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A B S T R A C T

Background: Familial hypercholesterolemia (FH) is a monogenic disorder characterized by elevated low-den-
sity lipoprotein cholesterol (LDL-C). A FH causing genetic variant in LDLR, APOB, or PCSK9 is not identified in
12�60% of clinical FH patients (FH mutation-negative patients). We aimed to assess whether altered DNA
methylation might be associated with FH in this latter group
Methods: In this study we included 78 FH mutation-negative patients and 58 FH mutation-positive patients
with a pathogenic LDLR variant. All patients were male, not using lipid lowering therapies and had LDL-C lev-
els >6 mmol/L and triglyceride levels <3�5 mmol/L. DNA methylation was measured with the Infinium
Methylation EPIC 850 K beadchip assay. Multiple linear regression analyses were used to explore DNA meth-
ylation differences between the two groups in genes related to lipid metabolism. A gradient boosting
machine learning model was applied to investigate accumulated genome-wide differences between the two
groups.
Findings: Candidate gene analysis revealed one significantly hypomethylated CpG site in CPT1A (cg00574958)
in FH mutation-negative patients, while no differences in methylation in other lipid genes were observed.
The machine learning model did distinguish the two groups with a mean Area Under the Curve (AUC)§SD of
0�80§0�17 and provided two CpG sites (cg26426080 and cg11478607) in genes with a possible link to lipid
metabolism (PRDM16 and GSTT1).
Interpretation: FH mutation-negative patients are characterized by accumulated genome wide DNA methyla-
tion differences, but not by major DNA methylation alterations in known lipid genes compared to FH muta-
tion-positive patients.
Funding: ZonMW grant (VIDI no. 016.156.445)

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Familial hypercholesterolemia (FH) is a common inherited autoso-
mal dominant disease characterized by high plasma levels of low-
density lipoprotein cholesterol (LDL-C) and high risk for premature
cardiovascular disease (CVD). Pathogenic variants in the genes coding
the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB),
and proprotein convertase subtilisin/kexin type 9 (PCSK9) have been
shown to cause FH. However, no pathogenic variant in any of these
three FH genes is identified in a large proportion of patients who are
diagnosed with FH based on clinical signs and symptoms [1], fuelling
an ongoing search for novel pathogenic pathways causing FH.

Differential epigenetic regulation of the genes involved in lipid
metabolism may be such a factor causing FH. DNA methylation, in
which a methyl group is covalently bound to the fifth carbon atom of
the nucleotide cytosine when it is followed by guanine (CpG site) is
the most studied form of epigenetic gene expression regulation [2].
In general, methylation of CpG sites in promoter regions of genes
results in low expression of the gene, while methylation of CpG sites
within the gene typically results in high expression of the gene [2].

The role of DNA methylation in lipid metabolism is relatively
under investigated, but some studies have shown that DNA methyla-
tion of multiple genes is associated with plasma LDL-C as well as
other lipid levels [3�6]. The expression of known genes involved in
LDL-C metabolism (i.e. APOE, NPC1L1) has been found to be regulated
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Research in Context

Evidence before this study

A causal pathogenic variant in one of the Familial Hypercholes-
terolemia (FH) genes (i.e. LDLR, APOB, PCSK9) is not found in a
large proportion of patients with clinical FH. We hypothesized
that differential DNA methylation, a form of epigenetic regula-
tion, contributes to the FH phenotype in these FH mutation-
negative patients. We performed a PubMed search with the fol-
lowing terms: “Familial Hypercholesterolemia” AND “DNA
methylation” and found 11 studies. None of the studies investi-
gated the DNA methylation pattern in FH mutation-negative
patients. Next, we searched PubMed with the terms ("dna
methylation" OR "methylation" OR "cpg islands" OR "ewas" OR
"CpG Islands"[MeSH Terms] OR "DNA Methylation"[MAJR])
AND ("ldl" OR "low-density lipoprotein") Filters: Humans. This
yielded 370 articles, and in 5 of these, epigenome wide associa-
tion studies showed an association between DNA methylation
in multiple genes and LDL cholesterol levels. None of the stud-
ies investigated DNA methylation patterns in FH mutation-neg-
ative patients.

Added value of this study

This study was the first large scale study in FH mutation nega-
tive patients. In order to control for confounding due to high
lipid levels we studied two unique FH patient groups: FH muta-
tion-negative patients, and a group comprising FH mutation-
positive patients. Although classical candidate gene analysis
did, except for CPT1A, not reveal major DNA methylation differ-
ences in known lipid genes, a machine learning approach
showed that FH mutation-negative patients are characterized
by a different genome wide DNA methylation pattern com-
pared to FH mutation-positive patients, with important model
features for the genes PRDM16 and GSTT1.

Implications of all the available evidence

Despite extensive sequencing efforts, a causative genetic vari-
ant is not found in a large proportion of patients with a clinical
FH diagnosis. Hence efforts to find novel factors causing the FH
phenotype are deemed of great relevance. Additional studies to
further investigate DNA methylation and its causal role in
(familial) hypercholesterolemia are warranted and might bene-
fit from focusing on accumulation of genome-wide methylation
differences instead of single gene or CpG site methylation.
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by CpG methylation [7,8]. Moreover, DNA methylation of multiple
genes (i.e. ABCA1, ABCG1, LIPC, PLTP, CETP, and LPL) were associated
with lipid traits [9�11] and coronary artery disease outcomes (i.e.
ABCA1) [9] in patients with molecularly proven FH. However, the
impact of methylation of lipid genes has not been investigated in FH
patients in whom no variant in the coding region of the three major
FH genes is found. In the current study we analysed the methylation
pattern in patients with and without FH causing variants. A potential
confounding factor is the effect of elevated lipid levels on DNA meth-
ylation itself. To overcome this issue, we compared DNA methylation
in FH patients without FH causing variant (FH mutation-negative) to
group of FH patients with a known pathogenic variant in LDLR (FH
mutation-positive).We not only investigated methylation differences
in single genes using classical regression analysis, but also used an
unbiased machine learning approach to identify whole genome dif-
ferences in DNA methylation between the two groups.
2. Materials and methods

2.1. Study population

In this study we investigated DNA methylation differences
between FH mutation-negative patients and FH mutation-positive
patients. The Amsterdam UMC, location Academic Medical Center
(AMC) in Amsterdam, is the national referral center for the genetic
analysis of all Dutch patients with various forms of dyslipidaemias.
For this study we analysed the DNA derived from index patients for
whom the referring physician, after clinical evaluation (laboratory
results, family history, and physical examination) based on national
guidelines [12,13], requested molecular testing for FH causing genetic
variants between 2012 and 2017. In the samples collected before
2016 (n = 122), molecular analysis was performed by Sanger
sequencing of LDLR, APOB, and PCSK9 and was followed by multiplex
ligation-dependent Probe Amplification (MLPA) of LDLR when no
pathogenic variants in these three genes were found. In samples col-
lected from 2016 onwards (n = 14), a targeted next-generation
sequencing (NGS) capture covering 27 lipid genes (including LDLR,
APOB, and PCSK9) was used (Supplementary Table 4). Subsequent
genetic cascade screening within families of index patients is done in
a separate diagnostic program. These patients were not included in
the current study.

The DNA of male patients was used for the current study when the
patients were not a carrier for any known FH causing variant in LDLR,
APOB, and PCSK9 (FH mutation-negative) or had a FH causing variant
in LDLR (FH mutation-positive). We selected patients who had
plasma LDL-C levels above 6 mmol/L, which corresponds to the
>99th percentile for males from all ages in The Netherlands [14].
Moreover, patients whose triglycerides levels were above 3�5 mmol/
L and those who were using lipid lowering therapies (i.e. statins) at
the time of DNA sampling were excluded. Females were excluded
from this study because of the influence of sex differences on DNA
methylation [15]. The study size was based on the availability of DNA
samples of patients meeting these criteria. All included subjects gave
written informed consent for re-use of their DNA samples for
research into novel causes of hypercholesterolemia. The Medical
Ethics Review Committee of the Amsterdam UMC, location AMC, pro-
vided a waiver for the re-use of the patients clinical data and DNA
samples in the current study (reference ID: W20_246 # 20.281).
2.2. DNA methylation measurements

The Gentra Puregene kit was used to isolate DNA from whole
blood collected in EDTA containing tubes according to standard pro-
tocols. Samples were stored at 4 °C until analysis. DNA concentrations
were measured using Qubit standard methodology. DNA was treated
with bisulfite using the EZ DNA Methylation kit of ZYMO� according
to the standard protocol recommended by Illumina. DNAmethylation
of the bisulfite treated DNA was analysed with the Illumina Infinium
Methylation EPIC 850 K beadchip (Illumina, California, USA) at
GenomeScan (Leiden, The Netherlands). Samples of FH mutation-
negative and FH mutation-positive patients were randomly assigned
to different slides to avoid potential confounding batch effects.
3. Statistical analysis

We analysed the methylation data in a two-step approach. First,
linear regression models for each CpG site were constructed to test
for major difference in DNA methylation between FH mutation-posi-
tive and FH mutation-negative patients. Next, a gradient boosting
machine learning technique was used to investigate unbiased subtle
genome-wide DNA methylation differences between the two FH
groups.



Table 1
characteristics of study population.

FH mutation-
positive

FH mutation-
negative

P-value*

N 58 78 �
Age in years
(mean (SD))

38�1 (12�0) 50�7 (12�3) <0�001

Males (n (%)) 58 (100) 78 (100) �
Total cholesterol,
mmol/L
(mean (SD))

9�6 (1�3) 9�0 (1�4) 0�022

LDL cholesterol,
mmol/L
(median [IQR])

7�4 [6�7�8�4] 6�7 [6�4�7�2] 0�001

HDL cholesterol,
mmol/L
(mean (SD))

1�3 (0�8) 1�3 (0�4) 0�668

Triglycerides,
mmol/L
(median [IQR])

1�3 [1�1�2�0] 1�8 [1�3�2�3] 0�011

SD, Standard Deviation; IQR, interquartile range; LDL, low-density lipoproteins;
HDL, high-density lipoproteins.
* normally distributed values (age, total cholesterol, HDL cholesterol) were

compared using student’s t-test, non-normally distributed values (LDL cholesterol
and triglycerides) were compared using a Mann-Whitney U test.
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3.1. Quality control and normalization of methylation data

Quality control of the obtained data was performed using the R-
package MethylAid (version 1.30.0), conform default settings [16].
Concordance between sex chromosome probes and self-reported sex
were evaluated using principal component analyses (PCA). Next the
data was normalized using the Funnorm function from the Minfi R
package (version 1.30.0) [17]. Probes susceptible to cross-hybridiza-
tion(12), probes previously described include single nucleotide poly-
morphisms (SNPs) with a minor allele frequency (MAF) >0.01 in
either the CpG dinucleotide itself or at the position of the single base
extension, and probes which included SNPs in the probe binding
position were excluded (according to the Illumina manifest).

3.2. Candidate gene analysis

In the candidate gene analysis, CpG methylation was the depen-
dent variable with group (FH mutation-negative or FH mutation-pos-
itive), age and leukocyte cell distributions incorporated as
independent variables in this model. Leukocyte cell distributions
were estimated using the obtained data according to the method of
Houseman et al., resulting in information on relative cell counts of
CD8+ and CD4+ T cells, natural killer cells, B cells, monocytes and
granulocytes [18]. Quality of the epigenetic profiles was further eval-
uated using density plots of raw and normalized data and PCA. Corre-
lations of the principal components one to eight with all available
variables were evaluated upon entering our statistical model. For dif-
ferential methylated positions (DMPs), we applied the LMfit function
in the R package Limma (version 3.40.2). Cell distribution was deter-
mined with the R package FlowSorted.Blood.EPIC. To control for mul-
tiple testing the false discovery rate (FDR) method was used, where
an FDR<0.05 was defined to be significant. We corrected for inflation
using the BACON package for R (version 1.12.0) [19].

We generated four groups of genes according to the grade of
impact on lipid metabolism (Supplementary Table 1). Tier 1 and 2
comprised the major (LDLR, APOB, PCSK9), and minor (LDLRAP, STAP1,
ABCG5, ABCG8, APOE, LIPA) FH genes, respectively. Tier 3 comprised
all genes that were shown to be significantly associated with plasma
LDL-C or total cholesterol levels in a large genome wide association
study [20]. Tier 4 included eighteen cytosine-guanine dinucleotide
positions that have been shown to be associated with LDL-C and total
cholesterol levels in previous studies [3,5,6,21]. All CpG probes within
3000 base pairs surrounding the candidate genes on either side were
analysed in order to cover CpG sites in the 5` promoter region and
possible downstream regulatory regions that were not annotated to a
gene by the Illumina manifest.

3.3. Machine learning analysis

Statistical machine learning analysis was used to identify differen-
tially methylated CpG sites that could discriminate between FH
mutation-negative and FH mutation-positive subjects on a unbiased
genome wide level. In brief, we used a combination of multiple gradi-
ent boosting classifiers to improve prediction accuracy [22,23]. To
avoid over-fitting, we used a 5-fold stratified cross-validation over
the training partition of the data (80%) while the remaining data
(20%) was used as the test dataset [24]. The latter set was not used
for the construction of the machine learning models. We conducted a
rigorous stability selection procedure to ensure the reliability and
robustness of the biomarker signatures [25]. This was repeated
50 times and Receiver Operating Characteristics (ROC) Area Under
Curve (AUC) scores were computed each time and averaged for the
final test ROC AUC. A permutation (randomization test) was used to
evaluate statistical validity of the results [26]. In the permutation
test, the outcome variable (i.e., the FH group, either FHmutation-neg-
ative or FH mutation-positive) was randomly reshuffled 1000 times
while the corresponding epigenetic profiles were kept intact. By eval-
uating the distribution of all the results obtained in these simulations
and comparing it to the outcome variable, we computed statistical
significance associated with the joint panel of the selected CpG sites.
To gain insight into the features that contributed the most to the
model we also report relative feature importance scores for each of
the CpG sites that demonstrate preferences in the model for predict-
ing the outcome variable in the gradient boosting model. To gain
insight into the biological relationship between the top features of
this model and lipid metabolism, we searched for publications listed
in PubMed that described a relationship between the genes identified
in the top 20 contributing CpG sites and hypercholesterolemia. We
used Python version 3.8 (www.python.org), with packages Numpy,
Scipy and Scikits-learn for implementing the model and R version
3.5.3 (R Foundation, Vienna, Austria) for visualizations.

3.4. Correlation methylation and gene expression

Significantly differentially methylated CpG sites identified in the
candidate gene analysis and the top 20 CpG sites that contributed the
most in the machine learning model, were submitted for in silico vali-
dation by exploring their correlation with gene expression data in
two publicly accessible liver hepatocellular carcinoma datasets;
accessible via the webtools SMART [27] and MEXPRESS [28]. These
datasets were based on the smaller 450 K Illumina Infinium Beadchip
assay, implying that only EPIC/450 K overlapping CpG sites were
investigated. Spearman’s and Pearson’s correlation were retrieved
from both databases. Correlations between DNA-methylation and
gene expression showing a P-value < 0�05 and a correlation coeffi-
cient (R) > 0�1 were suggestive to be biological relevant.

3.4.1. Role of funders
The funder (ZonMW) was not involved in the design, data collec-

tion, analysis, interpretation or any other aspect of this study.

4. Results

Subjects for this study were diagnosed with clinical FH by the
physician, who requested genetic analysis for FH in our center. The
analysed cohort comprised of 78 FH mutation-negative and 58 muta-
tion positive patients. Characteristics of the cohort are shown in
table 1. FH mutation-negative patients were older (50�7 § 12�3 vs.

http://www.python.org


Fig. 1. Candidate gene analysis
Four tiers of genes were constructed based on literature (genes are listed in Supplementary Table 1). Shown are the difference in methylation (effect size) between FH-mutation

negative and FH-mutation positive patients for the four tiers (panels A-D) Only in tier 4 (panel D), one CpG site (CPT1A-cg00574958) was significantly less methylated in FH-muta-
tion negative patients. Significance was defined as a False Discovery rate (FDR) of <0�05. FH, Familial Hypercholesterolemia; GWAS, genome-wide association study; EWAS, epige-
nome-wide association study.
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39�1 § 12�0 years old, p < 0�05 [Student’s t-test]) had slightly lower
LDL-C levels (median[IQR] 6�7 [6�4�7�2] mmol/L vs. 7�4 [6�7�8�4]
mmol/L, p < 0�05 [Mann-Whitney U test]) and higher TG levels (1�3
[1�1�2�0] mmol/L vs. 1�8 [1�3�2�3] mmol/L, p = 0�011 [Mann-
Whitney U test]) compared to the FH patients with a LDLRmutation.

4.1. Quality control of data

No major inflation was observed after BACON inflation correction
of the data (lambda = 0�9546; Supplementary Figure 1).

4.2. Candidate gene analysis

To investigate the association between CpG sites related to
genes involved in lipid metabolism and the FH group, we per-
formed a candidate gene analysis according to the four prede-
fined tiers of genes (Supplementary Table 1). Tier 1 consisted of
the three major FH genes: LDLR, APOB, and PCSK9. None of the
studied CpG sites in these genes were significantly differently
methylated in FH mutation-negative patients compared to FH-
mutation positive patients (see Fig. 1, panel A). Also, in tier 2,
consisting of so called “minor” FH genes, no differences between
the two groups were observed (Fig. 1, panel B). Next, we investi-
gated methylation differences in genes that were previously
shown to be associated with LDL-C and total cholesterol in a large
GWAS study [20]. Again, no significantly differently methylated
CpG sites between FH mutation-negative and FH mutation-posi-
tive patients was found (Fig. 1, panel C). Lastly, in tier 4, consist-
ing of CpG sites previously associated with LDL-C or total
cholesterol, one CpG site (cg00574958 in the gene CPT1A) showed
a significant 1�3% lower methylation in FH mutation-negative
patients compared to FH mutation-positive patients (b �0�013,
FDR = 0�001; see Fig. 1, panel D). Methylation of the identified
CPT1A CpG site is associated with decreased expression of the
CPT1A gene according to MEXPRESS (Supplementary Table 3) and
negatively associated with triglyceride levels in our study
(r = �0�27, p = 0�001 [Spearman Rank Correlation Test]).

4.3. Machine learning analysis

Clearly, methylation of single genes is not likely to account for the
FH phenotype in FH mutation-negative patients. To investigate
whether methylation changes in multiple genes may cause the defect
we applied machine learning on the whole genome methylation data
set. Next, a gradient boosting machine learning analysis was applied
on the whole dataset for the discovery of genome wide differences in
methylation between FH mutation-positive and FH mutation-nega-
tive patients. A hierarchical structure was generated based on the
effect size and the top 20 probes with the highest relative feature
importance in this model are reported in Table 2 and shown in Fig. 2.
Fifty percent of the top 20 CpG sites were hypermethylated with the
biggest median methylation difference between the two groups for
the genes PRDM16, GSTT1, and LOC728743 (Fig. 2A). In contrast,
DOCK11 and KCNMA1 were most differentially hypomethylated in FH
mutation-negative compared to FH mutation-positive patients. All
probes with a Relative Feature Importance >10% are listed in Supple-
mentary Table 2.

Most of the top 20 CpG sites were located within introns or exons
of known genes, and none are located in promotor regions of genes.
Of the top 20 CpG sites, five were not located in close proximity of a
gene. Eleven of the top 20 CpG sites were hypomethylated in FH
mutation-negative patients compared to FH mutation-positive



Table 2
Top 20 machine learning identified CpG sites.

CpG Gene Chromosome Position1 Gene feature Methylation
direction
in FH mutation-
negative2

Relative
Feature
Importance

Protein function3

1 cg14265823 PAX3 chr2 223,163,326 Exon 1 Hyper 100 Paired Box 3; involved in neu-
ral development and myo-
genesis during fetal
development.

2 cg02558132 MYLK chr3 123,411,198 Intron 19 Hypo 97�97 Myosin light chain kinase;
involved in smooth muscle
contraction via phosphory-
lation of myosin light chains.

3 cg22162835 TEAD3 chr6 35,457,472 Intron 1 Hypo 92�2 TEA Domain Transcription Fac-
tor 3; mainly expressed in
placenta and involved in
transactivation of chorionic
somatomammotropin-B.

4 cg00415024 chr20 56,044,352 Intergenic Hypo 87�39
5 cg26426080 PRDM16 chr1 3,039,210 Intron 1 Hypo 84�61 PR/SET Domain 16; transcrip-

tionfactor involved brown
adipose tissue
differentiation.

6 cg07051648 NTN5/SEC1P chr19 49,177,693 Intron 4
(SEC1P)

Hypo 76�65 Netrin 5; plays a role in neuro-
genesis, prevents motor
neuro cell body migration
out of the neural tube.

7 cg05071823 DOCK11 chrX 117,628,671 Intergenic Hypo 61�17 Dedicator Of Cytokinesis 11;
involved in megakaryocyte
development and platelet
production.

8 cg05541727 EXD3 chr9 140,277,740 Intron 2 Hyper 54�31 Exonuclease 30�50 Domain
Containing 3; involved in
RNA degradation.

9 cg24051749 MYCBP chr1 39,340,282 Intron 1 Hypo 53�71 MYC Binding Protein; can bind
to oncogenic protein C-MYC
and is possibly involved in
spermatogenesis

10 cg11478607 GSTT1 chr22 24,384,400 Intergenic Hyper 51�79 Glutathione S-Transferase
Theta 1; conjungates
reduced glutathione to exo-
geneous and endogeneous
hydrophobic electrophiles.

11 cg10020385 MAF1 chr8 145,159,706 Exon 1 Hyper 49�8 Repressor of RNA polymerase
III transcription MAF1
homolog; involved in
repression of RNA polymer-
ase III-mediated
transcription.

12 cg11136235 chr10 81,077,552 Intergenic Hyper 48�55
13 cg16370685 SETDB1 chr1 150,899,163 Intron 1 Hyper 46�59 SET Domain Bifurcated 1; reg-

ulates histone methylation,
potential target for treat-
ment in Huntington Disease

14 cg09138267 LOC728743 chr7 150,102,791 Intron 1 Hyper 46�47 Zinc Finger Protein
Pseudogene

15 cg04900489 chr13 31,272,551 Intergenic Hypo 46�29
16 cg16685760 chrX 145,701,257 Intergenic Hyper 46�17
17 cg07336544 KCNMA1 chr10 79,194,347 Intron 1 Hypo 44�54 Potassium Calcium-Activated

Channel Subfamily M Alpha
1; encodes alpha subunit of
the MaxiK calcium-sensitive
potassium channels in
smooth muscle cells.

18 cg00578917 CYYR1 chr21 27,945,542 Exon 1 Hyper 42�69 Cysteine And Tyrosine Rich 1
19 cg20588438 KNTC1 chr12 123,089,881 Exon 51 Hypo 41�65 Kinetochore Associated 1;

involved in proper chromo-
some segregation during cell
division

20 cg15458017 chr17 9,672,274 Intergenic Hyper 41�5
Top 20 CpG sites sorted by relative feature importance for contribution in the machine learning model distinguishing FH mutation-negative
from FHmutation-positive subjects.

1 Genomic positions as provided in human genome build � hg19.
2 Hypo- or hypermethylation in FH mutation negative group compared to FH mutation-positive group, based on direction of difference in

median normalized beta’s in both groups (see Supplementary Figure 2).
3 Gene names and functions (when known/available) were derived from GeneCards.org(Stelzer et al., 2016).
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Fig. 2. Top 20 machine learning identified CpG sites
Top 20 CpG sites most contributing to the machine learning model performance, selected on relative feature importance. (A) Bar chart of top 20 CpG sites ordered from highest

relative feature importance to lowest, coloured for absolute difference in mean methylation (%) in FH mutation-negative patients vs. FH mutation-positive patients. (B) Radar plot
displaying top 20 CpG cites that differentiate between FH mutation-negative and FH mutation-positive patients. The axes represent the standardized mean CpG methylation levels
(scaled zero-mean unit-variance).

Fig. 3. Performance of machine learning model
Performance of machine learning model in distinguishing FH mutation-negative from FH mutation-positive patients. (A) ROC curve of the model. The machine learning model

was able to distinguish FH mutation-positive and FH mutation-negative patients with an Area Under the Curve (AUC§SD) of 0�80§0�17. (B) Principle Component Analysis of the
top 20 CpG sites with the highest relative feature importance.

6 L.F. Reeskamp et al. / EBioMedicine 61 (2020) 103079
patients. Boxplots of the methylation per top 20 CpG site per patient
group are shown in Supplementary Figure 2 and their correlation
with gene expression in Supplementary Table 3.

The model generated by machine learning distinguishes methyla-
tions landscape in FH mutation-negative and FH mutation-positive
patients with an average Area Under the Curve (AUC) of 0�80§0�17
over 50 repeat runs with different validation and test sets(Fig. 3A). A
principle component analysis showed an explained variance of
11�33% for component 1 and 9�52% for component 2 (Fig. 3B). Per-
mutation analysis revealed that the observed AUC was statistically
significant (p < 0�05)
5. Discussion

Two findings stand out from our analysis. First, no alterations
were observed in the candidate gene analysis, apart from a signifi-
cant 1�3% decrease in methylation in the CPT1A gene in the FH
mutation-negative group, suggesting that single gene methylation
is not a cause of FH in our cohort. Secondly, gradient boosting
machine learning revealed an overall difference in genome-wide
DNA methylation between the FH mutation-positive and FH muta-
tion-negative subjects, with a reasonable model performance (AUC
0�80§0�17). This finding underscores that these groups do differ
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from each other with regards to the epigenetic architecture at a
genome-wide scale.

CPT1A was the only locus at which a statistical difference in meth-
ylation between the two groups was found. This gene encodes Carni-
tine palmitoyltransferase (CPT1A) and was found to be less
methylated in FH mutation-negative patients compared to FH muta-
tion-positive patients. CPT1A is a mitochondrial enzyme that cataly-
ses the transfer of an acyl group from fatty acids to a carnitine
molecule, hence controlling mitochondrial uptake and subsequent
oxidation of the acyl group, especially in the liver. In line with this
role in the regulation of fatty acid metabolism, hypomethylation of
cg00574958 in the CPT1A gene is associated with plasma triglyceride
concentrations [4,29]. However, in previous studies it has been
shown that triglycerides affect methylation of CPT1A and not vice
versa [30]. In fact, the observed lower cg00574958 methylation in
the FH mutation-negative patients thus might be explained by the
higher triglyceride levels in this group compared to the group of FH
patients where a causative variant was identified (Table 1), since tri-
glyceride levels were also found to negatively correlate with
cg00574958 methylation in our study. Altogether, our results confirm
the earlier described association between methylation in CPT1A and
triglyceride levels, and a underlying mechanism of its relation to LDL
cholesterol is likely not present and cannot be deducted from this
study. Moreover, it is uncertain how a small methylation difference
of 1.3% in this gene accounts for the severe hypercholesterolemic
phenotype observed in the patients.

Next, we set out to incorporate methylation of CpG sites among
the whole epigenome in a machine learning model to investigate
whether the net effect of multiple small methylation differences
could be used to identify specific patterns in FH mutation-negative
and FH mutation-positive patients. Indeed, the resulting model per-
formed well in distinguishing FH mutation-negative and FH muta-
tion-positive patients (AUC 0�80§0�17), which emphasizes that the
two selected FH groups differ on a genome-wide methylation level.
The question arises whether the epigenetic changes in the group are
causal or the consequence of environmental influences. For example,
it might be that lifestyle factors resulting in triglyceride level differ-
ences between the two groups might also cause epigenetic differ-
ence, or that resulting triglycerides themselves influence genome
wide methylation.

The top 20 CpG sites with a considerable impact on the model
comprised two genes that have been linked to cholesterol metabo-
lism in previous studies; PRDM16 and GSTT1. PRDM16 encodes PR/
SET Domain 16, a protein involved in brown adipose tissue differenti-
ation [31]. Common variants in the PRDM16 locus are associated with
plasma LDL-C and triglyceride levels [32], and methylation at CpG
site cg26426080 is positively associated with PRDM16 gene expres-
sion (Supplementary Table 3), suggesting that the observed hypome-
thylation in FH mutation-negative patients also reflects PRDM16
expression differences in these patients. GSTT1, encoding Glutathione
S-Transferase Theta 1, is an enzyme involved in the cellular defense
against oxidative stress and genetic variants in this gene have been
associated with risk for diabetes and atherosclerosis [33], and plasma
total cholesterol, LDL-C and apolipoprotein B levels [34,35]. Like
PRDM16, methylation of the identified CpG site in GSTT1
(cg11478607) is correlated with expression of GSTT1 (Supplementary
Table 3), suggesting that the differential methylation observed in our
study has an effect on GSTT1 expression. However, the absolute dif-
ferences in methylation in these two and the other top 20 CpG sites
between the two groups is small (Supplementary Figure 2), suggest-
ing that no single CpG methylation site is the causal factor for the
phenotype in FH mutation-negative patients, but rather a result of
the aggregate of a number of small methylation effects.

Our study has several limitations. Firstly, we measured DNA meth-
ylation in peripheral white blood cells, while the liver is known for its
central role in LDL homeostasis. The results we obtained from the
analyses in peripheral blood cells may therefore not reflect the
deranged hepatic LDL metabolism in our patients. Secondly, the muta-
tion-negative FH patient group comprised patients in whom not only
epigenetic factors, but also other unknown genetic phenomena such as
intronic variants [36] or polygenic hypercholesterolemia may be the
causal factor [37]. Thirdly, as can be appreciated from Supplementary
Figure 2, the machine learning model supposedly identified some CpG
sites that had two or three distinguishable groups of methylation levels
(e.g., MYCBP-cg24051749), suggesting the presence of a SNP despite
the fact that we rigorously excluded CpG sites near SNPs according to
the Illumina manifest using widely accepted pre-processing steps
before the analysis. The used gradient boosting model, however, allows
for the identification of DNA methylation differences between the two
groups despite the presence of skewed distributed methylation data
because of a SNP. Further studies should be executed to assess whether
the SNP has biological relevant effects in these patients or that they are
coincidently identified. Moreover, in our study the group of FH muta-
tion-negative patients were diagnosed with FH by the referring physi-
cian based on national guidelines [12,13] and thus potentially is a non-
homogenous clinical FH group characterized by some characteristic dif-
ferences with the FH mutation-positive patients. For example, the FH
patients with a LDLR pathogenic variant were younger and the LDL-C
levels were higher compared to FH variant negative patients (Table 1).
Although age and lipoproteins can modulate DNA methylation [30], we
estimate this effect to be minimal since we explored methylation only
in patients with very high LDL-C levels (above 6 mmol/L and above the
99th percentile in the general population) in both groups. Furthermore,
we selected only male participants who were not using statins, since
these lipid lowering drugs have been shown to alter DNA methylation
through reducing DNA methyltransferase mRNA levels [38], and are
associated with less methylation in promotor regions of various genes
[39,40]. It is also possible that other confounders, such as obesity, are
present in the current study. Additionally, we enrolled a relatively small
number of individuals in our study. Our stringent selection criteria to
avoid spurious findings did not allow for a larger study group to be ana-
lysed. Lastly, in the currentmodel we analysed the data at a group level,
and we might therefore have missed specific causal methylation pat-
terns that would explain the FH phenotype at an individual patient
level.

Despite extensive sequencing efforts, a causative genetic variant is
not found in a large proportion of patients with a clinical FH diagnosis
[1]. Hence efforts to find novel factors causing the FH phenotype are
deemed of great relevance. The data presented in the current study
suggest that monogenic DNA methylation alterations are not a major
contributing factor in FH in our cohort and thus are unlikely to be a
common contributing factor to the FH phenotype in FH mutation-
negative patients. Nevertheless, with the current study we have not
excluded the possibility that rare monogenic DNA methylation alter-
ations can cause FH in some individuals. On the other hand, the
genome-wide methylation differences observed with advanced
machine learning models between FH mutation-negative and FH
mutation-positive subjects might suggest that a large number of
small DNA methylation effects play a role in high plasma LDL-C. This
phenomenon resembles the polygenic score where the inter individ-
ual differences in LDL-C levels are not explained by individual genetic
variations but rather by the sum of a large number of small effect-
size genetic factors. The question whether this is clinically relevant
ensues from this finding. In contrast to monogenic FH, family screen-
ing for the presence of polygenic hypercholesterolemia, and epige-
netic hypercholesterolemia, does not make sense as these do not
follow an autosomal dominant inheritance pattern. At this stage, the
treatment of these patients will not change either, since FH guide-
lines recommend the same aggressive lipid lowering with statins and
add-on therapeutics, irrespective of the FH cause. Epigenetic hyper-
cholesterolemia may only prove to be clinically relevant in case it has
an impact on the efficacy of lipid lowering therapies.
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This study was the first of its kind to be conducted in FH patients
and tried to control for confounding by differences in lipid levels by
the inclusion of two unique FH patient groups: those of interests, FH
mutation-negative patients, and a group of FH mutation-positive
patients. Although classical candidate gene analysis did, except for
CPT1A, not reveal major DNA methylation differences in known lipid
genes, a machine learning approach showed that FH mutation-nega-
tive patients are characterized by a different genome wide DNA
methylation pattern compared to FH mutation-positive patients,
with important model features for the genes PRDM16 and GSTT1.

Data sharing statement: All individual normalized DNA methyla-
tion data are available via https://dx.doi.org/10.6084/m9.fig
share.12334586.
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