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Background: An imbalance of innate and acquired immune responses is significantly involved in the 
pathophysiology of coronary atherosclerosis and the occurrence of ischemic heart disease (IHD). Regulatory 
T cells (Tregs) play an essential regulatory role in atherosclerotic plaque formation and maintenance; 
therefore, dysfunction of Tregs triggers the formation of atherosclerotic plaques and accelerates their 
progression. However, due to the inherent limitations of observational research, clinical evidence is limited 
concerning the relationship between the variation in peripheral Tregs and the risk of IHD, and the cause-
and-effect relationship between these factors is unclear. Mendelian randomization (MR) uses genetic 
variation as a proxy for exposure and can be used to inferentially determine the causal effect of exposure 
on outcomes. We thus used MR analysis to investigate whether there is a causal relationship between the 
biomarkers of Tregs and IHD.
Methods: Selected genetic variants (P<5.00E−08) from the summary data of a genome-wide association 
study (GWAS) were used to conduct a two-sample bidirectional MR analysis. The analysis included 51 
extensive Treg subtypes involving 3,757 individuals from the general population. Summary statistics of IHD 
were obtained from the IEU open GWAS project, which contains 30,952 cases and 187,845 controls. The 
populations in both GWAS studies were of European ancestry.
Results: We identified a set of 197 single-nucleotide polymorphisms (SNPs) that served as instrumental 
variables (IVs) for evaluating 51 Treg subtypes. Thirteen significant variables were found to be potentially 
associated with IHD. After false-discovery rate (FDR) adjustment, we identified four Treg subtypes to 
be causally protective for IHD risk: CD28 on activated & secreting CD4 Tregs [odds ratio (OR) =0.89; 
95% confidence interval (CI): 0.82–0.96; P=3.10E−03; adjusted P=0.04], CD28 on activated CD4 Tregs 
(OR =0.87; 95% CI: 0.80–0.95; P=3.10E−03; adjusted P=0.04), CD28 on CD4 Tregs (OR =0.87; 95% CI: 
0.80–0.96; P=3.41E−03; adjusted P=0.04), and CD28 on resting CD4 Treg cell (OR =0.91; 95% CI: 0.85–
0.97; P=3.48E−03; adjusted P=0.04). Reverse MR analysis found eight potential causal variables, but these 
associations were nonsignificant after FDR correction (all adjusted P values >0.05).
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Introduction 

Ischemic heart disease (IHD) is the leading contributor 
to the global burden of cardiovascular disease, which is 
primarily caused by coronary heart disease (CHD) (1,2). In 
IHD, coronary artery stenosis or occlusion leads to reduced 
myocardial blood perfusion, resulting in a series of clinical 
ischemic symptoms (3). With advancing age, the prevalence of 
IHD significantly increases, as it is an aging-related disease (4). 

Aging-related diseases usually manifest as a sustained 
inflammatory response that ultimately disrupts tissue 
homeostasis (5). This inflammatory response is a crucial 
component in the development of IHD, involving both 
innate and acquired immune responses (6). T cell subsets 
play a regulatory role in atherosclerotic plaque formation 
and maintenance (6). Notably, there is growing interest 
in the function of regulatory T cells (Tregs) in IHD (7,8). 
Tregs are inhibitory CD4+ T cells, mainly regulated by 
forkhead box P3 (Foxp3) expression. Tregs act as regulatory 
cells whose dysfunction leads to inflammation and unhealthy 
aging, which triggers the promotion of atherosclerotic 

plaque formation and accelerates its progression (8-10). 
However, further investigation is required to determine 
the relationship between different Treg subtypes—each 
with distinct differentiation characteristics—and IHD, and 
clarifying the direction of their causal interaction may be 
highly beneficial.

Mendelian randomization (MR) employs genetic variants 
as proxies for exposure to determine the causal impact of 
those exposures on the outcome of interest (11-13). In 
this way, MR overcomes previous research limitations and 
is thus highly suited to determining the role and causal 
relationship between Tregs and IHD.

Therefore, this study aims to conduct a two-sample MR 
study using two different genome-wide association studies 
(GWAS) to further explore the causal association between 
molecular characteristics in peripheral Treg and IHD risk. 
Through this study, we hope to gain a deeper understanding 
of the role of Treg-related molecules in the pathogenesis of 
IHD and provide new ideas and methods for the prevention 
and treatment of IHD. We present this article in accordance 
with the STROBE-MR (Strengthening the Reporting of 
Observational Studies in Epidemiology Using Mendelian 
Randomization) reporting checklist (14) (available at 
https://jtd.amegroups.com/article/view/10.21037/jtd-23-
1790/rc). 

Methods

Study design

We conducted a two-sample bidirectional MR study 
to assess the cause–effect interaction between 51 Treg 
subtypes and IHD. As shown in Figure 1, there are three 
major assumptions that the MR approach needs to meet: 
(I) the association hypothesis, that is, single-nucleotide 
polymorphisms (SNPs) are robustly related to exposure; 
(II) the independence hypothesis, in which SNPs should 
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be independent of confounding factors; and (III) the 
exclusivity hypothesis, in which SNPs are not associated with  
outcome (15). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Data source

We retrieved the data from studies that provide publicly 
accessible summary GWAS data. The comprehensive Treg 
subtypes (refer to table available at https://cdn.amegroups.
cn/static/public/jtd-23-974-1.xlsx) were obtained from the 
SardiNIA study, which consists of GWAS data collected 
from 3,757 individuals (57% female) representing the 
general population residing on the central east coast of 
Sardinia, Italy (16). This cohort included 118 absolute cell 
counts, 389 MFIs of surface antigens, 32 morphological 
parameters, and 192 relative counts (ratios between cell 
levels), amounting to a total of 731 cell traits evaluated 
in this population. This data contains expression levels 
of cellular markers for different Treg subtypes, while 
the phenotype ascertainment method involves antibody 
staining of peripheral blood from normal individuals and 
flow cytometry processing. Tregs were distinguished by 
their elevated levels of CD25 and diminished expression of 
CD127 surface antigens. They were further subclassified 
into activated, resting, and secreting subpopulations based 
on CD45RA expression. Moreover, CD8 T cells in this 
cohort were categorized based on the expression of CD28 
and CD45RA antigens. The elevated levels of CD25 and 
the lack of CD127 on CD28 negative CD8 cells were 
also examined. Finally, Treg subsets, alongside CD4+ and 
CD8+ T cells, underwent further stratification according 
to their expression of CD39. The GWAS summary-level 
data for IHD were sourced from the IEU open GWAS 
project (https://gwas.mrcieu.ac.uk/datasets/finn-b-I9_

ISCHHEART), which contains 30,952 cases and 187,845 
controls, all of which are European ancestry. IHD is 
described as coronary thrombosis, which is “the coagulation 
of blood in any of the coronary vessels”. The presence of a 
blood thrombus usually leads to myocardial infarction. 

Instrumental variable (IV) selection

To determine qualified instrumental SNPs, we conducted 
a comprehensive set of quality control measures to identify 
the most impartial and representative instrumental genetic 
variables. First, the genome-wide significance threshold for 
potential SNPs was set to P<5.00E−08. Next, we conducted 
a clumping procedure (using a threshold of r2<0.001 and a 
window width of 10,000 kb) to identify independent SNPs, 
employing European reference samples obtained from the 
1000 Genomes Project for this filtration step. Thirdly, 
we extracted exposure SNPs from the outcome GWAS 
summary data. In cases where a special exposure SNP was 
absent in the outcome GWAS, we substituted it with a 
proxy SNP that possessed linkage disequilibrium (LD) to 
the exposure SNP (with a minimum LD r2 value of 0.8). 
The next step involved harmonizing the exposure SNPs 
and outcome SNPs, while excluding ambiguous SNPs 
whose effect allele could not be determined. Palindromic 
SNPs were explicitly examined in the original datasets 
to avoid any unintended reverse effects. Additionally, we 
computed the F-statistic for each Treg characteristic, and 
only instrumental SNPs with an F-statistic greater than 
ten were considered qualified. The F-statistic was derived 
using the following formula: F = R2(n − k − 1)/k(1 − R2), 
where R2 represents the exposure variation elucidated by 
the instrumental SNPs, n stands for the sample size, and k 
denotes the number of IVs (17). These rigorously chosen 
SNPs served as IVs in the subsequent analysis.

Figure 1 Study design of the two-sample MR analysis on the effect of genetically predicted Tregs on IHD (created with BioRender.com). 
SNP, single-nucleotide polymorphism; MR, Mendelian randomization; Treg, regulatory T cell; IHD, ischemic heart disease.
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Analysis of two-sample MR

We employed multiple MR methods to assess the causal 
effects of exposure variables on the outcome. When only 
one instrumental SNP was accessible, we utilized the 
Wald ratio method. However, when multiple SNPs were 
present, we opted for the inverse variance-weighted (IVW) 
method, which is commonly used in meta-analysis of the 
SNP-specific Wald estimates while assuming balanced 
pleiotropy. All causal estimates are displayed as odds ratios 
(OR) alongside 95% confidence intervals (CIs) for the 
dichotomous phenotype outcome. If exposures had more 
than three SNPs accessible, we conducted sensitivity 
analyses using alternative MR methods, albeit at the expense 
of reduced statistical power. These methods included weight 
median (18), weighted mode (19), simple mode, MR Egger 
regression (20), and Mendelian Randomization Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) (21). In order to 
verify the validity of the assumption that exposure causes 
outcomes, we also conducted a reverse MR analysis. Finally, 
the statistical power of each exposure was calculated with a 
bilateral type-I error rate of α=0.05 (22).

Statistical analysis

Al l  s t a t i s t i c a l  ana ly s i s  was  per formed  w i th  the 

“TwoSampleMR” package for MR analyses in R version 
4.2.2 (The R Foundation for Statistical Computing, Vienna, 
Austria) (23). The P values as exposures (Treg subtypes) 
were adjusted using a false-discovery rate (FDR) method 
due to repetitive comparisons with the outcome (IHD). 
Statistical significance was determined by an FDR-corrected 
P value <0.05, indicating robust causal evidence.

Results

Selection of IVs

According to the above selection criteria, a total of 197 
SNPs were selected as IVs associated with 51 Treg subtypes. 
The detailed characteristics of the instrumental SNPs are 
shown in table available at https://cdn.amegroups.cn/static/
public/jtd-23-974-1.xlsx. Table available at https://cdn.
amegroups.cn/static/public/jtd-23-974-2.xlsx summarizes 
the results of the MR study and sensitivity analysis for all 
the subtypes. 

Two-sample MR analysis of Tregs and IHD

As seen in Table 1 and Figure 2, 13 significant variables, 
including CD28 on activated & secreting CD4 Tregs, 
CD28 on activated CD4 Tregs, CD28 on CD4 Tregs, 

Table 1 Detailed MR results of 13 significant Treg subtypes

Exposure Method No. of SNPs P value OR (95% CI) Adjusted P value F

CD28 on activated & secreting CD4 Tregs Wald ratio 1 3.10E−03 0.89 (0.82, 0.96) 0.04 162.82

CD28 on activated CD4 Tregs Wald ratio 1 3.10E−03 0.87 (0.80, 0.95) 0.04 124.61

CD28 on CD4 Tregs Wald ratio 1 3.41E−03 0.87 (0.80, 0.96) 0.04 121.11

CD28 on resting CD4 Tregs Wald ratio 1 3.48E−03 0.91 (0.85, 0.97) 0.04 272.99

CD25 on CD39+ CD4 Tregs Wald ratio 1 8.42E−03 1.18 (1.04, 1.34) 0.07 51.89

CD25 on activated CD39+ CD4 Tregs Wald ratio 1 8.42E−03 1.19 (1.05, 1.36) 0.07 45.95

CD4 on CD4 Tregs Wald ratio 1 2.47E−02 0.89 (0.81, 0.99) 0.11 64.75

CD4 on resting CD4 Tregs Wald ratio 1 2.47E−02 0.86 (0.76, 0.98) 0.11 37.46

CD4 on activated CD4 Tregs Wald ratio 1 2.47E−02 0.90 (0.81, 0.99) 0.11 68.19

CD4 on secreting CD4 Tregs Wald ratio 1 2.47E−02 0.87 (0.78, 0.98) 0.11 46.11

CD4 on activated and secreting CD4 Tregs Wald ratio 1 2.47E−02 0.89 (0.81, 0.99) 0.11 62.04

CD25 on secreting CD4 Tregs IVW 2 3.12E−02 1.08 (1.01, 1.17) 0.13 43.79

CD25 on secreting CD39+ CD4 Tregs IVW 2 3.41E−02 1.09 (1.01, 1.17) 0.13 38.53

MR, Mendelian randomization; Treg, regulatory T cell; SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IVW, 
inverse variance-weighted.
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CD28 on resting CD4 Tregs, CD25 on CD39+ CD4 Tregs, 
CD25 on activated CD39+ CD4 Tregs, CD4 on CD4 
Tregs, CD4 on resting CD4 Tregs, CD4 on activated CD4 
Tregs, CD4 on secreting CD4 Tregs, CD4 on activated and 
secreting CD4 Tregs, CD25 on secreting CD4 Tregs, and 
CD25 on secreting CD39+ CD4 Tregs, were found to be 
potentially associated with IHD (all P values <0.05). None 
of these exposures had instrumental SNPs exceeding 2 in 
number. Therefore, we use the Wald ratio or IVW methods 
for the MR analysis without employing proxy SNPs. All 
selected instrumental variants showed strong F-statistics 
(range, 34.01–272.99, median 51.89) with the exposure, as 
shown in Table 1. After FDR adjustment, we identified 4 
Treg subtypes that exhibited protective effects against IHD 
occurrence (CD28 on activated & secreting CD4 Tregs 
[odds ratio (OR) =0.89; 95% confidence interval (CI): 0.82–
0.96; P=3.10E−03; adjusted P=0.04], CD28 on activated 
CD4 Tregs (OR =0.87; 95% CI: 0.80–0.95; P=3.10E−03; 
adjusted P=0.04), CD28 on CD4 Tregs (OR =0.87; 95% CI: 
0.80–0.96; P=3.41E−03; adjusted P=0.04), CD28 on resting 
CD4 Treg cell (OR =0.91; 95% CI: 0.85–0.97; P=3.48E−03; 
adjusted P=0.04). 

Reverse MR analysis

Reverse MR analysis identified eight significant variables 
(Table 2). However, these associations were nonsignificant 
after the FDR correction was applied (all adjusted P values 

>0.05). The detailed reverse MR results are shown in table 
available at https://cdn.amegroups.cn/static/public/jtd-23-
974-3.xlsx and table available at https://cdn.amegroups.cn/
static/public/jtd-23-974-4.xlsx. 

Discussion

IHD is primarily associated with diseases caused by 
metabolic disorders, such as hypertension, hyperlipidemia, 
hyperglycemia, and obesity (24). Currently, pharmaceutical 
agents and surgical intervention are the main treatment 
options for IHD (25). Stem cells and stem cell-derived 
exosomes have been widely used over decades in the 
treatment research of IHD, and it has been confirmed 
that cell therapy can improve patients’ cardiac condition 
(26-28). In addition, immune cells and inflammatory 
cytokine production play a crucial role in the development 
of IHD. As promising therapeutic targets, Tregs have 
garnered increasing attention due to their ability to 
suppress innate and adaptive immune responses, mitigate 
excessive inflammation, and promote tissue repair following 
myocardial ischemia. As the first bidirectional MR 
analysis of IHD and Tregs, our study clarified the causal 
relationships between IHD and 51 Tregs with variable 
differentiation characteristics. Using genetic variants as 
IVs, MR analysis allows for establishing causal inferences 
concerning the impacts of modifiable risk factors, thereby 
helping to address specific types of confounding (15). 
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Table 2 Detailed reverse MR results of IHD on eight significant Treg subtypes using IVW method

Outcome No. of SNPs P value OR (95% CI) Adjusted P value

CD4 on secreting CD4 Tregs 26 3.77E−03 1.20 (1.06, 1.35) 0.08 

CD4 on activated CD39+ Tregs 26 4.17E−03 1.21 (1.06, 1.37) 0.08 

CD4 on activated and secreting CD4 Tregs 26 5.39E−03 1.21 (1.06, 1.38) 0.08 

CD39+ on secreting CD4 Tregs 26 7.27E−03 0.85 (0.76, 0.96) 0.08 

CD4 on CD4 Tregs 26 8.34E−03 1.20 (1.05, 1.38) 0.08 

CD4 on activated CD4 Tregs 26 9.05E−03 1.20 (1.05, 1.38) 0.08 

CD39+ on secreting CD4 Tregs 26 2.88E−02 0.88 (0.79, 0.99) 0.21 

CD39+ on activated CD4 Tregs 26 4.13E−02 0.88 (0.77, 0.99) 0.26 

MR, Mendelian randomization; IHD, ischemic heart disease; Treg, regulatory T cell; IVW, inverse variance-weighted; SNP, single-nucleotide 
polymorphism; OR, odds ratio; CI, confidence interval.

Our analysis extensively assessed the causal relationship 
between Treg traits and IHD, and four protective factors 
(high expression of CD28 on CD4 Tregs, including total, 
activated & secreting, activated and resting CD4 Tregs) 
were identified in our study. CD28, a crucial molecule for 
T cell activation, is expressed on T cells and binds to the 
antigen-presenting cells’ CD80 and CD86 molecules. This 
interaction plays a vital role in facilitating T cell activation. 
This finding matched the observations of earlier studies. 
For instance, experimental studies conducted on mice have 
demonstrated that Tregs can mitigate the development 
of atherosclerosis, enhance plaque vulnerability, and 
ameliorate acute ischemic myocardial injury (29-34). 
Conversely, depletion of Tregs has been shown to promote 
atherosclerosis progression, impede plaque remodeling 
and contraction, and disrupt the resolution of inflammation 
(35,36). Previous research has indicated that reduced CD28 
levels on specific subsets of T cells are linked to an increased 
likelihood of developing inflammatory bowel disease but may 
exert a protective effect against multiple sclerosis (37-43).  
Moreover, reduced CD28 expression on resting Tregs 
increases susceptibility to primary biliary cholangitis (44). 
However, whether Tregs with high CD28 expression can 
reduce the risk of IHD has not been clarified and requires 
further investigation.

Although ischemic myocardial injury can be mitigated 
by suppressing inflammatory responses of specific immune 
cells, it remains a challenging therapeutic task due to the 
various context-dependent functional consequences of 
different immune cells. Several studies have proposed that 
dysfunctional and proinflammatory Tregs may contribute 
to adverse cardiac remodeling in patients with IHD and 

chronic heart failure (45,46). In our study, we identified 
Tregs with high CD25 expression as a potential risk factor 
for IHD (P<0.05; adjusted P value >0.05) (Table 1).

Previous experimental results have also demonstrated 
that atherosclerosis can disrupt the regulation of Tregs, 
thereby exacerbating the progression of atherosclerosis 
(8,46,47). After an ischemic injury occurs, immune cells 
infiltrate the affected tissues and release inflammatory 
cytokines, collectively establishing an inflammatory network 
that plays a role in the continuation of IHD (48). Although 
the adjusted P value did not reach statistical significance in 
our study, our reverse MR results suggested that IHD might 
alter the abundance of different molecular features of Tregs 
in peripheral blood, such as secreting and activated induced 
CD39+ CD4 Tregs or Tregs with higher CD4 expression 
(P<0.05; adjusted P>0.05).

Although the treatments of IHD have been significantly 
improved, the incidence of IHD is consistently rising due 
to multiple factors; including the increment of the aged 
population, changes in lifestyle, and the improvement 
of survivability in patients with CHD. Furthermore, in 
patients who are not effectively treated, e.g., patients 
with complex coronary lesions, advanced age, and a 
greater number of comorbidities, the novel treatment 
is in urgent need to reach a better outcome. Extensive 
research has been conducted regarding the genetic 
foundations of T cell functions and subtypes. This has led 
to significant advancements in genetically engineered T 
cell immunotherapies that have demonstrated remarkable 
clinical efficacy (49). In the context of ischemic injury, Tregs 
play a vital role in promoting tissue repair by inhibiting the 
activity of various immune cell types to prevent excessive 
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immune response, dampening inflammatory signaling 
pathways, and mitigating tissue damage (50). Clinical 
studies of Treg-based treatments for IHD are currently 
underway, and emerging small-molecule and biologic 
therapies for Tregs are expected to be used for IHD.

There are certain limitations to consider in this study. 
First, the GWAS pooled data used were obtained from 
European populations, and therefore, the conclusions 
cannot be generalized to other population types. Second, 
there is potential horizontal pleiotropy in the exposure of 
proxy SNPs, which could have introduced potential bias in 
the results. 

Our study had pre-specifically planned to perform 
the sensitivity analysis if more than 2 SNP variants were 
identified; although, none of the exposure had instrumental 
SNPs exceeding 2 in number. Third, the results of this 
study cannot reflect the treatment effect of immunotherapy 
based on specific Tregs subtypes. Further investigation is 
encouraged to explore this potential treatment strategy.

Conclusions

This comprehensive bidirectional MR study highlighted 
the role of high CD28 expression on CD4 Tregs as a 
protective factor against IHD occurrence. This discovery 
holds promise for enhancing our comprehension of the 
immunopathology underlying IHD and may drive the 
advancement of future cellular therapies associated with this 
disease.
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