed genotype. For example,
Pr(Gl = (1, ?)|Sl) = Pr(Gl = (1, 0)|Sl) + Pr(Gl = (1, 1)|Sl).

For the present-absent genetic data, the large amount of miss-
ing data makes the haplotype inference difficult. However, previ-
ously identified haplotypes and haplotype patterns can be used
in the HMM to improve the accuracy of haplotype information.
Studies so far have revealed 42 different haplotypes involving dif-
ferent combinations of 17 KIR genes (Khakoo and Carrington,
2006), including four—3DL3, 3DP1, 2DL4, and 3DL2—that are
found on all KIR haplotypes. In addition, several haplotype pat-
terns have been observed from the empirical data: some genes
always appear together on every haplotype, some pairs of genes
always appear to be both absent or both present (completely pos-
itive LD) on a haplotype, while some pairs of genes never appear
together (completely negative LD).

For the HMM for genotype imputation and haplotype, a good
choice of reference haplotypes can result in improved accuracy.
Although both external haplotypes (e.g., haplotypes obtained
from the external reference data such as data from the HapMap
Project) and internal haplotypes (haplotypes estimated from

individuals in the same study sample) can be used as reference
haplotypes (Marchini et al., 2007; Li et al., 2010), studies have
shown that using internal haplotypes is very helpful for the accu-
racy (Zhang et al., 2011). For each iteration of each individual
in the HMM, we use internal as well as external reference haplo-
types. Here, the internal reference haplotypes refer to haplotypes
estimated from other individuals in the same or previous iteration
while the external reference haplotypes refer to previously iden-
tified haplotypes. It is worth noting that the external reference
haplotypes remain same while the internal reference haplotypes
change across different iterations and individuals. Such setting
allows us to use the information from previously identified hap-
lotypes while avoids the problems from HaploIHP even the
previously identified haplotypes are misspecified.

To incorporate previously identified haplotype pat-
terns, we define the following probability function:
Pr(Sl, . . . , SL|Patterns) = 1 if the haplotype pair deter-
mined from Sl, . . . , SL are compatible with the haplotype
patterns at the sites l, . . . , L and Pr(Sl, . . . , SL|Patterns) = 0
otherwise. When we perform the backward sampling
according to Pr(Sl|Sl+1, . . . , SL, Gl), we sample Sl such that
Pr(Sl, . . . , SL|Patterns) = 1. Actually, our sampling is equivalent
to sample the hidden sates according to the following likelihood
function which is an extension of the likelihood function from
the HMM of MaCH (Li et al., 2010):

Pr (G1, . . . , GL, S1, . . . , SL, Patterns) ∝ Pr(S1)
L∏

l = 2

Pr(Sl|Sl − 1)

L∏

l = 1

Pr(Sl, . . . , SL|Patterns)
L∏

l = 1

Pr(Gl|Sl).

By doing this, we can make sure that the haplotypes obtained
from HMM sampling are consistent with the identified haplotype
patterns.

DATA SIMULATIONS
We used the same 17 KIR haplotypes and their frequencies as
these in (Yoo et al., 2007) for simulations. These haplotypes and
their frequencies are listed in Table 1. To generate the data under
the assumption of Hardy-Weinberg Equilibrium (HWE), two
haplotypes were randomly selected according to their frequen-
cies and paired to form the genotype of each individual. Then the
genotype was converted to the present–absent format. Original
haplotype configuration for each individual was stored separately
to assess the performance of methods for haplotype inference.
Similarly, the data were also generated assuming a departure from
HWE by modifying the proportions of heterozygous haplotype
pairs and homozygous haplotype pairs in the following way. Let
wHOM be the homozygosity parameter and wHET be the het-
erozygosity parameter. FHOM is the sum of frequencies for all
homozygous haplotype pairs and FHET is the sum of frequen-
cies for all heterozygous haplotype pairs under HWE. We can
obtain α that satisfies α(wHOMFHOM + wHETFHET) = 1 for given
wHOM and wHOM . With the HWE assumption, wHOM and wHET

are set to be equal to 1. We can set wHOM > wHET to represent
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Table 1 | 17 KIR gene haplotypes with their frequencies used in

simulations.

Number Haplotypes Frequency

1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0.552

2 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0.003

3 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0.015

4 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0.006

5 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0.101

6 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0.037

7 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0.028

8 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0.064

9 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0.107

10 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0.003

11 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0.015

12 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0.018

13 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0.003

14 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0.006

15 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0.006

16 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0.022

17 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0.012

The 14 KIR genes are 3DL3, 2DS2, 2DL2, 2DL3, 2DL5B, 2DL1, 2DL4, 3DS1,

3DL1, 2DL5A, 2DS3, 2DS5, 2DS1, and 3DL2. Among these haplotypes, 10 most

frequent haplotypes, 1, 3, 5, 6, 7, 8, 9, 11, 12, and 16 were selected as identified

haplotypes in HaploHMM and HaploIHP.

the excessive homozygosity and wHOM < wHET to represent the
excessive heterozygosity. The new frequency of each haplotype
pair with a departure from HWE is obtained by multiplying
αwHOM for homozygous haplotype pairs and αwHET for het-
erozygous haplotype pairs. We generated data sets with wHOM =
1 and wHET = 2 (excessive heterozygosity) and wHOM = 2 and
wHET = 1 (excessive homozygosity).

To assess the effect of sample size, we generated data with dif-
ferent sample sizes (50, 100, and 200 individuals). To evaluate the
performance of the proposed method under different haplotype
frequency distributions, we started with the original frequencies
that the most frequent haplotype has the frequency of 55.2%,
then gradually decreased the frequency of this major haplotype
by 5–10.2%, and increased the frequencies of ten haplotypes with
the lowest frequency by 0.5%. To evaluate the performance of
the proposed method when some of the identified haplotypes are
actually incorrect, we switched alleles of two most frequent hap-
lotypes at two loci. We also generated data sets without missing to
compare our method with others. For each setting, we simulated
500 data sets.

MEASURES USED IN COMPARISON OF METHODS FOR HAPLOTYPE
INFERENCE
To quantify the performance of different methods for haplo-
type inference, we calculated the following four measures for
each replicate and take the average of these measures over 500
replicates: an index of performance in terms of haplotype iden-
tification (IH; Excoffier and Slatkin, 1995), sum of absolute
differences between estimated and true frequencies (SAD; Fallin
and Schork, 2000), individual error rate (IE; Niu et al., 2002), and

similarity error rate (SE; Stephens and Donnelly, 2003). These
four measures were selected because they have been extensively
used by researchers to evaluate the performance of methods for
haplotype inference and each of them provides different aspects
of such evaluation. IH and SAD are computed from the esti-
mated haplotypes and their frequencies, while IE and SE are
computed from haplotype pairs assigned to each individual with
their true haplotypes. In order to find where IE comes from,
we also calculated the other two measures: individual mutation
error (IME) and individual switch error (ISE). IE comes from
two sources, one is IME, which is defined as the proportion of
individuals whose haplotypes are assigned incorrectly because the
inferred haplotype pairs are not compatible with the genotype;
the other one is ISE, which is defined as the proportion of individ-
uals whose haplotypes are assigned incorrectly because switching
occurred at some loci. If the genotype has no missing data, then
IE = ISE.

Specifically, IH is defined as: IH = 2(Ktrue − Kmiss)/(Ktrue +
Kest), where Ktrue is the number of true haplotypes, Kest is the
number of estimated haplotypes, and Kmiss is the number of true
haplotypes that are not identified. The range of IH is from 0 to
1 and the larger value of IH indicates the better performance.
When the set of estimated haplotypes is the same as the set of
true haplotypes, IH has the value of 1 indicating the best per-
formance. When the set of estimated haplotypes doesn’t contain
any true haplotype, IH has the value of 0 indicating the worse
performance. SAD is defined as SAD = ∑

k |θ est
k − θ true

k |. Here
θ est

k and θ true
k are the estimated and true frequency of that hap-

lotype, respectively. SAD reflects the overall deviation between
the estimated and the true haplotype frequencies. The range of
SAD is from 0 to 2 and the smaller of SAD indicates the bet-
ter performance. IE is defined as the proportion of individuals
whose haplotypes were assigned incorrectly while SE is defined
as the Hamming distance between true and estimated haplotype
pairs divided by twice the number of loci. The range of IE and
SE is from 0 to 1 and the smaller values indicate the better per-
formance. The range of IME (individual mutation error) and ISE
(individual switch error) is from 0 to IE. In the absence of miss-
ing data, IME equals to 0 and ISE is same as IE. Again, the smaller
values of IME and ISE indicate the better performance.

IDENTIFIED HAPLOTYPES AND HAPLOTYPE PATTERNS
We used 10 most frequent haplotypes in Table 1 as identified hap-
lotypes which were used as reference haplotypes for HaploHMM
and as input haplotypes for HaploIHP. To evaluate the perfor-
mance of the proposed method when some of previously iden-
tified haplotypes are actually correct, we switched alleles of two
most frequent haplotypes at two loci. Specifically, we switched
alleles at loci 2DL5B and 2DL1 for the haplotypes 1 and 9 in
Table 1. The frequencies accounted by the identified haplotypes
and the incorrect haplotypes were 96% and 66% of total hap-
lotype frequencies when the original haplotype frequencies were
used in simulations, respectively. When we gradually decreased
the frequency of the most frequent haplotype from 55.2% to
10.2% by 5%, and increased the frequencies of ten haplotypes
with the lowest frequency by 0.5% in simulations, the frequen-
cies accounted by the identified haplotypes and the incorrect
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haplotypes gradually reduced to 65 and 21% of total haplotype
frequencies, respectively (Table 2).

We used three types of haplotype patterns derived from the
observations in KIR haplotype studies (Hsu et al., 2002; Marsh
et al., 2003; Middleton et al., 2005): (1) three anchor genes, 2DL4,
3DL2 and 3DL3 always present in all haplotypes; (2) two genes,
2DS2 and 2DL2, always either present or absent together in all
haplotypes and (3) two pairs of genes, (3DS1, 3DL1) and (2DL2,
2DL3), in complete negative LD, i.e., when one gene in each pair
is present in a haplotype, the other gene in the same pair is absent.

RESULTS
Yoo et al. (2007) showed by simulation that HaploIHP is better
than PHASE (Stephens et al., 2001) and HAPLORE (Zhang et al.,
2005) for KIR data even when 60 and 25% of previously iden-
tified haplotypes were incorporated into the analysis. Here we
compared the performance of our method with HaploIHP (Yoo
et al., 2007), HAPLORE (Zhang et al., 2005), and MaCH (Li et al.,
2010). We evaluated their performances by all six measures (IH,
SAD, IE, IME, ISE, and SE).

Figures 1, 2 show the average values of six measures over 500
replicates with the sample size of 100 and the assumption of HWE
under different haplotype frequency distributions (Table 2). It
can be seen that the average IH values from HaploHMM and
HaploIHP ranged from 0.72 to 0.88 and were much higher for
the average values from MaCH and HAPLORE which ranged
from 0.38 to 0.57. The average IH values decreased slightly with
the increasing of standard deviation of haplotype frequencies
used in simulations. When the correct haplotypes were used

Table 2 | The different haplotype frequency distributions used in the

simulation.

Frequency Standard Haplotype frequency Haplotype

of most deviation of accounted by frequency accounted

frequent haplotype identified by incorrect

haplotype frequencies haplotypes (%) haplotypes (%)

0.552 0.131 96 66

0.502 0.119 93 61

0.452 0.105 89 56

0.402 0.093 86 51

0.352 0.802 82 46

0.302 0.068 79 41

0.252 0.055 75 36

0.202 0.044 72 31

0.152 0.033 68 26

0.102 0.024 65 21

We started with the original frequencies that the most haplotype has the

frequency of 55.2%, then gradually decreased the frequency of this major haplo-

type to 10.2% by 5%, and increased the frequencies of ten haplotypes with the

lowest frequency by 0.5%. The corresponding frequency of most frequent hap-

lotype (haplotype 1 in Table 1), the standard deviation, the haplotype frequency

accounted by the identified haplotypes and the incorrect haplotypes are listed.

It is worth noting that the total of 17 haplotypes were used in the simulation

and the summation of haplotype frequencies is equal to 1, thus the standard

deviation times 17 is the coefficient of variation (CV).

as identified haplotypes, HaploIHP always had better perfor-
mance than HaploHMM. When some incorrect haplotypes were
included as identified haplotypes, HaploHMM had the slightly
larger IH values when the standard deviation of haplotype fre-
quencies was larger than 0.11. It is worth noting that the EM
based method (HaploIHP) had the larger IH values than those
of the HMM based greedy method (HaploHMM) when the iden-
tified haplotypes and haplotype patterns were used while the EM
based method (HAPLORE) had the smaller IH values than those
of the HMM based method (MaCH) when the identified hap-
lotypes and haplotype patterns were used. This is because that
HaploIHP uses the identified haplotypes and haplotype patterns
to reduce the number of compatible haplotypes in the EM thus
results in more accurate estimation of haplotypes, HAPLORE
results in many haplotypes with small frequency due to a large
number of compatible haplotypes from the missing data thus has
the smaller IH values. In terms of SAD, the sum of differences
between true haplotype frequencies and estimated haplotype fre-
quencies from HaploHMM ranged from 0.25 to 0.57 and were
always bigger than those from HaploIHP. This is not unex-
pected since HaploHMM only used 200 haplotypes from the last
round of HMM iteration to estimate haplotype frequencies while
HaploIHP used the EM algorithm. The average values of SAD
from HaploIHP and HaploHMM were smaller than those from
MaCH and HAPLORE.

As shown in Figures 1, 2, both IE and SE decreased when the
standard deviation of haplotype frequencies used in simulations
increased, indicating that all methods performed better if there
were one or a few major haplotypes. The change of IE and SE
were much larger than IH and SAD. For HaploHMM, the average
IE reduced from 0.58 to 0.19 while SE reduced from 0.08 to 0.30.
In terms of SE, HaploHMM always had the smaller SE than those
of HaploIHP, indicating better performance of HaploHMM. In
terms of IE, HaploIHP had better performance than HaplloHMM
when the correct haplotypes were used as identified haplotypes
while HaploHMM had better performance than HaploIHP when
the standard deviation of haplotype frequencies was smaller than
0.08 and the incorrect haplotypes were included in identified hap-
lotypes To further investigate IE, we distinguished two types of
error: IME and ISE and presented the results in Figures 1, 2.
It can be seen that the majority of IE was from IME. IME
showed similar patterns with IE: HaploHMM had the smaller
IME when the standard deviation of haplotype frequencies is
small while HaploIHP had the smaller IME when the standard
deviation of haplotype frequencies is large. Both HaploIHP and
HaploHMM had the smaller SE and IE than those of MaCH and
HAPLORE, indicating the use of identified haplotypes and hap-
lotype patters significantly improved the accuracy for haplotype
inference.

We assessed the performance of HaploHMM and HaploIHP
with different sample size of 50, 100, and 200. Patterns of six
measures from HaploHMM, HaploIHP, MaCH, and HAPLORE
with the sample size of 50 and 200 were similar as those with
the sample size of 100. Figure 3 shows the average SE values for
measures with the sample size of 50, 100, and 200. It can be
seen that HaploHMM outperformed HaploIHP and HaoloHMM
and HaploIHP had much better performance than MaCH and
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FIGURE 1 | Average values of six measures (IH, SAD, SE, IE, IME, and

ISE ) over 500 replicates with the sample size of 100 and the assumption

of HWE under different haplotype frequency distributions. The x-axis

represents the standard deviation of haplotype frequencies used in
simulations. Results were obtained when no incorrect haplotypes were
included as identified haplotypes.

FIGURE 2 | Average values of six measures (IH, SAD, SE, IE, IME, and

ISE ) over 500 replicates with the sample size of 100 and the assumption

of HWE under different haplotype frequency distributions. The x-axis

represents the standard deviation of haplotype frequencies used in
simulations. Results were obtained when two incorrect haplotypes were
included as identified haplotypes.
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FIGURE 3 | Average values of SE with the sample size of 50,

100, and 200 and the assumption of HWE under different

haplotype frequency distributions. The x-axis represents the
standard deviation of haplotype frequencies used in simulations.

(A–C) represent the results when no incorrect haplotypes were
included as identified haplotypes while (D–F) represent the results
when some incorrect haplotypes were included as identified
haplotypes.

HAPLORE in terms of SE. For both HaploHMM and HaploIHP,
the effect of sample size is rather smaller, suggesting that increas-
ing sample size from 50 to 200 does not significantly improve the
accuracy for haplotype inference.

We investigated the effect of departure from HWE on the per-
formance of the four methods using simulated data with HWE,
excessive homozygosity, and excessive heterozygosity. Again, pat-
terns of six measures from HaploHMM and HaploIHP with
excessive homozygosity and excessive heterozygosity were sim-
ilar as those with the assumption of HWE. It is expected that
both methods had better performance with excessive homozy-
gosity while worse performance with excessive heterozygosity due
to the reduced haplotype ambiguity with excessive homozygosity.
Figure 4 shows the average IE measures for different situations.
The IE decreased as standard deviation of haplotype frequen-
cies increased in most situations. When only correct haplotypes
were included as identified haplotypes, HaploIHP had a lower
IE value (thus better performance) than those of HaploHMM.
However, when some incorrect haplotypes were included as
identified haplotypes, HaploHMM had lower IE values than
those of HaploIHP, except a few cases when standard deviation
of haplotype frequencies was quite large. Again, HaoloHMM
and HaploIHP had much better performance than MaCH and
HAPLORE.

We investigated if the use of identified haplotypes and haplo-
type patterns can improve the accuracy for haplotype inference
in the absence of missing data and presented the average val-
ues of four measures (IH, SAD, SE, and IE) in Figures 5, 6. In
the absence of missing data, all methods had much better perfor-
mance and the differences of the average values of four measures
among four methods were much smaller than those of in the
presence of missing data. HAPLORE had the best performance
when the standard deviation of haplotype frequency was large
while HAPLORE had the worst performance when the standard
deviation of haplotype frequency was large. When only correct
haplotypes were included as identified haplotypes, HaploIHP still
had the best performance, followed by HaploHMM and MaCH.
However, when some incorrect haplotypes were included as iden-
tified haplotypes, HaploHMM had the best performance across
all haplotype frequency distributions and MaCH outperformed
HaploIHP when the standard deviation of haplotype frequency
was less than 0.10.

DISCUSSION
Many methods for haplotype inference have been developed
and widely used by researchers. Although these methods can
be directly applied to present-absent data (Liu et al., 2006), the
large portion of missing data can greatly affect their accuracy for
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FIGURE 4 | Average values of IE with the sample size of 100 and with

HWE, excessive heterozygosity, and excessive homozygosity. The x-axis
represents the standard deviation of haplotype frequencies used in

simulations. (A–C) Represent the results when no incorrect haplotypes were
included as identified haplotypes while (D–F) represent the results when
some incorrect haplotypes were included as identified haplotypes.

haplotype inference. In addition, most of these methods have not
incorporated identified haplotypes and/or haplotype patterns for
improved accuracy. In this paper, we developed a Hidden Markov
Model that incorporate identified haplotypes and/or haplotype
patterns for haplotype inference and illustrated evidence that our
HMM can improve the accuracy for the inference of KIR gene
haplotype. When compared with HaploIHP, a publically available
program that is specially tailored for haplotype inference of KIR
genes through simulations, our method, HaploHMM had the bet-
ter performance when some incorrect haplotypes were included
as identified haplotypes and/or the standard deviation of hap-
lotype frequencies were small. Both HaploHMM and HaploIHP
had the better performance than MaCH and HAPLORE in the
presence of large portion of missing data, indicating the use of
identified haplotypes and haplotype patterns can significantly
improve the accuracy for haplotype inference in such situation. In
the absence of missing data, HaploHMM still had the better per-
formance than HaploIHP when some incorrect haplotypes were
included.

If some studies have been conducted for the similar population
samples, the identified haplotypes from these studies are likely to
be observed again. It is expected that the incorporation of these
haplotypes in our program will improve the accuracy for haplo-
type inference. The use of these haplotypes can especially benefit
present-absent genotype data since many individuals may have

a large number of compatible haplotype pairs due to the large
portion of missing data. The incorporation of such identified
haplotypes is straightforward in the HMM—these haplotypes
are added to the reference haplotypes (external reference haplo-
types). Actually, it has been illustrated that the use of reference
haplotypes, such as haplotypes from the HapMap project and
the 1000 Genomes Project can improve accuracy for genotype
imputation and haplotype inference. The sampling nature of the
HMM implemented in HaploHMM also avoids the problem of
HaploIHP when some identified haplotypes are misspecified. We
calculated the haplotype frequency accounted by incorrect hap-
lotypes that were included as identified haplotypes and used it
to measure the degree of incorrectness. We found not only the
degree of incorrectness but also the standard deviation of hap-
lotype frequency affected the performance of the performance
of HaploIHP and HaploHMM. When there were a very few
number of major haplotypes, HaploIHP using the correct haplo-
types as identified haplotypes had comparable performance with
HaploIHP using the incorrect haplotypes as identified haplo-
types, even the incorrect haplotypes accounted a high portion
of total haplotype frequency. However, when there were a num-
ber of major haplotypes, HaploIHP using the correct haplotypes
as identified haplotypes had moderately better performance with
HaploIHP using the incorrect haplotypes as identified haplo-
types, even the incorrect haplotypes accounted a much lower
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FIGURE 5 | Average values of six measures (IH, SAD, SE, and IE ) over

500 replicates with the sample size of 100 and the assumption of HWE

under different haplotype frequency distributions. The x-axis represents

the standard deviation of haplotype frequencies used in simulations. Results
were obtained when there was no missing data and there was no incorrect
haplotypes included as identified haplotypes.

FIGURE 6 | Average values of six measures (IH, SAD, SE, and IE ) over

500 replicates with the sample size of 100 and the assumption of HWE

under different haplotype frequency distributions. The x-axis represents

the standard deviation of haplotype frequencies used in simulations. Results
were obtained Results were obtained when there was no missing data and
there were two incorrect haplotypes included as identified haplotypes.
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portion of total haplotype frequency. In contrast, the perfor-
mance of HaploHMM was much less affected by including the
incorrect haplotypes as reference haplotypes.

The set of haplotype patterns can also eliminate haplotypes
unlikely observed, so the use of them can improve the efficiency
and accuracy for haplotype inference. In our HMM, we incorpo-
rate these haplotype patterns by sampling the hidden states that
only consistent with haplotype patterns. One drawback of the use
of these constrains is that some individuals may not have com-
patible haplotype pairs compatible with these constraints. In this
situation we can sample the hidden states with higher probabil-
ity if they are consistent with haplotype patterns and with much
lower probability if they are not consistent with haplotype pat-
terns. This can be done by defining anew probability function:
Pr(Sl, . . . , SL|Patterns) = 1 − β if the haplotype pair determined
from Sl, . . . , SL are compatible with the haplotype patterns at
the site l, . . . , L and Pr(Sl, . . . , SL|Patterns) = β otherwise, where
β is small positive number. This allows for the identification of
novel haplotypes not seen in the reference haplotypes.

Throughout the paper, we used data from KIR genes as an
illustration. Our method can be directly applied to present-absent
data from other genes, such as Human Leukocyte Antigen (HLA)
motifs determined by sequence specific oligonucleotide assays
(Song et al., 2009). In addition, our simulation results illus-
trated the use of identified haplotypes and haplotype patterns can
improve the accuracy of haplotype inference even in the absence
of missing data, therefore our method can be used for haplotype
inference in general situations.
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