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Infectious disease malaria is a devastating infectious disease that claims the lives of more than 500,000 people worldwide every
year. Most of these deaths occur as a result of a delayed or incorrect diagnosis. At the moment, the manual microscope is
considered to be the most effective equipment for diagnosing malaria. It is, on the other hand, time-consuming and prone to
human error. Because it is such a serious global health issue, it is important that the evaluation process be automated. The objective
of this article is to advocate for the automation of the diagnosis process in order to eliminate the need for human intervention in
the process. Convolutional neural networks (CNNs) and other deep-learning technologies, such as image processing, are being
utilized to evaluate parasitemia in microscopic blood slides in order to enhance diagnostic accuracy. The approach is based on the
intensity characteristics of Plasmodium parasites and erythrocytes, which are both known to be variable. Images of infected and
noninfected erythrocytes are gathered and fed into the CNN models ResNet50, ResNet34, VGG-16, and VGG-19, which are all
trained on the same dataset. The techniques of transfer learning and fine-tuning are employed, and the outcomes are contrasted.
The VGG-19 model obtained the best overall performance given the parameters and dataset that were evaluated.

1. Introduction

Malaria is spread through the bites of female Anopheles
mosquitoes infected with Plasmodium protozoan parasites,
which infect red blood cells and cause them to swell and
swell up. Every year, 3.2 billion people worldwide are at high
risk of developing malaria, according to the World Health
Organization. According to a survey conducted by the
World Health Organization [1], 91 countries recorded 216
million cases of malaria. The World Health Organization is a
nongovernmental organization that promotes health
worldwide. Global malaria cases were primarily concen-
trated in the African Region, which was then followed by the
Southeast Asia Region and the Eastern Mediterranean Re-
gion. The symptoms of malaria are often associated with
fever, tiredness, headaches, and, in extreme cases, seizures
and coma, all of which can be fatal if not treated promptly.

Malaria is a preventable disease that can be controlled with
adequate treatment. There is, however, no effective immu-
nization available at this time. Once infected, it is a disease
that progresses at a rapid pace. Malaria is a significant load
on our healthcare system, and it is the top cause of death in
many developing and developing-country populations. It is
endemic in many parts of the world, which means that the
disease is met on a regular basis in those areas of the world.
As a result, early detection and treatment of malaria are
essential in order to save lives. Because of this, we are
motivated to increase the effectiveness and timeliness of
malaria diagnostics in the future. Specialized technology is
required in order to resolve this problem. As a result, it is
vital to obtain a prompt diagnosis. The most important task
in diagnosing malaria is to determine whether or not par-
asites are present. The most common method of diagnosing
malaria is by the use of a blood sample. In the United States
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alone, millions of blood samples are tested for malaria each
year, with a trained pathologist painstakingly counting
parasites and infected red blood cells in each sample.
According to the World Health Organization regulation [2],
the blood smear should be inspected under a microscope at a
magnification of 100x. Diagnostic treatments such as light
microscopy and rapid diagnostic tests are two of the most
often performed (RDT). The use of these two tests is typical
in situations where high-quality microscopy services are not
readily available. However, there are several disadvantages to
using these procedures, including the fact that the diagnosis
is primarily dependent on the pathologist’s knowledge and
skill, the possibility of false-positive and false-negative di-
agnoses, which can result in the development of other ill-
nesses, and the fact that they are time-consuming, to name a
few.

Late or incorrect diagnosis is the leading cause of death
in the United States. As a result of the severity of this global
health concern, it is important that the evaluation process be
automated. The proposed approach must be capable of
identifying parasitemia while also providing a more trust-
worthy and consistent interpretation of blood films, among
other things. It must be cost-effective and alleviate the load
placed on malaria field workers and their families.

In today’s world, deep learning algorithms are com-
monly used to classify photos, recognize films, and analyze
medical images, among other things. Convolutional neural
networks (CNNs), a kind of deep neural networks, are the
neural networks that are most commonly utilized in the field
of computer vision. Specifically, in the field of biomedicine,
deep neural networks have been demonstrated to be the
most effective machine learning technology available. Due to
the ease of extraction of crucial information and completion
of tasks that were previously difficult to complete using
conventional approaches, deep learning (DL) has become
highly popular in the recent decade for evaluating and di-
agnosing biomedical and healthcare problems. The con-
volutional layer of the CNN serves as an automatic feature
extractor, extracting both hidden and important properties
from the input data. Image categorization is accomplished
by the use of a fully connected neural network, which op-
timizes probability scores by feeding the retrieved features
into the network. Additionally, when deep learning is used in
biological applications, the number of research articles
published has increased significantly over the past several
years. There are three broad categories of applications for
machine learning in biomedical applications: (1) as a
computer-aided diagnosis to assist physicians in making
more accurate and timely diagnoses, with improved har-
monization and fewer contradictory diagnoses; (2) to im-
prove patient medical care through more personalized
therapies; and (3) to improve human wellbeing, for example,
through the analysis of disease spread and social behavior in
relation to environmental factors [3]. Medical devices and
equipment are now capable of producing vast amounts of
data, which can include photos, audio, text, graphs, and
signals, among other types of information. Using a machine
learning technology known as deep learning, this medical
data may be analyzed [4]. Deep learning is a technique that
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consists of layers of comparable functions cascading down
through the network. Deep-learning algorithms can mine
massive amounts of healthcare data in search of information
that can be used to aid in the treatment and prevention of
diseases and ailments. Deep-learning algorithms can mine
massive amounts of healthcare data in search of information
that can be used to aid in the treatment and prevention of
diseases and ailments. People who are knowledgeable in the
machine learning area recognize the global impact that deep
learning is having by investigating and resolving human
problems across all fields, despite the fact that deep-learning
applications may appear disillusioning to the general
individual.

A fatal disease, malaria affects hundreds of millions of
people each year all over the world, and it is preventable. If it
is not treated immediately, it can be fatal. Although there
have been significant advancements in malaria diagnosis, the
microscopy approach continues to be the most extensively
employed. Unfortunately, the accuracy of microscopic di-
agnostics is dependent on the expertise of the microscopist,
resulting in a limitation in the throughput of malaria di-
agnosis. Manual microscopy has been proved to be an
unreliable screening method when conducted by nonexperts
due to a lack of training, which has been demonstrated in
several investigations, particularly in rural areas where
malaria is endemic. An automated system’s mission is to do
this activity without the need for human interaction, and it
should do so by providing a goal-oriented, dependable, and
efficient tool to accomplish this. It is now possible to
minimize expenses while simultaneously enhancing overall
accuracy because of the advent of artificial intelligence tools,
notably deep-learning techniques. In this study, we present a
VGG-based model for recognizing infected cells, and we
compare it to previously created models in order to dem-
onstrate its effectiveness. Our model outperforms the ma-
jority of previously produced models over a wide range of
accuracy metrics. The model has the advantage of having a
modest number of layers because it was constructed in this
manner. Thus, the number of computing resources and
computational time required are kept to a minimum.

2. Related Work

Plasmodium parasites transmit malaria, a disease that can be
fatal if untreated. Specialized microscopists use specialized
equipment to look for it in very small blood smear images. It
is possible that modern deep-learning algorithms may be
used to accomplish this study on a computer. One of the
most notable results of using deep learning in the medical
industry is that it can recognize malaria, which is in line with
earlier findings, as demonstrated by this study. These
findings have been put to use in the creation of a new deep
learning-based system for diagnosing malaria illness. If an
autonomous model can be developed that is exact and ef-
fective, it can reduce dramatically the demand for highly
qualified employees. Here, we present the Malaria Diagnosis
System, a fully automated convolutional neural network-
(CNN-) based model for the detection of malaria in mi-
croscopic blood smears (MDS). Computing algorithms have
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been used extensively over the past few decades to develop
cost-effective healthcare solutions in the context of chronic
sickness reduction. The development of several artificial
intelligence technologies has made it possible to diagnose
malaria using blood smear images that have gotten in-
creasingly complex in recent years. Convolutional neural
networks and support vector machines are just some of the
techniques that can be used in artificial neural networks
(ANNs) and convolutional neural networks (CNNs)
(SVMs). Deep learning is the most recent innovation that
has had a positive impact on a wide range of industries,
including but not limited to medicine. This advanced version
of the well-known multilayer neural network automatically
learns complicated data representations (also known as
features) from large amounts of data in a short period of
time. A vast collection of high-quality, annotated data is
required for deep-learning models to learn and generate
accurate predictions about future occurrences, but a little
amount of data is sufficient for machine learning algorithms.
Because it is more difficult to collect annotated training sets
and because many privacy issues occur, it is possible that this
is one of the reasons why the medical domain was unable to
accept the new technology during its early phases of de-
velopment. Unexpectedly, trained deep-learning models can
be used to solve problems in a variety of different but related
applications through the use of a technique called transfer
learning, which is described here. These trained deep-
learning models are also referred to as pretrained models,
which are models that have already learned to deal with an
issue that is similar to the one that is now being addressed.
Transfer learning is one of three ways for incorporating
deep-learning algorithms into a training environment. The
availability of a large amount of labeled data adds to the
promise of CNNs’ performance in a variety of applications.
DL approaches are currently being used by researchers all
around the world to yield promising outcomes in a variety of
medical image analysis and interpretation applications [5].
When it comes to breast cancer diagnosis, Zhang and col-
leagues [6] proposed a nine-layer convolutional neural
network that had a 94 percent accuracy rate [7]. Attempts of
a similar kind have been made to identify tuberculosis
disease, with higher performance accuracy being seen. Using
a customized convolutional neural network- (CNN-) based
deep-learning (DL) model, Sivaramakrishnan et al. and
colleagues [8] investigated the visualization of salient net-
work activation in a job of chest X-ray screening using a
deep-learning (DL) model. A new object detection technique
developed by Jane Hung and Anne Carpenter [9] is based on
a Faster Region-based convolutional neural network (Faster
R-CNN) that was trained on ImageNet before being fine-
tuned on their dataset. The Faster R-CNN was trained on
ImageNet before being fine-tuned on their dataset. On
ImageNet, the Faster R-CNN was trained and fine-tuned
until it performed well.

Other studies on the use of DL methods to the challenge
of detecting malaria parasites have been published in the
literature as well.

A designed dataset of 2,565 cell photos was used by Dong
et al. [10] to investigate the performance of SVM with

pretrained DL models such as LeNet [11], AlexNet [12], and
GoogleNet [13] on a tailored dataset of parasitized and
uninfected cells in discriminating between them. The au-
thors divided the red blood cells (RBCs) from thin blood
smear images into two groups: train sets and test sets, using a
random number generator. To validate the models, a total of
25% of the training photographs were chosen at random
from the pool of photos. In order to accommodate a large
number of whole slide photos in the dataset, the image size
submitted to LeNet and AlexNet was 60 x 60; however,
GoogleNet accepted an image size of 256 x 256. Aside from
outperforming SVM on their unique dataset, the pretrained
models outperformed each other, with GoogleNet providing
the highest accuracy (98.13 percent) out of all the pretrained
models they examined.

For distinguishing between parasitized and uninfected
cells, Liang et al. [14] proposed a 16-layer CNN as a possible
solution. Using the pretrained AlexNet as a basis for feature
extraction, and using the extracted features as the basis for
training an SVM classifier, the performance of their pro-
posed model was compared to that of a CNN that had al-
ready been trained. It was determined by the researchers’
findings that the customized model surpassed the pretrained
model in terms of accuracy as well as sensitivity and
specificity.

Bibin et al. [15] suggested a 6-layer deep belief network
for detecting malaria parasites in peripheral blood smear
images, which they found to be effective. The researchers
used randomized train/test splits to obtain 96.4 percent
accuracy in categorizing their customized dataset of 4,100
cells, according to their findings.

When asked to discriminate between parasitized and
uninfected cells in an image dataset of 27,558 cell photos,
Shaik et al. [16] proposed a customized, sequential CNN
with three convolutional layers and two fully connected
layers, which they found to be effective. Using pretrained
CNNs, such as AlexNet, VGG-16 [17], Xception [18],
ResNet-50 [19], and DenseNet-121 [20], the authors eval-
uated the effectiveness of the CNNs in extracting attributes
from parasitized and uninfected cells. For the AlexNet and
VGG-16 models, features were extracted from the second
tully connected layer, while for the Xception, ResNet-50, and
DenseNet-121 models, features were extracted from the last
layer before the final classification layer. With an accuracy of
95.7 percent, ResNet-50 surpassed the other pretrained
CNNs and customized CNN models in every performance
criterion, according to the researchers.

With the help of transfer learning and fine-tuning,
Prasad et al. [21] compared the performance of a pretrained
model VGG-16 with transfer learning and fine-tuning to a
19-layer custom architecture with eight convolution layers,
four max pool layers, three dense layers, one flattens layer,
two layers with 50% dropout (to reduce overfitting), and one
fully connected layer. The results revealed that VGG-16
performed the best, achieving an accuracy rate of 97.77
percent. By contrast, using the dropout technique, there is an
increased risk of losing information from the image [22].

AOCT-NET [23] is an 18-layer transfer learning ar-
chitecture developed by Suryanarayana et al. [24]. The



authors of this paper compared the performance metrics of
AOCT-NET to those of contemporary architectures in the
literature. In terms of evaluation, the former obtained the
greatest possible score.

After applying transfer learning, Alqudah [25] investi-
gated the performance of a custom CNN architecture as well
as the pretrained models VGG-16 and VGG-19 [17] and
discovered that VGG-19 outperformed the other models in
their study (95.33 percent). With the inclusion of new op-
timization methods, this accuracy has the potential to
improve.

A deep-learning library that provides practitioners
with high-level components that can rapidly and readily
deliver results in traditional deep-learning domains and
low-level components that can be combined to construct
new techniques [26] was used in this study. In order to
achieve these goals, it does not intend to make substantial
concessions in terms of usability, flexibility, or perfor-
mance. It is based on PyTorch [27], which gives the neural
network a slew of new features, such as data visualization
tools, new ways to import and partition data, and the
ability to infer the dataset’s class count. PyTorch is used to
build Singh and Ahuja [28]. Deep-learning algorithms of
the present day may be able to automate the process of
carrying out this analysis. The development of an au-
tonomous, precise, and efficient model has the potential to
significantly reduce the requirement for highly qualified
workers. In light of the difficulties associated with manual
diagnosis, it is recommended that the malaria diagnosis
technique be automated. The automation of the diagnosis
process will result in more accurate disease diagnosis and,
as a result, has the potential to offer trustworthy healthcare
to areas with low resource availability. Because of this,
computerized diagnostics may be of significant help to
remote areas that lack specialized infrastructure and
skilled employees in the first place. Adapting standard
microscopy processes, experience, practices, and infor-
mation to a computerized system architecture is required
in order to automate the malaria diagnosis process. Here,
we present the Malaria Diagnosis System, a fully auto-
mated convolutional neural network- (CNN-) based
model for the detection of malaria in microscopic blood
smears (MDS). We demonstrated the efficiency of our
deep-learning-based method by detecting malarial para-
sites from microscopic pictures with 97.2 percent
accuracy.

3. Process Flow and Algorithm

The detection of malaria using deep learning is visualized by
means of a process flow diagram as shown in Figure 1. It
depicts the step-by-step procedural flow of the processes
involved in the entire work in an informal illustration.

3.1. Data Preprocessing. A model’s behavior and perfor-
mance are completely dependent on the data that it receives
when learning is performed through supervised learning.
Experiments would be impossible to conduct without the
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use of data preprocessing. Data Augmentation is used to
resize or normalize images before they are fed into the
“Learner” class, which collects all of the information re-
quired to train a model based on the data. Fastai performs
Data Augmentation to resize or normalize the input images
before feeding them into the “Learner” class.

3.2. Convolutional Neural Network (CNN). The convolu-
tional neural network (CNN) is one of the deep neural
networks that are most extensively utilized today (CNN).
As a result of the convolution process, it is named after the
linear mathematical action between matrices that is used to
create it [29]. The architecture of CNN is comprised of four
layers: a convolutional layer, a nonlinearity layer, a pooling
layer, and a fully connected layer. For the nonlinearity and
pooling layers, there are no settings available; however,
there are options for the convolutional and fully connected
layers. When compared to standard neural networks,
CNNs are capable of preserving the spatial correlations of
the input while extracting feature information. Weights
and biases can be taught for each neuron in a layer by
experimenting with them. Data can be fed into the network,
and the loss function at the top layer can be minimized to
achieve the optimal model. A variety of CNN designs have
been proposed, each with its own advantages and disad-
vantages. In this work, the ResNet-50, VGG-16, and
ResNet-19 CNN models were all tested on the same dataset,
and the results were compared.

3.3. CNN Model Training. The dataset contains both training
and validation sets, which are complementary. Approxi-
mately 80 percent of the training set is used for real training,
with the remaining 20 percent being used for back-propa-
gation validation throughout model training as mentioned
in Table 1.

The performance evaluation criteria for this study are
accuracy, sensitivity, specificity, precision, and the F1 score,
among other things.

3.4. Transfer Learning. Itis the transfer of knowledge from a
previously mastered task that improves learning in a new
activity [30]. Transfer learning is a machine learning re-
search subject that relies on retaining acquired knowledge
while solving one issue and applying it to another but
similar problem. Starting with a pretrained model, we
change it to predict the two categories of blood smeared
photographs using our dataset instead of predicting
thousands of categories of ImageNet using the ImageNet
dataset.

The final piece of the model has to be reworked to fit
our amount of classes in order to work. A few linear layers
are commonly seen toward the end of most convolutional
models (a part we will call the head). Convolutional neural
networks can identify and analyze features in an image as
it travels through convolutional layers. The head’s role
here is to translate these data into predictions for each of
our classes. A new head with a random initialization
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FIGURE 1: Process flow diagram of the proposed methodology.

TaBLE 1: Classification of the dataset.

Label Training set Validation set Total
Parasitized 11,023 2,755 13,779
Uninfected 11,023 2,755 13,779

technique will be built during transfer learning, pre-
serving all of the convolutional layers (also known as the
model’s backbone) and their weights that have been
pretrained on ImageNet.

Next, we will unfreeze the layers of the backbone and
fine-tune the entire model. First, we will freeze the body
weights and train only the head (in order to turn the assessed
characteristics into predictions for our own data) (possibly
using differential learning rates).

3.5. Fine-Tuning and Unfreezing. Fine-tuning [31-35]
consists in removing the final set of fully linked layers
from a pretrained CNN and replacing them with a new
set of fully linked layers. All of the layers below the
head are frozen, and their weights cannot be changed
because of this. Unfreeze allows us to choose which
layers of your model to train at any given time by
removing them from the freeze state. This is due to the
fact that the early layers of our model will already be
well trained in recognizing basic lines, patterns, and
gradients, whereas the later layers (which will be more
specific to our aim, such as identifying parasitemia)
will necessitate further training [36-39]. By fine-
tuning pretrained networks, we may utilize them to
recognize classes that they were not trained on in the
first place. Furthermore, this method has the potential



to be more accurate than feature extraction-based
transfer learning in terms of accuracy and precision
(Algorithm 1).

4. Dataset Description

4.1. The Dataset. The researchers used a dataset of 27,558
segmented red blood cells (RBCs) with an equal propor-
tion of parasitized and uninfected cells in order to conduct
their investigation. Blood smear images of healthy and sick
blood smears have been painstakingly collated and ana-
lyzed by researchers at the Lister Hill National Center for
Biomedical Communications (LHNCBC) of the National
Library of Medicine. It is possible to see in Figure 2 the
difference between malaria-affected and unaffected red
blood cells (RBCs) based on data collected from the
dataset.

Simonyan and Zisserman [17] of Oxford University
created a conventional multilayered convolutional neural
network (CNN) architecture, known as the Visual Ge-
ometry Group (VGG). The VGG achieved remarkable
results for the ImageNet Challenge. This design serves as
the foundation for cutting-edge object recognition models,
which are built on the VGG architecture. On a range of
tasks and datasets other than ImageNet, the VGGNet,
which was developed as a deep neural network, exceeds the
baselines in terms of performance. Besides that, it is still
one of the most extensively used image recognition ar-
chitectures on the market today. The two most popular
models are VGG16 and VGG19, which have 16 and 19
convolutional layers, respectively, and are the most widely
used [40-42].

The VGG-16 consists of 13 convolutional layers and
three fully connected layers. In ImageNet, the VGG16 model
achieves nearly 92.7% top-5 test accuracy [43]. Figure 3
shows the VGG-16 architecture. Following a few convolu-
tion layers, there is a pooling layer that reduces the height
and width. When it comes to the number of filters that can
be used, there are approximately 64 available, which can be
doubled to approximately 128 and then to 256 filters. We can
use 512 filters in the final layers. The model has an image
input size of 224 x 224.

When it came to classification and localization at the
2014 ILSVRC conference in Chicago, the VGG-19 model,
with a total of 138M parameters, was ranked second. In the
ImageNet Large-Scale Visual Recognition Challenge, this
model was trained on a portion of the ImageNet database,
which was then used to compete in the competition
(ILSVRC).

Due to the fact that the input image was a rectangle
RGB image with a fixed size (224 % 224), a rectangular
matrix was used in this network. The photos were first
submitted to a single preprocessing step, which consisted in
eliminating the average RGB value from each pixel, which
was computed throughout the whole training set and
employing kernels with a stride size of one pixel. Conse-
quently, they were able to express the full significance of the
photograph. Spatial padding was used to ensure that the
spatial resolution of the image was not compromised.
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Stride 2 was used to get the maximum pooling, with a 2 x 2
pixel window for the window size. This was followed by the
Rectified linear unit (ReLu), which included nonlinearity in
the model in order to improve classification and minimize
processing time, whereas earlier models relied on tanh or
sigmoid functions to achieve these goals, respectively. This
proved to be significantly superior to the other options
available. ILSVRC classification was performed using three
completely linked layers, the first two of which were 4096
channels in size, the third of which was 1000 channels in
size for 1000-way ILSVRC classification, and the last layer
was a softmax function.

ResNet is an abbreviation for residual network, which is
what it stands for. The theory of deep residual learning for
image recognition was first proposed by He et al. in their
article titled "Deep Residual Learning for Image Recognition’
[19] in 2015. In the ILSVRC 2015 classification competition,
this model was a resounding success, with an error rate of
only 3.57 percent, as evidenced by the fact that its ensemble
was awarded first place in the classification competition.
Additionally, it took first place in the 2015 ILSVRC & COCO
contests in a variety of categories, including ImageNet de-
tection, ImageNet localization, coco detection, and coco
segmentation. Deep residual nets make use of residual
blocks to improve the accuracy of the model. Specifically, the
ResNet-34 and ResNet-50 variants of the ResNet network
were used in this investigation.

This architecture, known as ResNet-34, employed
shortcut connections to transform a plain network into its
residual network counterpart. It was the first ResNet ar-
chitecture. While the simple network was influenced by
VGG neural networks (VGG-16 and VGG-19), the con-
volutional networks were influenced by 33 filters, which was
the case in this instance. On the other hand, ResNets are less
complex than VGGNets and feature fewer filters than these
neural networks. The performance of the 34-layer ResNet is
3.6 billion FLOPs, whereas the performance of smaller 18-
layer ResNets is 1.8 billion FLOPs, according to the re-
searchers. The algorithm also adhered to two simple design
principles: each layer had the same number of filters for the
same output feature map size, and if the output feature map
size was cut in half, the number of filters was doubled in
order to maintain the time complexity of each layer.
Shortcuts are now available on this straightforward network.
Despite the fact that the input and output dimensions were
both the same, the identity shortcuts were used directly. The
proportions of the space became increasingly huge, and
there were two possibilities to choose from. The first was that
the shortcut would continue to conduct identity mapping
while padding extra zero entries to increase the dimension of
the data set being processed. Using the projection shortcut, it
was also possible to match up dimensions.

A fundamental adjustment has been made to the
ResNet-34 paradigm in order to create the ResNet-50
architecture. Because of concerns about the amount of
time necessary to train the layers, the building block was
turned into a bottleneck design in this situation. This
time, a three-layer stack was used instead of the two-layer
stack that was previously used. It was as a result that each
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Step 1: Importing the standardized Dataset
Step 2: Dataset Preprocessing via Data Augmentation
(a) Resizing
(b) Normalization
Step 3: Initiate Convolution Neural Networks
% Extract features while preserving the spatial correlations of the input
Step 4: Start CNN Model Training
Step 5: Dataset division into two subcategories
(c) Training set
(d) Validation set
Step 6: Transfer learning procedure is initiated
% Keep all of the convolutional layers with their weights pretrained
Step 7: Train the model in two stages
(a) Freeze the body weights
(b) Gradually unfreeze the layers
(c) Fine-tuning
Step 8: Evaluation of Model Performance
Step 9: Identification of Malarial parasites
Step 10: Computation and Comparison of performance metrics
(e) Accuracy
(f) Precision
(g) Sensitivity
(h) Specificity
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FIGURE 2: Sample images of parasitized (a) and uninfected (b) red blood cells (RBCs).
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FiGUrE 3: VGG-16 architecture.

of the two-layer blocks in the Resnet34 architecture was ~ compared to the 34-layer ResNet model by using this
replaced by a three-layer bottleneck block, creating the =~ model. In terms of performance, ResNet’s 50-layer per-
Resnet50 architecture. Accuracy is improved as  formance is 3.8 billion FLOPS.



5. Results and Analysis

After performing Data Augmentation, the pretrained CNN
models were fitted with the dataset to perform transfer
learning. The layers were frozen, and fine-tuning was ap-
plied. Accuracy results before and after applying fine-tuning
have been recorded. The confusion matrix for each of these
models has been plotted to evaluate the performance
metrics.

5.1. Model Performance before and after Fine-Tuning. The
performance of the models after fine-tuning was observed to
be better than with transfer learning alone. Table 2 shows the
results of accuracy obtained for the transfer learning models
before and after fine-tuning.

According to Figure 4, the accuracy of the transfer
learning models before and after fine-tuning is the same in
graphical form for both cases. We can employ pretrained
networks to recognize classes that they were not initially
programmed to recognize by fine-tuning their responses to
them. A lower level of accuracy can be achieved using
transfer learning via feature extraction, on the other hand.

5.2. Performance Metrics. Performance metrics are used to
evaluate the model’s overall performance. When deter-
mining their worth, a confusion matrix is employed to
determine their worth. In machine learning classification
problems involving two or more alternative outputs, a
confusion matrix can be used to evaluate the problem. In
Table 3, there are four different combinations of anticipated
and actual data to consider. For the sake of comparison, the
matrix of confusion is displayed in relation to the validation
dataset.

The accuracy of a prediction is defined as the proportion
of correctly predicted observations to the total number of
observations. A good measure of accuracy is only possible
when we have symmetric datasets with about equal numbers
of false positives and false negatives. The default accuracy
measure gives an overall statistic for model performance
throughout the entire dataset, and it is used in conjunction
with other metrics. However, when the distribution of
classes is unequal, overall accuracy may be deceiving, and it
is critical to correctly predict the minority class in order to
avoid bias.

Accuracy = (TP + TN)/ (TP + FP + FN + TN). (1)

As a result, more parameters must be incorporated into
our model’s performance evaluation in order to be accurate.
Accuracy is essentially a measure of how frequently the
classifier makes an accurate guess. The accuracy of a forecast
is defined as the ratio of the number of correct forecasts to
the total number of predicted events.

The presence of positive samples that are accurately
classified in relation to the total number of correctly clas-
sified positive samples is defined as precision in statistics
(either correctly or incorrectly). To put it another way,
accuracy refers to a model’s capacity to correctly detect
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TaBLE 2: Accuracies obtained before and after fine-tuning.

Accuracy when fine-tuning is

Model . .
Not applied Applied
ResNet-50 0.957354 0.958265
ResNet-34 0.957358 0.963527
VGG-16 0.960624 0.960806
VGG-19 0.960987 0.972055
Accuracy
0.975
0.97 <+
QU965 -+ + v+
0.96 - : :
0.95
ResNet-50 ResNet-34 VGG-16 VGG-19

= Fine Tuning is not Applied
= Fine Tuning is Applied

FIGURE 4: Accuracy representation before and after fine-tuning.

whether or not a sample is positive. The number of expected
good outcomes divided by the total number of predicted
outcomes can be used to calculate precision if you want to
know how accurate your predictions are.

Precision = TP/ (TP + FP). (2)

The sensitivity of a class is defined as the proportion of
precisely predicted positive observations to all of the ob-
servations in the class. The capacity of a model to predict true
positives in each accessible category is measured by its
sensitivity, which is a numerical statistic.

Sensitivity = TP/ (TP + EN). (3)

Specificity is defined as the proportion of accurately
predicted negative observations to all other observations in
the class, divided by the total number of observations.
Specificity is a metric that is used to evaluate a model’s ability
to predict true negatives in each of the categories that are
available. This means that any category model can be
evaluated using sensitivity and specificity measurements.

Specificity = TN/ (TN + FP). (4)

In order to calculate the F1 score, precision and sensi-
tivity are combined and weighted together. False positives
and false negatives are taken into account while computing
this score, which is why it is so accurate. While F1 is less
intuitive than accuracy, it is often more beneficial than
accuracy, especially when the distribution of the class is
asymmetrical, as seen in the following example. Precision is
the most efficient strategy when the costs of false positives
and false negatives are equal. Precision and sensitivity
should be taken into account because the cost of false
positives and false negatives may be dramatically different.
Precision and recall measurements are discussed in detail in
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TaBLE 3: Confusion matrix model. TaBLE 4: Classification report of performance metrics.

Predicted class Model Accuracy  Sensitivity  Specificity ~ F1 score

Class = yes Class = no ResNet-50  0.958265 0.966476 0.949759 1.919412

ctual class Class=yes True positive (TP) False negative (FN) ~ ResNet:34 0963527 0.9671889 0959734 1917519

Class=no False positive (FP) True negative (TN) VGG-16 0.960806 0.970042 0.950868 1.926142

VGG-19 0.972055 0.979671 0.964166 1.939950

this section. When precision matches recall, the effect is the
greatest.

F1score = 2 * (sensitivity * precision)/

(5)

(sensitivity + precision).

The number of digits in percentage terms used to display a
value is referred to as precision (PR), whereas recall assesses
completeness by calculating what percentage of positive data
is labeled as such, and the harmonic mean of recall and
precision provides an F-score that falls between [0, 1].

5.3. Classification Report. Based on the results provided in
Table 4, the models were successful in distinguishing be-
tween infected and noninfected cells.

Figure 5 illustrates the classification report for the
performance metrics of the dataset that was employed. In
order to determine the accuracy of a classification algo-
rithm’s predictions, a classification report must be generated
for each classification algorithm. Count the number of
correct predictions versus the number of wrong predictions.
Furthermore, the metrics of a classification report are
projected based on the number of true positives, false
positives, and true negatives that occur.

The results show that VGG-19 has a superior perfor-
mance compared to the other pretrained models. An ac-
curacy of 0.972055, sensitivity of 0.979671, specificity of
0.964166, and F1 score of 1.939950 have been achieved.

Accuracy is a statistic that can be used to assess the ef-
fectiveness of categorization techniques. Our model’s accu-
racy is defined as the percentage of true predictions made by
our model in a general sense. In computing, a true positive or
true negative value is a data item that was accurately classified
as true or false by the algorithm. A false positive or false
negative, on the other hand, refers to a data item that was
incorrectly classified by the algorithm and so classified as
such. A different name for sensitivity is the True Positive Rate
(TPR). It is also referred to as recall in some circles. Essen-
tially, it informs us of the proportion of true positive cases that
our model predicted to be positive in the beginning. The
presence of an extremely high sensitivity score suggests that
our model has a great degree of success in correctly predicting
actual positives. When an observation does not belong to a
predetermined category, specificity has an impact on a
model’s ability to estimate the future. When an observation
actually belongs to a category different than the one under
investigation, it is necessary to have an understanding of the
model’s performance. When the model makes a large number
of incorrect positive classifications or a small number of
correct positive classifications, the denominator increases,
and the precision declines.

CLASSIFICATION REPORT OF PERFORMANCE METRICS

2 .
L5
0
ResNet-50 ResNet-34 VGG-16 VGG-19
B Accuracy F1 Score
" Sensitivity
Specificity

FiGgure 5: Classification report of performance metrics.

As depicted in Figure 6, the training and validation loss
before fine-tuning is plotted between loss and the number of
batches processed for the ResNet-50 model training and
validation loss is one of the most commonly utilized metrics
combinations. The plot of training loss diminishes with
experience, whereas the plot of validation loss decreases to a
point and then begins to increase again. The training loss will
tell us whether or not our model can fit the training set at all,
or if our model has enough ability to analyze the important
information in the data. The training loss of the model
demonstrates how well it fits current data, whereas the
validation loss exposes how well it fits new data as input. The
major goal is to see both the training and validation losses
decrease. While both losses should ideally be nearly the
same, as long as the validation loss remains reasonably close
to the training loss. A deep-learning model’s fit to training
data is measured using the training loss. However, validation
loss is used to evaluate the performance of a deep-learning
model in the validation set.

Loss can be seen to decrease exponentially as the number
of batches being processed increases, as seen in Figure 7 for
the fine-tuned ResNet-50 model training and validation loss,
but with a slight tilt of obtaining constant lowered values,
indicating an approximately straight line, as shown in
Figure 6. Both scenarios have a lower validation loss because
training loss is assessed during each epoch, whereas vali-
dation loss is calculated after each epoch in the first instance.

The training and validation loss before fine-tuning as
shown in Figure 8 is a plot between loss and the number of
batches processed for the ResNet-34 model. One of the most
widely used metrics combinations is training and validation
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FIGURE 6: Training and validation loss on the basic ResNet-50
model.
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FIGURE 7: Training and validation loss on the fine-tuned ResNet-50
model.
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FIGUure 8: Training and validation loss on the basic ResNet-34
model.
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loss. The training loss is a metric used to assess how a deep-
learning model fits the training data. That is to say, it assesses
the error of the model on the training set. Note that the
training set is a portion of a dataset used to initially train the
model. Computationally, the training loss is calculated by
taking the sum of errors for each example in the training set.
It is also important to note that the training loss is measured
after each batch. This is usually visualized by plotting a curve
of the training loss. On the contrary, validation loss is a
metric used to assess the performance of a deep-learning
model on the validation set. The validation set is a portion of
the dataset set aside to validate the performance of the
model. The validation loss is similar to the training loss and
is calculated from a sum of the errors for each example in the
validation set.

Here, it can be observed that loss is substantially being
reduced exponentially as the number of batches is in-
creased for processing; the same can be observed for
training and validation loss on the fine-tuned ResNet-34
model as shown in Figure 9 but with a little tilt of attaining
constantly reduced values indicating an approximate
straight line. In both the conditions, validation loss is less
when compared to training loss because training loss is
measured during each epoch while validation loss is
measured after each epoch.

The training and validation loss before fine-tuning as
shown in Figure 10 is a plot between loss and the number of
batches processed for the VGG-16 model. In most deep-
learning projects, the training and validation loss is usually
visualized together on a graph. The purpose of this is to
diagnose the model’s performance and identify which as-
pects need tuning. The training loss is therefore frequently
recognized half an epoch earlier than the validation loss,
which is detected after each batch as a result of this. The
validation loss provides the benefit of further gradient
updates.

Here, it can be observed that loss is substantially being
reduced exponentially as the number of batches is increased
for processing; the same can be observed for training and
validation loss on the fine-tuned VGG-16 model as shown
in Figure 11 but with a little tilt of attaining constantly
reduced values indicating an approximate straight line. The
primary goal is to minimize the validity loss. It is almost
always a good idea to overfit. There is nothing more im-
portant than making sure the risk of being disproved is as
low as possible.

The training and validation loss before fine-tuning as
shown in Figure 12 is a plot between loss and the number of
batches processed for the VGG-19 model. While the
model’s training loss indicates how well it fits existing data,
the validation loss reveals how well it fits brand-new data as
input. Validation loss refers to the amount of data that is
lost when it is divided into training, validation, and testing
sets.

Here, it can be observed that loss is substantially being
reduced exponentially as the number of batches is increased
for processing; the same can be observed for training and
validation loss on fine-tuned VGG-19 model as shown in
Figure 13 but with a little tilt of attaining a sudden rise and
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FIGURE 9: Training and validation loss on the fine-tuned ResNet-34
model.
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FIGURE 10: Training and validation loss on the basic VGG-16
model.
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FiGure 11: Training and validation loss on the fine-tuned VGG-16
model.

11

1.4 4

1.2 1

1.0 |

0.8 1

Loss

0.6 1

0.4 4

0.2 1

0 1000 2000 3000 4000 5000 6000 7000
Batches processed

—— Train
—— Validation

FIGURe 12: Training and validation loss on the basic VGG-19
model.
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F1GURE 13: Training and validation loss on the fine-tuned VGG-19
model.

then constantly reduced values indicating an approximate
straight line. The most important goal is to minimize the
validation loss to as little as possible. A little bit of overfitting
is almost always a good idea. In the end, all that matters are
that the loss of validation is as low as possible.

The training and validation losses per epoch for ResNet-
50, ResNet-34, VGG-16, and VGG-19 are depicted in
Figures 6-13 before and after fine-tuning for the four net-
works. As seen in Figures 7 and 9, the ResNet models are
slightly overfitted after a few epochs; however, as shown in
Figures 11 and 13, the VGG models are optimal. A more
accurate way of putting it is that your model would be
overfitting to the training data. Understanding the effects of
overfitting is crucial to dealing with the problem. However,
while high accuracy on the training set is often achievable,
what you really want is to be able to design models that
generalize well to a testing set (or data they have not en-
countered before).

Overfitting is the polar opposite of underfitting.
Suboptimal fitting happens when the train data shows
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that there is still room for improvement to be made. For a
variety of reasons, such as when the model is not
powerful enough, when it is overregularized, or when it
has not been trained for an adequate amount of time, this
can occur. In this case, it shows that the network was
unable to learn relevant patterns from the training data
set.

6. Conclusion

To increase the performance of malaria diagnosis cate-
gorization in this study, we applied end-to-end deep-
learning neural networks from start to finish. Deep
learning helps computers find meaningful links in a large
amount of data and make sense of unstructured data.
Transfer learning, on the other hand, is a machine
learning research problem that puts an emphasis on
loading knowledge gained while trying to solve one
problem and implementing it to a different but related
problem. Based on our Fastai experience, we believe that
using a layered API in deep learning can provide sig-
nificant research benefits to the community. Compared to
custom-built CNN models, it is, however, far more
compatible with predefined architectures (for example,
ResNet, Inception, and so on). Based on the simulation
findings, it was proved that these deep-learning algo-
rithms were capable of reaching extraordinarily high
accuracy in pattern recognition. Based on our experi-
mental findings, we conclude that the pretrained con-
volutional neural network model VGG-19 performs
significantly better than ResNet-50, ResNet-34, and VGG-
16 for the classification of blood smears. We employed
transfer learning and fine-tuning to increase the perfor-
mance of these pretrained models, and the results were
promising. Their performance is influenced by the ar-
chitecture, the training framework, and the volume of
training data that they are given. In order to avoid in-
formation loss from images, the dropout approach was
not employed in this study. We developed a web-based
interface to make it easier for the end-user to use this
model and categorize blood smear photos, which is now
under development. This has the potential to reduce stress
on medical field workers while simultaneously boosting
the speed with which diagnoses are made. In the future, we
want to concentrate on improving the performance of the
CNN models by optimizing their architecture, which will
result in a significant rise in the accuracy of malaria
detection. Mobile devices and cloud-based implementa-
tion are also options for extending the end-user appli-
cation’s functionality.
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