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SUMMARY

Complex interactions between mRNAs and microRNAs influence cellular func-
tions. The mRNA-microRNA interactions also determine the post-transcriptional
availability of mRNAs and unbound microRNAs. MicroRNAs binds to one or
more microRNA response elements (MREs) located on the 30UTR of mRNAs. In
this study, we leveraged MREs and their frequencies in cancer and matched
normal tissues to obtain insights into disease-specific interactions between
mRNAs and microRNAs. We developed a bioinformatics method ‘‘ReMIx’’ that
utilizes RNA sequencing (RNA-Seq) data to quantify MRE frequencies across
the transcriptome. We applied ReMIx to triple-negative (TN) breast cancer tu-
mor-normal adjacent pairs and identifiedMREs specific to TN tumors. ReMIx iden-
tified candidate mRNAs and microRNAs in the MAPK signaling cascade. Further
analysis of MAPK gene regulatory networks revealed microRNA partners that in-
fluence and modulate MAPK signaling. In conclusion, we demonstrate a novel
method of using MREs in the identification of functionally relevant mRNA-micro-
RNA interactions in TN breast cancer.

INTRODUCTION

Regulatory interactions between coding and non-coding RNAs in cells determine the post-transcriptional

availability of protein-coding mRNA transcripts (Chiang et al., 2010; Eichhorn et al., 2014; Garcia et al.,

2011; Guo et al., 2010, 2014; Lee and Jiang, 2017; Rissland et al., 2017; Shin et al., 2010; Volinia and Croce,

2013;Wu and Bartel, 2017). MicroRNAs use seed sequences (6–8 bases long) to bind tomicroRNA response

elements (MREs) predominantly located on the 30UTRs of mRNAs. mRNAs can have one or more distinct

MRE sites, thus being targets to multiplemicroRNAs. Similarly, microRNAs also bind toMRE sites of several

different target genes (Krek et al., 2005; Lim et al., 2005). Thus, alterations in target gene expression via

microRNA binding can affect several cellular processes such as cell proliferation and apoptosis during

cancer development, progression, and metastasis. Thus, elucidating critical players among the mRNA-mi-

croRNA interacting networks can yield novel therapeutic targets and biomarkers in cancers, especially for

cancer subtypes that are least responsive to current modalities of treatment.

Expression profiles of microRNAs and mRNAs (Illumina TruSeq libraries enriched for poly(A) RNAs) across

many cancer types in The Cancer Genome Atlas (TCGA) were used to infer active and functional microRNA-

target interactions in different cancer types (Jacobsen et al., 2013). Alternative polyadenylation of 30UTRs in
bladder cancer can lead to shortened 30UTR affecting mRNA stability and attenuated protein translation

(Han et al., 2018). Studies have also shown that the presence of single nucleotide polymorphisms (SNPs)

in the 30UTR of transcripts can affect microRNA binding and are associated with multiple cancer subtypes

(Pelletier and Weidhaas, 2010). Here we extrapolate TCGA RNA sequencing (RNA-Seq) data to analyze

MRE sites to obtain insights into unique interactions between mRNAs and microRNAs at the 30UTRs of

the tumor and normal-adjacent datasets.

We developed a new bioinformatics approach called ReMIx (pronounced ‘‘remix’’)—mRNA-MicroRNA

Integration—which leverages RNA-Seq data to quantify MRE sites at the 30UTR sequence across the tran-

scriptome. ReMIx profiles MRE sites in tumor and matched normal samples separately, which enables the

identification of differential frequency of MREs that are statistically significant in tumor samples. Because
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MRE is the interacting link between mRNAs and microRNAs, ReMIx brings together mRNAs with tumor-

specific MREs and microRNAs that have the potential to bind to these MRE sites. ReMIx also reports

potential mRNA-microRNA candidates that have unique tumor-specific interactions and potential dis-

ease-driving functions. This method can be applied to study any cancer type or complex diseases along

with their normal tissue sets. To demonstrate the utility of ReMIx, we applied it to the largest RNA-Seq da-

taset of breast cancer cases and normal-adjacent tissues from TCGA (Cancer Genome Atlas Network, 2012;

Ciriello et al., 2015). Using this method, we specifically identified MREs in estrogen receptor positive (ER+),

ErbB2 overexpressed–HER2 positive (HER2+), triple-negative tumors, and normal-adjacent tissues. Triple-

negative breast cancers (TNBC) are highly heterogeneous and one of the most severe forms of breast can-

cer subtypes with no targeted treatments currently available. In this study, we applied ReMIx and identified

mRNA-microRNA candidates unique to the TNBC and not present in ER + or HER2+ subtypes. Analysis of

TNBC data identified MAPK signaling pathway targets as a potential disease driver and target.

RESULTS

ReMIx: An Automated Bioinformatics Approach for MRE Quantification

Wedevelopedan innovative bioinformatics approach called ReMIx toquantify the expression ofMRE sites at the

30UTRs of mRNAs using RNA-Seq data. ReMIx uses reads aligned to 30UTRs of genes in a given transcriptome

and scans them for evidence of MRE sequences (see Transparent Methods). All known MREs for genes in the

reference genome, as reported by TargetScan—human version 7.0 (Agarwal et al., 2015), are quantified for their

level of expression at the 30UTR of all genes. After quantification, ReMIx normalizes the raw counts of MREs to

account for sample library size, 30UTR length, and 30UTR GC content per gene. Finally, for every gene and for

every conserved microRNA that targets the gene, the normalized MRE counts are reported in a tab-delimited

format for each gene-microRNA pair in the transcriptome analyzed. The ReMIx workflow is fully automated

and designed to run in a multithreaded cluster environment to analyze paired-end transcriptome samples. A

flowchart of the ReMIx approach is shown in Figure 1 (see Transparent Methods).

ReMIx Identified 221 Triple-Negative Breast-Cancer-Specific MRE Sites

The 30UTR sequences of individual genes (n= 12,455, TargetScan v7.0 (Agarwal et al., 2015)) were obtainedusing

the reference human genome hg19 build. Reads aligned to these 30UTR sequences were obtained using the

TCGA Breast Cancer transcriptome dataset for 13 pairs (Tumor and Normal-Adjacent) from the TNBC subtype,

56 pairs of ER+, and 20 pairs of HER2+ subtypes and were provided as input to the ReMIx workflow (see Trans-

parent Methods). The pre-computed MRE sequences (n = 329, TargetScan 7.0) were also provided as input to

ReMIx to count readsmapped to individualMREs located on each gene. The rawMRE counts were then normal-

ized by factoring library size, 30UTR lengths, and 30UTR GC content of individual genes. MRE quantification

process identified normalized counts of 111,521 MRE sites in tumor and normal adjacent sample sets for

each subtype (Data S1, S2, and S3 for TN, ER+, and HER2+, respectively).

Next, ReMIx results were used to identify MRE sites that had unique and significant levels of expression (high or

low) in TNBC tumors in comparison to ER + tumors, HER2+ tumors as well as TN, ER+, and HER2+ normal-adja-

cent cases. The Dunnett-Tukey-Kramer (DTK) pairwise multiple comparison statistical test was applied to the tu-

mor and normal-adjacent cases across all subtypes (six groups in total) to highlight MREs that were unique only

to TNBC (p value< 0.05) when comparedwith other two subtypes and all normal-adjacent cases. This resulted in

identifying 614MREs unique to TNBC (Data S4). In addition, the edgeR bioinformatics package (Robinson et al.,

2010) was applied to identify differentially expressed MREs by comparing 13 TN tumor and the respective

normal-adjacent cases (FDR <5% and log2FC |2|) and reported 3,053 significant and differentially expressed

MREs (Data S5). By adopting the approach of taking the intersection of MREs reported to be statistically signif-

icant and differentially expressed by the two complementary approaches, i.e., DTK (n = 614 MREs) and edgeR

(n = 3,053 MREs), we identified a common set of 221 TN tumor-specific MRE sites (Figure S1). The 221 TNBC

MREs are provided in Data S6. The distinct expression profile of these MRE sites in TNBC with respect to other

subtypes and normal-adjacent cases are shown in the heatmap (Figure 2).

TNBC-Relevant MREs Are Associated with 88 mRNAs and 125 microRNAs

The unique feature of MRE is that it is the interactive site between mRNA and microRNA. Hence, for MRE sites of

interest, we can decode and obtain information about the mRNA and its interacting microRNA by identifying the

relevant MREs and decoupling them into their respective mRNA andmicroRNA pairs. Thus, for the TNBC tumor-

specific MRE sites, we deciphered such information for the 221 MREs and obtained a total of 88 mRNAs and 125
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microRNAs.Tables listing88mRNAsand125microRNAsalongwith their expression levels inTNBCareprovided in

Data S7 andS8, respectively.With theseReMIx analyses,wededuce that over half of themRNAs (48out of 88)were

used repeatedly and thesemRNAs hadmultiple MREs that were used as interactive sites by different microRNAs.

Unsupervised hierarchical clustering of 221 MREs based on expression profiles of these MREs showed that

the TN cases clustered within their tumor and normal-adjacent groups. The differential expression pattern

for 221 MREs are shown in Figure 3. Notably, unsupervised clustering of the corresponding 88 mRNAs and

125 microRNAs also showed a separation of TNBC into tumor and normal-adjacent groups (Figure 3).

Next, we evaluated the mRNAs and microRNAs identified by ReMIx using a standalone approach to

analyze their predominance in terms of differential expression within the respective RNA and microRNA

expression datasets of 13 TNBC tumor and normal-adjacent pairs and identified canonical pathways

that were associated with 88 mRNAs and 125 microRNAs.

The differential expression analysis using RNA-Seq data for 13 TNBC tumor and normal-adjacent pairs

showed that a total of 2,250 genes were differentially expressed (edgeR package (Robinson et al., 2010);

statistical significance threshold at FDR <5% and log2FC |2|). Notably, out of the 88 mRNAs identified by

the ReMIx analysis, we found that 68 (77%) were also differentially expressed at the gene level between

TNBC cases. This indicated a high likelihood of microRNA-mediated gene expression regulation resulting

in their differential expression in TNBC tumors compared with their normal-adjacent counterparts.

Notably, these 68 mRNAs found in the 13 paired TNBC cases were also consistently differential expressed

in a larger cohort of 120 TCGA-TNBC and 13 normal-adjacent samples (Figure S2). This suggests that

mRNA expression observed in a smaller sample size is potentially reflective of mRNA expression in a larger

Figure 1. Flowchart of MRE Frequency Quantification from RNA-Seq BAM

The RNA-Seq BAM is subset to 30UTRs of all genes, converted to FASTQ and processed through FIMO to obtain rawMRE

counts per microRNA for every target gene. The rawMRE counts were normalized to account for library size, 30UTR length,

and 30UTR GC content, and individual tumor and normal-adjacent quantification reports are generated. See also Data S1,

S2, and S3.
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cohort. Out of 68 mRNAs, 41 had multiple MREs targeted by different microRNAs. A table listing these 68

mRNAs that are both differentially expressed and have interacting MRE sites are given in Data S9.

Next, using the microRNA expression data for 13 TNBC pairs, we found that out of a total of 2,245 micro-

RNAs that were quantified for expression in the tumor and normal-adjacent cases, 778 microRNAs were

differentially expressed in tumors (limma package (Ritchie et al., 2015); adjusted p value < 0.05). Examining

the number of microRNAs identified by ReMIx that were also differentially expressed between TNBC tumor

and normal-adjacent, we found that 64 out of 125 microRNAs (51%) were statistically different in expression

(FDR <5%). A table and heatmap listing 64 microRNAs that are both differentially expressed and partici-

pate in MRE-mediated gene expression regulation can be found in the Data S10 and Figure S3.

Finally, using RNA-Seq and microRNA differential expression results, the magnitude and direction of

change for 221 MREs and their associated genes and microRNAs in 13 TNBC tumor and normal-adjacent

pairs were combined (Data S11). We observed that the majority of MREs follow the direction as their parent

genes, with very few exceptions, likely due to the nature of TNBC sequencing libraries (Illumina TruSeq).

MRE-Associated 125 microRNAs Are Implicated in TN Breast Carcinoma

Further analysis of 125 microRNAs using the TAM 2.0 tool for microRNA set enrichment analysis revealed

that these microRNAs were associated with cancer pathways as shown in Table S1. Specifically, 14 out of

125 microRNAs are also reported in other TNBC studies and are upregulated with an FDR <2.87 3 10�5.

Similarly, 55/125 microRNAs are reported in breast carcinoma studies (FDR <8.18 3 10�18) and 34/125 in

breast neoplasms (FDR <6.12 3 10�13). Information of these microRNAs are provided in Table S1.

Pathway Analysis of 88 Genes Identified MAPK Signaling Pathway

Eighty-eight genes obtained from ReMIx were analyzed to identify their associated signaling pathways. Us-

ing gene set enrichment analysis (GSEA) (Subramanian et al., 2005) on KEGG and REACTOME databases,

the mitogen-activated protein kinase (MAPK) signaling cascade was identified among the top significant

pathways. In addition, application of the signaling pathway impact analysis (SPIA) package also confirmed

that the MAPK signaling pathway was activated in TN tumors. The GSEA and SPIA pathway results are pro-

vided in Data S12 and S13, respectively.

Further examination of genes in the MAPK pathway was conducted by juxtaposing the expression of these

genes, obtained from RNA-Seq data of TNBC with the KEGG-based network of the MAPK pathway. Our

analysis revealed that oncogenes KRAS, NRAS, AKT, and NFKB were notably activated and tumor

Figure 2. Heatmap of 221 TN Tumor-Specific MREs

The normalized conditional quantile normalization (CQN) values of 221 MREs were obtained for TN, ER+, and HER2+

tumors and normal-adjacent (norm-adj) cases. As shown in the heatmap, these MREs have a distinct expression in TN

tumors in comparison to the other subtypes as well as TN normal-adjacent cases. See also Figure S1; Data S1, S2, S3, S4,

S5, S6, and S7.
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suppressor PTEN was repressed. Figure 4 illustrates the KEGG pathview for the MAPK signaling cascade.

MAPK signaling pathway is an extensive cascade with connections to several biological pathways down-

stream such as proliferation, cell cycle, glycolysis, apoptosis, and protein synthesis.

Expanded MAPK Endogenous RNA Network including TNBC-Specific mRNA-microRNA

Candidates

Based on MRE results from the ReMIx, we investigated relevant genes that were associated with MAPK

signaling in TN tumors. We found 12 out of 294 genes (~4%) in MAPK pathway (https://www.genome.jp/

dbget-bin/get_linkdb?-t+genes+path:hsa04010) that have MRE sites with the potential of differential

binding of microRNAs. These 12 mRNAs with tumor-specific MRE sites and microRNAs with the potential

to bind to these sites are provided in Table 1. Next, we expanded the MAPK gene network in TN tumors by

including interacting microRNAs that are essential members of the pathway. Figure 5 shows the MAPK

endogenous RNA network that represents the genes identified by ReMIx, interacting microRNAs, and

other mRNAs that are likely to interact with each other and regulate expressions of key genes, such as

PI3K, AKT, RAS, NFKB, and PTEN. Furthermore, ERK1/2, critical genes in theMAPK/ERK signaling cascade,

were also directly associated with 7 of the 12 genes (Figure 5). Taken together, we present an expanded

network of MAPK signaling cascade and provide a list of potential mRNA-microRNA candidates that

interact with each other and could potentially be therapeutic targets for TN tumors.

DISCUSSION

The regulatory interactions between non-coding and protein-coding RNAs have been well recognized, where

the mRNA-microRNA interactions are widely studied. Although there are several microRNA target prediction

tools such as TargetScan (Agarwal et al., 2015), miRBase (Kozomara et al., 2019), DIANA (Vlachos et al., 2012),

PicTar (Krek et al., 2005), miRwayDB (Das et al., 2018), miRanda (Betel et al., 2008), PITA (Kertesz et al., 2007),

RNA22 (Loher and Rigoutsos, 2012), and miRTar (Hsu et al., 2011), not many computational tools have been

developed that enable the integration of mRNA and microRNA expression datasets. MAGIA is a web-based

tool for microRNA and gene integrated analysis that brings together target predictions and gene expression

profiles using different functional measures for both matched and unmatched samples (Sales et al., 2010).

The tool miRmapper uses mRNA-microRNA predictions and a list of differentially expressed mRNAs to identify

top microRNAs and recognizes similarities between microRNAs based on commonly regulated mRNAs (da Sil-

veira et al., 2018). HisCoM-mimi is a hierarchically structured component analysismethod that models biological

relationships as structured components to efficiently yield integrated mRNA-microRNA markers (Kim et al.,

2018). These tools use prior knowledge of microRNA target predictions and are developed using unique meth-

odologies to derive mRNA-microRNA interactions. Furthermore, tools such as miRmapper have the ability to

Figure 3. Unsupervised Clustering and Heatmap Representation of 221 TN Tumor-Specific MREs and Their

Associated mRNAs and microRNAs

The 221 MREs were associated with 88 mRNAs and 125 microRNAs. Conditional quantile normalization values were

obtained for the MRE sites. Reads per kilobase per million mapped reads (RPKM) normalized values from RNA-Seq and

counts per million (CPM) normalized values from microRNA-Seq were obtained for the 13 pairs of TN tumor and normal-

adjacent cases. Unsupervised clustering of the cases indicates that tumor (pink) and normal-adjacent (blue) were

clustered well within the corresponding groups. See also Figure S1; Data S7, S8, S9, S10, and S11.
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highlight key microRNAs based on the number of connections it possesses in a given network. However, the un-

derlying methodologies of all these tools are to use the expression of either mRNAs alone or both mRNAs and

microRNAs to model their correlation and derive mRNA-microRNA relationships.

With the advent of RNA-Seq technology, profiling of the transcriptome is now possible at the base-prevision

level. It is a known fact that microRNAs predominantly bind to the 30UTRs of mRNAs to induce their regulatory

effects and thereby impact mRNA expression and protein translation. Studies have shown that shortening of

30UTR is a frequent phenomenon in cancer to evade oncogenes from microRNA suppression (Xue et al.,

2018), repress tumor suppressor genes (Park et al., 2018), and enhance metastatic burden (Andres et al.,

2019). Therefore, it is important not only to know which mRNAs are differentially expressed between a tumor

and normal pair but also to determine which integration sites or microRNA response elements (MREs) are avail-

able along the 30UTRs of the tumor mRNAs. Identification of MREs that are either present/absent/highly

expressed/low expressed in the tumor can provide mechanistic insights of tumor progression. Although

mRNA-microRNA integration tools exist, and may be applied to the tumor and normal datasets, no tools, to

our knowledge, have the ability to precisely report mRNA-microRNA interactions that are solely based on the

availability of MREs at the 30UTRs. MREs are short 6–8 base segments and without appropriate bioinformatics

methods, screening RNA-Seq data for MRE sites can yield highly non-specific and erroneous results. This could

be a possible reason why this simple, but highly relevant, concept has not been explored to date.

In this study, we developedan innovative bioinformaticsmethod ‘‘ReMIx’’ that uses RNA-Seq data to identify and

quantify microRNA-binding sites (known as microRNA response elements [MREs]) at 30UTRs. A hypothetical

exampleof thisapproach is illustrated inFigure6.WeappliedReMIxtoTCGA-paired tumorsandnormal-adjacent

Figure 4. MAPK Signaling Pathway

Genes in the pathway are colored based on their expression in TN tumors. Oncogenes NFKB and AKT are activated in this

pathway. See also Data S12 and S13.
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breast cancer cases for TN, ER+, andHER2+ subtypes. Using two complementary statistical approaches,we iden-

tified221MREsites thathaveadistinct expression inTNtumor-normal adjacentpairs.Upondecoupling,we found

that the221MREsites corresponded to88mRNAsand125microRNAs.By reviewing fold-changesof theseMREs,

mRNAs, and microRNAs, we observed that most of the MREs followed the same direction as their parent gene

transcript.Wepostulate that thiswas likelydrivenby thesequencing librarypreparation kit (IlluminaTruSeq).How-

ever, we also foundMREs with the opposite trend, suggesting an alternative 30UTRmechanism. Furthermore, we

foundmRNAs andMREs with positive expression in TNBC tumors but repressedmicroRNAs, likely denoting the

effect of competing endogenous RNAs (ceRNAs) on themicroRNAs. Canonical pathway analysis of bothmRNAs

and microRNAs revealed cancer-related pathways specific to breast cancer. Significantly, miR-27a and miR-143

were associated with breast cancer and TNBC, respectively (Jiang et al., 2018) (Deng et al., 2018). Upregulation

of miR-27a induced epithelial-to-mesenchymal transition and increased cell migration in breast cancer (Jiang

et al., 2018). Also, miR-143-3p was implicated in drug resistance; overexpression of miR-143-3p inhibits cyto-

kine-induced apoptosis inhibitor 1 (CIAPIN1), enhancing the sensitivity of drug-resistant TNBC cells (Deng

et al., 2018). Specifically, mRNAs revealed by ReMIx signified theMAPK signaling cascade in TNBC. ThemRNAs

determinedby ReMIx represented about 4%of genemembers in theMAPK signaling pathway. Basedon TNBC-

specific results reported by ReMIx, we expanded theMAPK endogenous RNAnetwork by includingmRNAs with

TNBC-specificMRE sites. Further we also included the correspondingmicroRNAs that have the potential to bind

to theseMRE sites and other protein-coding RNAs in the network that have the ability to interact with each other

and regulate expression of primary oncogenes and tumor suppressors in theMAPK signaling pathway. Based on

the results, we provide a list of potentialmRNA-microRNAcandidates that interact with eachother at the network

level of the MAPK signaling cascade and could be possible therapeutic targets for TN tumors.

Because the TCGA breast cancer cases, including TNBC, have whole-exome sequencing data available, we

sought to check for any copy number variant (CNV) events at the 30UTRs. We also examined whether

mRNAs microRNAs

MAPK Signaling Pathway

CACNA2D1 hsa-miR-429

PPP3CB hsa-miR-330-5p; hsa-miR-

486-5p

RASGRF1 hsa-miR-384

IGF1 hsa-miR-142-5p; hsa-miR-

488-3p

HGF hsa-miR-495-3p

EFNA5 hsa-miR-101-3p.2; hsa-miR-

130b-3p; hsa-miR-489-3p;

hsa-miR-96-5p

PDGFRA hsa-miR-132-3p; hsa-miR-

140-5p; hsa-miR-491-5p

FOS hsa-miR-802

TGFBR2 hsa-miR-361-5p; hsa-miR-

665

FLNC hsa-miR-377-3p

ARRB1 hsa-miR-140-3p.1; hsa-miR-

296-5p

PPM1A hsa-miR-488-3p

Table 1. Gene-microRNA Pairs with Distinct TN-Specific MRE Sites that Are Part of the MAPK Pathway

Table lists genes that are a subset of the 88 genes obtained from ReMIx and that are members of the MAPK signaling

pathway. The microRNAs that bind to the MRE sites that were found to have distinct counts in TN tumors are also provided.

Related to Figure 5.
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differentially expressed mRNAs, specifically those found by ReMIx, were related to CNV events. The meta-

data for exome capture kit for the 26 TNBC tumor and normal-adjacent cases was accessed using the NCI-

GDC API (NCI Genomic Data Commons Application Programming Interface). For the majority of cases (18

out of 26), the ‘‘hg18nimblegenexomeversion2’’ capture kit was used. For the remaining 8 out of 26, ‘‘Nim-

blegenEZExomev3.0’’ and ‘‘SureSelectHumanAllExon38Mbv2’’ capture kits were utilized for four cases

each. Upon checking the overlap of these exome capture kits to 30UTRs, we found that these kits do not

cover the 30UTR. We only observed a 0.4% overlap of 30UTRs with ‘‘hg18nimblegenexomeversion2,’’

13.8% with ‘‘NimblegenEZExomev3.0,’’ and 1.8% with ‘‘SureSelectHumanAllExon38Mbv2.’’ As a result,

we could not verify the role of CNV on the TNBC cases for this study.

Recently, there has been an increasing focus to explore and identify therapeutic strategies to better treat

and improve survival of TNBC patients. Activation of the MAPK pathway has been implicated in the prolif-

eration and survival of cancer cells (Saini et al., 2013). Previous studies have shown this pathway to be highly

prevalent in TN breast cancer as opposed to other breast cancer subtypes (Balko et al., 2012; Hashimoto

et al., 2014; Hoeflich et al., 2009), thus supporting our findings. Studies have also shown that activation of

MAPK pathway significantly correlates with disease progression in TN tumors (Eralp et al., 2008; Gholami

et al., 2014; Giltnane and Balko, 2014; Hashimoto et al., 2014; Loi et al., 2016; Qi et al., 2015). MAPK pathway

is a sequentially activated cascade consisting of key genes such as Ras, Raf, MEK, and ERK. Activation of Ras

leads to the phosphorylation of Raf, thereby promoting the activation of MEK and ERK downstream and

finally results in tumor proliferation and cell survival.

In conclusion, we demonstrate a novel method of using MREs in the identification of functionally relevant

mRNA-microRNA interactions that can be potential targets in TNBC. Further, experimental validations of

these interactions are warranted in developing novel therapeutic targets.

Figure 5. MAPK Endogenous RNA Network

This figure shows the network of interacting protein-coding mRNAs and non-coding microRNAs in the MAPK singling

pathway. The mRNAs and microRNAs reported by ReMIx are represented in colors orange and blue, respectively.

Oncogenes AKT, RAS, NFKB, PI3K, ERK, and MEK are shown to interact either directly or indirectly with the mRNA-

microRNA candidates. See also Table 1.
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Limitations of the Study

One of the limitations of this study is that although ReMIx enables identification of candidate mRNA andmicro-

RNAplayers viaMRE analysis using RNA-Seqdata, this does not establish the fact that the identifiedmicroRNAs

are indeed present and expressed in the particular disease, in this case, TN tumors. ReMIx results only confirm

that the sites on 30UTR of mRNAs show distinct expression profiles in tumor and thus have the potential to be

regulated bymicroRNAs in a disease-specific manner. To complement these results, microRNA expression pro-

files can be used to validate the existence of microRNAs and to check for expression correlation with the corre-

sponding mRNA target(s) identified by ReMIx. This study is limited tomicroRNA-mediated interactions; howev-

er, several other mechanismsmodulate gene expression. At the post-transcriptional level, the interplay of other

noncoding RNAs, such as long non-coding RNAs, circular RNAs, and pseudogenes can collectively form the

ceRNA network and compete with protein-coding genes for microRNA binding, thereby influencing their ulti-

mate impact on gene expression. Also, during transcription, structural and chemical changes such as histone

acetylation to determine the accessibility of chromatin domains, and DNA methylation to silence genes, are

well-established modes of regulation, especially in cancer.

Resource Availability

Lead Contact

Further information and requests for resources, code, and scripts should be directed to and will be fulfilled

by the Lead Contact, Subbaya Subramanian (subree@umn.edu) or Asha Nair (Nair.Asha@mayo.edu).

Materials Availability

This study did not generate new unique reagents.

The 26 samples (13 tumor and normal-adjacent pairs) of the TCGA TNBC cohort for which REMIx results

were obtained in this study are: TCGA-BH-A0B3-01A-11R-A056-07,TCGA-BH-A0B3-11B-21R-A089-

Figure 6. Hypothetical Representation of MRE Frequency Counting Using RNA-Seq Data

The example shows a tumor and normal-adjacent sample with reads mapped to the 30UTRs of two genes, Gene A and

Gene B that consist of 2 and 1 MRE sites, respectively, with a common site (MRE 1). Reads that align with individual MRE

sites (vertical dotted lines) are quantified. For every MRE site that belongs to a gene, the counts are then statistically

evaluated between tumor and normal-adjacent for evidence of differential frequency (as shown in the inset table).
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07,TCGA-BH-A0BW-01A-11R-A115-07,TCGA-BH-A0BW-11A-12R-A115-07,TCGA-BH-A0E0-01A-11R-

A056-07,TCGA-BH-A0E0-11A-13R-A089-07,TCGA-BH-A18Q-01A-12R-A12D-07,TCGA-BH-A18Q-11A-

34R-A12D-07,TCGA-BH-A18V-01A-11R-A12D-07,TCGA-BH-A18V-11A-52R-A12D-07,TCGA-BH-A1EW-

01A-11R-A137-07,TCGA-BH-A1EW-11B-33R-A137-07,TCGA-BH-A1F6-01A-11R-A13Q-07,TCGA-BH-

A1F6-11B-94R-A13Q-07,TCGA-BH-A1FC-01A-11R-A13Q-07,TCGA-BH-A1FC-11A-32R-A13Q-07,TCGA-

E2-A158-01A-11R-A12D-07,TCGA-E2-A158-11A-22R-A12D-07,TCGA-E2-A1L7-01A-11R-A144-07,TCGA-

E2-A1L7-11A-33R-A144-07,TCGA-E2-A1LH-01A-11R-A14D-07,TCGA-E2-A1LH-11A-22R-A14D-07,TCGA-

E2-A1LS-01A-12R-A157-07,TCGA-E2-A1LS-11A-32R-A157-07,TCGA-GI-A2C9-01A-11R-A21T-07,TCGA-

GI-A2C9-11A-22R-A21T-07.

Data and Code Availability

The code for the ReMIx workflow is available through GitHub at https://github.com/nairasha/ReMIx.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101249.
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Figure S1: Common set of 221 TN tumor-specific MRE sites. Related to Figures 2 and 3



Figure S2: Differential expression of 68 mRNAs in a larger cohort of 120 TCGA-TNBC and 13 
normal-adjacent samples. Related to Figure 3.



Figure S3: Heatmap listing 64 microRNAs that are both differentially expressed and participate in 
MRE mediated gene expression regulation. Related to Figure 3.



Table S1. TAM 2.0 results for microRNA set pathway analysis. Related to Figure 4. 

Category: Disease Count Percent Fold P-value Bonferroni FDR 

Carcinoma, 
Hepatocellular 

60 17.7% 3.06 5.48e-28 5.73e-26 6.64e-23 

Carcinoma, Gastric 55 20% 3.46 1.31e-24 1.37e-21 7.90e-22 

Carcinoma, Colon 57 18% 3.13 1.48e-23 1.54e-20 5.96e-21 

Carcinoma, Lung, Non-
Small-Cell 

47 21% 3.71 7.07e-21 7.40e-18 2.14e-18 

Carcinoma, Breast 55 15.8% 2.73 3.38e-20 3.53e-17 8.18e-18 

Carcinoma, Prostate 49 19% 3.30 1.34e-19 1.40e-16 2.70e-17 

Neoplasms (unspecific) 44 21% 3.66 8.17e-19 8.55e-16 1.24e-17 

Carcinoma, 
Hepatocellular (UP) 

38 25% 4.44 7.82e-19 8.18e-16 1.35e-16 

Glioblastoma 39 23% 3.99 1.38e-17 1.44e-14 1.86e-15 

Leukemia, Myeloid, 
Acute 

32 27% 4.65 4.34e-16 4.54e-13 4.87e-14 

Glioma 41 20% 3.4 6.17e-16 6.45e-13 6.22e-14 

Melanoma 33 25% 4.32 1.38e-15 1.44e-12 1.29e-13 

Breast Neoplasms 34 23% 3.97 7.08e-15 7.40e-12 6.12e-13 

Carcinoma, Breast, 
Triple Negative 

14 23% 4.04 2.70e-06 2.83e-3 2.87e-5 



TRANSPARENT METHODS 

ReMIx – a novel methodology to compute MRE frequency from RNA-Seq data 

We developed an innovative bioinformatics approach called ReMIx, which was used to quantify 

MRE sites at the 3’UTR regions of mRNAs from RNA-Seq data. ReMIx uses reads aligned to the 3’UTR 

of genes and scans them for evidence of any given MRE sequence. MRE sequences, which are 

complementary to the seed sequences of microRNAs, are searched in the 3’UTR of genes that are 

known to be associated with microRNAs (TargetScan – human version 7.0 (Agarwal et al., 2015)). A 

hypothetical example of this approach is illustrated in Figure 6. The reads aligned to 3’UTR regions of 

genes Gene A and Gene B are shown in Tumor and Normal-Adjacent samples. Gene A contains two 

MRE sites, and Gene B has one MRE site, with a common site (MRE1) in both genes.  The number of 

reads mapped to these MRE sites are quantified for each gene and tabulated separately for Tumor and 

Normal-Adjacent samples. Later, MRE counts per gene are normalized and statically evaluated to identify 

differentially expressed MREs for downstream analysis.   

MRE frequency analysis from RNA-Seq data 

Seed sequences for all the conserved microRNA families (n=329) were downloaded from 

TargetScanHuman 7.1, and the corresponding complementary MRE sequences were derived using in-

house bioinformatics scripts. Figure 1 is a flowchart representation of the ReMIx methodology.  In ReMIx, 

the RNA-Seq BAM files for both Tumor and Normal-Adjacent were subset to the 3’UTR regions for all 

genes using the SAMTools suite (Li et al., 2009). The newly obtained BAM files were converted into a 

FASTQ format for every gene, using the bam2fastx module from Tophat (Trapnell et al., 2009).  Next, 

using MRE sequences of individual microRNAs and the FASTQ files for corresponding genes, the 

frequency of each MRE was quantified using FIMO (Grant et al., 2011). MRE sites with p-value < 0.05 

were selected from the FIMO output for downstream processing. The raw MRE counts were then 

normalized to account for sample library size, 3’UTR length and 3’UTR GC content per gene. Finally, for 

every gene and for every conserved microRNA that targets the gene, the normalized MRE counts were 

reported in a tab-delimited format for each gene-microRNA pair in the Tumor and Normal-Adjacent cases 

separately. 



3’UTR definitions obtained from TargetScan 

Bartel’s group developed an improved quantitative model to predict canonical targeting of 

microRNAs to 3’UTR regions of mRNA (Agarwal et al., 2015). A combination of 14 features in the model 

coupled with experimental approaches such as poly(A)-position profiling by sequencing called 3P-seq 

was used to define 3’UTR positions of genes in the transcriptome accurately. This data, available at the 

TargetScan Human 7.1 database, is what was used for 3’UTR definitions of genes in the MRE analysis 

study.  

RNA-Seq and microRNA-Seq data from TCGA 

The RNA-Seq and the microRNA Sequencing fastq files for the TCGA breast cancer samples 

were downloaded from the TCGA Research Network (http://cancergenome.nih.gov/) using the National 

Cancer Institute (NCI) Genomic Data Commons (GDC) resource (https://gdc.cancer.gov/). The RNA-Seq 

fastq files and aligned to the hg19/NCBI 37.1 human reference genome using the MAP-RSeq workflow 

(Kalari et al., 2014) and the microRNA fastq files were aligned using the CAP-miRSeq workflow (Sun et 

al., 2014). The normalized microRNA counts from CAP-miRSeq were used to obtain the microRNA 

expression values in the TNBC samples. 

The differential expression analysis of the RNA-Seq data for the TNBC tumor and normal-

adjacent pairs were obtained using the bioinformatics R package edgeR (Robinson et al., 2010). The 

statistical significance threshold used was FDR < 5% and log2FC |2|. For these 13 pairs of TNBC cases, 

differential expression analysis of the microRNA sequencing data was performed using the R 

bioinformatics package called limma (Ritchie et al., 2015). The statistical threshold used to identify 

significantly differential expressed microRNAs was adjusted p-value <0.05.  

MRE site evaluation and activated pathway identification 

Evaluation of MRE sites that represented distinct and TNBC-specific expression as opposed to 

ER+ and HER2+ subtypes and normal-adjacent cases were obtained using the R package Dunnett-

Tukey-Kramer Pairwise Multiple Comparison Test Adjusted for Unequal Variances and Unequal Sample 

Sizes. Statistically significant MRE sites were selected using p-value cut-off < 0.05. The bioinformatics R 



package edgeR (Robinson et al., 2010) was used to obtained differentially expressed MREs between TN 

tumors and matched normal-adjacent pairs at FDR <5% and log2FC |2|.  

Pathway analysis for canonical pathways 

The microRNA set analysis tool called TAM2.0 was used to identify cancer-related pathways for 

the 125 microRNAs. Likewise, enriched canonical pathway analysis for 88 genes was performed using 

KEGG and Reactome functional databases. Open source analysis toolkit WebGestalt (Wang et al., 2017) 

was also used for pathway identification by using the option to perform Gene set enrichment analysis 

(GSEA).  Identification of the relevance and activation/inhibition status of pathways was evaluated using 

the R package called Signaling Pathway Impact Analysis (SPIA). The Bioconductor R package called 

Pathview (Luo et al., 2017) was used to map the gene expression data from TNBC and visualize the 

MAPK pathway using the KEGG-based network model of this pathway.  

Statistical Methods 

The various statistical tests performed in this study are summarized as follows –  

1. MRE selection and normalization: (a) raw counts for MRE sites were quantified using the Find 

Individual Motif Occurrences (FIMO) tool and MREs with p-value < 0.05 were selected for 

downstream analysis, (b) raw counts were normalized using conditional quantile normalization 

(CQN) to account for sample library size, 3’UTR length and 3’UTR GC content per gene. 

2. Identification of TNBC specific MREs: (a) first, Dunnett-Tukey-Kramer (DTK) pairwise multiple 

comparison statistical test was applied to tumor and normal-adjacent of all subtypes – TNBC, 

ER+ and Her2+ (6 groups in total) to obtain 614 TNBC MREs at p-value < 0.05, (b) second, 

edgeR bioinformatics package was applied to TNBC tumor and normal-adjacent samples to 

identify 3,053 MREs (FDR < 5% and log2FC |2|), (c) finally, union of the DTK and edgeR results 

were used to arrive at 221 MREs. 

3. RNASeq data of TNBC tumor and normal-adjacent samples were compared for differential 

expression analysis using the edgeR package to obtain 2,250 genes at the statistical significance 

threshold of FDR (false discovery rate) < 5% and log2 fold change > 2 or < -2.  



4. The microRNA sequencing data of TNBC tumor and normal-adjacent samples were compared for 

differential expression analysis using the limma package to obtain 778 microRNAs at the 

statistical significance threshold of adjusted p-value < 0.05.  

5. The microRNA pathway analysis was performed using the TAM 2.0 tool for enrichment analysis 

of the 125 microRNAs found by ReMIx. Out of 125 microRNAs, 14 microRNAs were associated 

with the upregulation of disease at FDR < 2.87e-5, 55 microRNAs reported in breast carcinoma 

studies at FDR < 8.18e-18, and 34 microRNAs in breast neoplasms at (FDR < 6.12e-13). 

6. The mRNA pathway analysis was performed using (a) gene set enrichment analysis (GSEA) – 

with the FDR values reported in Supplemental File 12, (b) SPIA - pGFdr and pGFWER are the 

False Discovery Rate and Bonferroni adjusted global p-values reported in Supplemental file 13. 
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