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Abstract: Diet is major modifiable risk factor for cardiovascular disease that can influence the immune
status of the individual and contribute to persistent low-grade inflammation. In recent years, there has
been an increased appreciation of the role of polyunsaturated fatty acids (PUFA) in improving immune
function and reduction of systemic inflammation via the modulation of pattern recognition receptors
(PRR) on immune cells. Extensive research on the use of bioactive lipids such as eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) and their metabolites have illustrated the importance of
these pro-resolving lipid mediators in modulating signaling through PRRs. While their mechanism of
action, bioavailability in the blood, and their efficacy for clinical use forms an active area of research,
they are found widely administered as marine animal-based supplements like fish oil and krill oil to
promote health. The focus of this review will be to discuss the effect of these bioactive fatty acids and
their metabolites on immune cells and the resulting inflammatory response, with a brief discussion
about modern methods for their analysis using mass spectrometry-based methods.

Keywords: EPA; DHA; FDA regulations; Immune function; toll like receptors; essential fatty acids;
non-essential fatty acids; PPAR

1. Introduction

Dietary fatty acids, either by themselves or via their metabolites, have the capacity to influence
human health and health outcomes [1]. A detailed dissection of the components of lipids associated with
poor cardiovascular health in the past decade has enabled the identification of putative lipid biomarkers
predictive of poor cardiovascular health. Lipidomic analysis to study models of dyslipidemia have
shown an accumulation of saturated fatty acids and omega-6 fatty acids-associated lipids [2] and are
considered to be inflammatory in nature [3]. Increase in disorders like type II diabetes, cardiovascular
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diseases, and atherosclerosis, which are highly associated with an unhealthy diet, have brought forth
the importance of lipid homeostasis in health and disease. Furthermore, with the advent of lipidomics,
an increasing grasp on the diversity of lipid species suggests that the relative abundance of lipids
influence outcomes [4], rather than the mere presence or absence of a lipid species. The prevailing
dogma suggests that an increase in free omega-3 polyunsaturated fatty acids and associated lipids
(e.g., omega-3: omega-6 ratio) is known to promote health in humans and is correlated with lower
levels of systemic inflammation. Bioactive lipids, specifically polyunsaturated long chain fatty acids,
are classified based on their degree of unsaturation, which is insufficient to infer their biological
function, and it is important to discuss the ways in which fatty acids play a role in inflammation and
immune function.

Studies on the human lipidome, not limited to the classes of phospholipids, cholesterol esters,
triacyl glycerol, and fatty acids have been implicated as an area of vital research for diet and
lifestyle-associated disorders. Fatty acids differing in their position of desaturation (omega 3 vs.
omega 6) play distinct roles in the body and are the primary focus of our discussion (Figure 1).
These fatty acids are considered essential fatty acids as humans are unable to synthesize the basic
precursors. The most basic dietary precursor for omega-3 fatty acid is the alpha-linolenic (ALA) acid
or linolenic acid which is a fatty acid (FA) containing 18 carbons with three double bonds (18:3)with
the first double bond from the non-carboxyl end beginning at the third carbon (n-3) and abbreviated
in whole as ALA FA 18:3 n-3. This lipid is converted to the anti-inflammatory eicosapentaenoic
acid (EPA FA 20:5 n-3), and docosahexaenoic acid (DHA FA 22:6 n-3) (Figure 1). Dietary omega- 6
fatty acids like linoleic acid (FA 18:2 n-6) are converted to gamma-LA (FA 18:3 n-6) and arachidonic
acid (AA FA 20:4 n-6), and have distinct roles in inflammation (Figure 1). These fatty acids serve as
precursors to many bioactive lipids. When taken via diet, they are converted to monoglycerides and
free fatty acids in the intestinal lumen, followed by incorporation into chylomicrons and lipoproteins
for circulation within the bloodstream. Omega-3 fatty acids are anti-inflammatory, whereas omega-6
fatty acids are pro-inflammatory, and this association depends on the lipid metabolites produced
downstream from these precursors. Biochemically, higher concentrations of dietary bioactive lipids
like EPA and DHA compete with AA for synthesis of lipid mediators and can tip the balance towards
less inflammatory/pro-resolution phenotypes [5–7]. Resolution may occur when the conversion
of arachidonic acid to inflammatory mediators by cyclooxygenase-2 (COX-2) is competed off by
EPA and DHA to produce pro-resolution lipids (reviewed in [6]). In addition to their metabolic
flux, these fatty acids are known to competitively modulate signaling through pattern recognition
receptors and G protein coupled receptors (GPR40) [7,8] on leukocytes [9–11] and thus reduce the
risk of inflammation-mediated cardiovascular disease progression. Metabolites of long chain fatty
acids, also known as eicosanoids, can interact with G-protein-coupled receptors GPCRs [8] and have
been implicated in the development of atherosclerosis. Thus it may be possible to ultimately allow
for targeted, personalized applications of lipid formulations for managing systemic inflammation
perpetrated by particular cell types of the immune system (T-cells, B cells, and dendritic cells) and the
treatment of disorders associated with unhealthy diet [12,13]. While this is an exciting area of research,
the narrow window of physiological response demands accurate quantitation of lipid species which is
now possible with advances in the field of lipidomics.

Advances in liquid chromatography coupled to high resolution mass spectrometry, and more
recently ion mobility methods [14], have enabled comprehensive characterization of the mammalian
lipidome. Chromatographic and ion mobility separation prior to mass spectrometry is required to
overcome the challenge of isobaric overlap when analyzing lipids by mass spectrometry. In this regard,
reverse phase chromatographic methods enable the separation of lipids based on hydrophobicity
(Figure 3b) primarily resulting from the fatty acid composition of the lipid species. On the other
hand, hydrophilic interaction liquid chromatography (HILIC) [15] provides class-based separation of
lipids based on the lipid molecule head groups, the primary determinants of lipid classes. The use
of such complimentary methods has enabled the quantification of thousands of lipid species which
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can be used for targeted monitoring of lipids for personalized therapeutic approaches [12,13]. While
liquid chromatography-based separation suffices for most lipid separations, to date, separation in
the gas phase (gas chromatography) prior to mass spectrometric analysis remains the most reliable
method free fatty acid analysis. It should be noted that newer separation methods like supercritical
fluid chromatography coupled to mass spectrometry is also demonstrating great promise towards
quantitative analysis of bioactive lipids.
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unsaturated bonds. AA—arachidonic acid, EPA—eicosapentaenoic acid, DHA—docosahexaenoic acid,
COX—cyclooxygenase, LTB—leukotriene, PGE—prostaglandin.

In the following review, we seek to summarize the role of lipids in immunopathology while
discussing the relevant advances in analytical and statistical methods in lipidomic research for studying
a broad variety of inflammation-associated diseases.

2. Fatty Acids and Immune Function

2.1. Fatty Acids Influence Inflammatory Repertoire

Fatty acids are classified as short chain, medium chain, and long chain fatty acids. There are three
primary means by which fatty acids can influence the inflammatory repertoire of the host; substrates
for biosynthesis of inflammatory mediators, activation of cell receptors [16,17], and modulation of
membrane fluidity to alter cell function. Bulk of the work in this field has focused around the
mechanisms by which polyunsaturated fatty acids (PUFA) act as substrates for the biosynthesis of
inflammatory eicosanoid mediators (Figure 1). While some work has focused on delineating the
mechanism by which fatty acids interact with cell surface receptors or even modulate cellular function
through the production of oxylipins [18], its implications on overall health, and their efficacy as
interventions remain elusive. Dietary intake of omega-3 unsaturated fatty acids provides precursors
for the production of anti-inflammatory lipids like five series leukotrienes (LTx5) or three series
prostanoids (PGx3). On the other hand, an increase in omega-6 fatty acids leads to the production of
pro-inflammatory mediators like four series leukotrienes(LTA4, LTB4, LTC4, LTD4, LTE44) and two
series prostanoids (PGx2) [19] (Figure 1). The metabolites produced, further regulate inflammation
by feedback inhibition of biosynthetic enzymes [7,20]. This autocrine mechanism of regulation by
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the two series of prostaglandins has been well studied [3,21]. In the body, fatty acids and their
metabolites [22] are usually present together and influence the end result by their relative concentration
in the milieu. The initial inflammatory response, as represented by the production of LTx4, is important
for the infiltration of neutrophils to the site of infection and thereby beginning the cascade for the
production of pro-inflammatory cytokines [23]. The incorporation of these bioactive lipids into
membrane phospholipids affects membrane fluidity and surface receptor expression and regulates
the function of immune cells. Enrichment of T cells and neutrophils with omega-3/omega-6 fatty acid
supplemented in the media provides an evidence for the incorporation of exogenous fatty acids into
membrane phospholipids of immune effector cells [24,25]. Taken together it suggests that immune
cells are capable of incorporating exogenous fatty acids into the cell membrane. The incorporation
of fatty acids changes the membrane architecture and signaling, thereby altering the function of cell
surface pattern recognition receptors [26,27].

Reports investigating this phenomenon have provided some insights into the incorporation of
fatty acids into the cell membrane of macrophages [28]. This effect is seen specifically in activated
polymorphonuclear neutrophils (PMN’s) where there is a loss of membrane incorporated unsaturated
fatty acids resulting from heightened intracellular phospholipase activity (cPLA2) due to the activation
of leukocytes [29,30] downstream of cell surface receptors like Toll-like receptors (TLRs).

Lipids enriched in dietary fatty acids can influence the inflammatory profile during episodes of
sterile or infectious inflammation. Enrichment of omega-3 fatty acids in the media or diet improves
the function of lymphocytes by improving mitogen-mediated activation of immune cells [31–33].
An omega-3 rich diet further promotes the development of a TH2-type immune response [34,35]
promoting the production of associated anti-inflammatory cytokines like IL-4 [34,35], and reduction of
pro-inflammatory TNF-α [20,27,32–34]. In contrast, a coconut oil-based diet (rich in saturated fatty
acids) led to the development of an IFN-γ dominant cytokine profile, characteristic of a TH1 immune
response. While a TH1 response may be beneficial in a parasitic infection, a TH2 response is preferred
in most cases. Expanding on the effect of omega-3 PUFA on T cell subtypes, it is interesting to note that
not only a fish oil-enriched diet, but also purified EPA and DHA suppressed IL-17 production from
TH17 cells resulting in reduced STAT-3 phosphorylation and ROR-γτ expression. This concomitant
decrease in TH1/TH17 in response to omega-3 fatty acids (EPA and DHA) may have implications on
the ability to reduce enteric inflammation [36]. Similarly, a diet rich in monounsaturated fatty acids
(MUFA) like oleic acid (Mediterranean diet) has been shown to improve high density lipoprotein (HDL)
function [37] and is protective in patients for high risk for cardiovascular disease [37–39] (Tables 1
and 2).

2.2. Fatty Acids Influence Immune Functions by Interacting with Cell Surface Receptors on Immune Cells

In an effort to dispel the confusion about the mechanism of action of polyunsaturated fatty acids
and find cognate receptor interaction, some landmark studies have determined a few receptors that
fatty acids interact with on host cells like the peroxisome proliferation activating receptor (PPAR)
and Toll-like receptors (TLRs) [40,41]. Interaction with these receptors results in the activation of
signaling cascades activating the transcription of anti-inflammatory cytokines while suppressing the
transcription of pro-inflammatory cytokines (Figure 2). Studies investigating the interaction of fatty
acids with Toll-like receptors (TLRs), particularly TLR2 and TLR4, on leukocytes have shown that
saturated fatty acids (C12:0 and C16:0) cause an increased expression of cyclooxygenase-2 (COX-2)
and phosphorylation of ERK (p-ERK) in a MyD88 independent manner [16]. Consistent with reported
literature, it was also found that DHA and other n-3 fatty acids caused suppression of COX-2 and
p-ERK. This study dispels any contention of the bacterial contaminants or the influence of bovine serum
albumin (BSA) in eliciting the activation of TLRs [16]. It was also found that monocytic cells (THP-1)
and macrophages (RAW 264.7) had a heightened response to saturated fatty acids under serum-starved
conditions which was influenced by the reactive oxygen species (ROS) status of the microenvironment,
while EPA and DHA suppressed this response [40]. It must also be noted that administration of high
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fat diet rich in saturated fats has been shown to increase endotoxin (LPS) production by gram negative
bacteria [4] and thus TLR4 activation. Saturated fatty acids also activate an additional number of
pro-inflammatory pathways, such as the one related to the intracellular macromolecular complex
Nod-like receptor pyrin domain-containing protein (NLRP)-3 inflammasome, primarily responsible for
the production of the pro-inflammatory cytokines IL-1β and IL-18 [42–45]. Conversely, unsaturated
fatty acids inhibit such detrimental effects, exerting anti-inflammatory properties.
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leukocyte factor antigen-1, IL—interleukin, Th1—T helper type I, TNF-α—tumor necrosis factor alpha,
LN—lymph node, cPLA2—cytosolic phospholipase A2, PPAR—peroxisome proliferator-activated
receptor, NLRP3—nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat
and pyrin domain–containing 3, ↑—levels increase, ↓—levels decrease.

Another kind of membrane-associated receptor other than TLR is the PPAR-gamma (PPAR-γ).
It is trafficked to the cell surface in membrane lipid rafts and influences the inflammatory response
in an NF-κB dependent manner. Some disease presentations like atherosclerosis are seen due to a
PPAR-γ dependent expression of oxLDL uptake receptors that lead to the formation of foam cells in
fatty streaks (plaques) seen in arteries. In most cases, this is a result of downstream activation of a
cell surface receptor like PPAR-γ [10,46,47], which initiates the cascade required for the immediate
production of inflammatory lipid mediators like prostaglandins and cytokines (i.e., IL-2) prior to the
infiltration of the tissue by immune cells. Research on this front has provided information that fatty
acids and other eicosanoids, like PGJ2, are ligands for PPAR-γ and may increase the transcription of
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the PPAR-γ [48,49]. However, the suppression of NF-κB-mediated pro-inflammatory responses by
EPA and DHA are independent of PPAR-γ [50]. This modulation of the immune response has also
been elicited in the requirement of PPAR-γ for the maturation of dendritic cells and the suppression of
macrophage-mediated inflammation by n-3 fatty acids [51]. A more responsive counter part of the
PPAR family of receptors to n-3 supplementation are PPAR-α and PPAR-δ. The expression of these
genes was observed to be upregulated in mice fed with high fat diets and this increase was suppressed
when mice were fed with a high fat diet supplemented with DHA and EPA [52,53]. Thus, n-3 fatty
acids are antagonistic to pro-inflammatory pathways regulated by TLR (i.e., saturated fatty acids) and
PPAR cell surface receptors.

Similar to the interaction of eicosanoids with membrane spanning G protein coupled receptors, long
chain fatty acids also interact with G protein coupled receptors on the surface of cells. An upcoming area
of research is the interaction of short chain [54–56] and long chain fatty acids with yet uncharacterized
G protein coupled receptors and their role in modulating inflammation. For a comprehensive overview
of the specific interactions of the free fatty acids with their cognate G protein receptors, the readers are
directed to some excellent reviews in this emerging field [57,58].

2.3. Fatty Acids Influence Lymphocyte Proliferation and Cytokine Profiles

It has been reported as early as 1988 that inhibition of the lipoxygenase pathway of inflammation
prevents the differentiation of monocytes to macrophages after supplementation with arachidonic
acid (n-6) [31]. A concomitant increase in PC specific phospholipase activity is observed in instances
where linoleic acid (n-6) is found esterified in the sn2 position of phospholipids [31]. Depending on
the stage of development of the macrophage, enrichment of cells with n-3 fatty acids such as linolenate
(FA 18:3 n-3) promotes a rapid acute immune response by a reduced production of TNF-alpha when
compared to macrophages enriched with n-6 fatty acids such as linolenic acid [20]. A more recent
study reiterates the findings that n-3 fatty acids can stimulate the production of IL-4 while saturated
fatty acids promote the production of IFN-γ [34]. In addition to influencing cytokine profiles, n-3 fatty
acids also promote the expression of the Mac-1 complex (CD-11b/CD-18) on the surface of neutrophils
on the cell surface. While the exact mechanism of action remains unclear to date, the expression of
Mac-1 on the surface is not dependent on the metabolic production of pro-inflammatory lipids like
PGE2 or LTB4 [59]. Thus, suggesting that while arachidonic acid metabolites do not play a role in the
expression of surface markers and differentiation of monocyte derived cell types, they are important
in initiating the cascade responsible for terminal differentiation. Arachidonic acid, an n-6 fatty acid
previously shown to be enriched in atherosclerotic plaques, has also been suggested to induce the
expression of CD36 and scavenger receptor A [49] on the surface of macrophages. An expression of
these receptors promotes prolonged residence of macrophages in bloodstream and the development of
foam cells due to increased receptor-mediated oxLDL uptake. A review summarizes the connection
between dietary nutrients and immune function [35,60] and we elaborate on some of the mechanisms
by which dietary lipids influence immune function at the cellular level.

Fatty acids may also regulate the production of pro-inflammatory cytokines by interacting with
the NLRP3 inflammasome and modulating the production of IL-1 family of cytokines (IL-1β and
IL-18) [61,62]. Signaling cascade downstream of pattern recognition cell surface receptor (TLR) provides
the initial signal for the production IL-1 family of pro-inflammatory cytokines [63]. The maturation of
the cytokines is controlled by a multiprotein complex called the inflammasome. Though interesting,
it is not surprising that the saturated/n-3 fatty acids play antagonistic roles to n-6 fatty acids in
inflammasome function [64,65]. While saturated fatty acids like palmitic acid (C16:0) induce the
production of IL-18 and IL-1β in an NLRP3 dependent manner, monounsaturated fatty acid (MUFA)
like oleic acid (C18:1) and n-3 PUFA inhibit the production of these cytokines [64] and are involved
with the transcriptional repression of NLRP3. Taken together, an increased proportion of saturated
and n-6 fatty acids inhibit immune cell development and promotes inflammation. MUFA [38,66]
and PUFA (n-3) suppress the production of the pro-inflammatory cytokines by interacting with the
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NLRP3 inflammasome and modulate inflammation at the transcriptional and translational level by
suppressing gene expression of the components of the inflammasome and preventing the NLRP3
dependent maturation of IL-1 family of cytokines [43,52,53,62,64,65].

A resurgence of interest in bioactive lipids has been complemented with the characterization of
the bioactive lipids composition of M1/M2 polarized macrophages [67]. Studies have shown that the
lipidomic composition and the resulting phospholipase subtype mediated activity to influence the
development of proinflammatory subtype (M1) over the anti-inflammatory subtype (M2) [67]. While it
continues to be determined whether the product of 12-Lipoxygenase (12-HETE) is important for shifting
the polarization of macrophages to the M2 subtypes, more work focused on the eicosanoid signaling
and its relation to cell types differentiation is required. Resulting from the distinct mechanisms of
differentiation to macrophage subtypes, M1/M2 cells have distinct eicosanoid compositions where M1
cells are abundant in LTB4 and PGE2 while M2 macrophages are abundant in pro-resolving mediators
from the 5-lipoxygenase pathway (5-LOX) and eicosanoids derived from n-3 fatty acids like EPA and
DHA such as resolvin D2 and D5 (RvD2, 5). Even more interesting is that M2 cells produced a higher
concentration of PGD2, the anti-inflammatory metabolite of arachidonic acid [68,69]. Taken together,
these reports suggest an overlooked role of bioactive lipids and their mediators in modulating the
outcomes of infection and inflammation. Further emphasizing the need for the analysis of localized
lipid metabolism at the sight of interest instead of classical systemic evaluation of efficacy of the efficacy
of bioactive lipids in health and disease.

Table 1. Influence of fatty acids and their metabolites on lymphocyte functions. Source—Endogenous/
supplement—the fatty acid was supplemented in an in vivo study or enriched in formulations in vitro.
Synthetic—fatty acid was used in in-vitro studies. PLA2—phospholipase A2, PGE2—prostaglandin E2.

Lipid Source Immune Cell Function Ref.

Fatty acids
FA 20:4, FA 20:5, FA 22:6 Endogenous, supplement Neutrophil Adherence to endothelia (CD11a and CD 11b) [32]

FA 18:3 n-3 Supplement Alveolar macrophages Increased phagocytosis, Increased
TNF-αproduction [20,33]

FA 18:3 n-3 Oral T-cell Suppress T cell proliferation [70]

FA 20:4
PLA2-II mediated release of

arachidonic acid (only
release no metabolism)

Neutrophil Increased mac-1 (CD-11b/CD18) expression [59]

FA 18:0, 18:2, 18:3, 20:4 Endogenous Macrophages and
hepatocytes

Ligand binding activators of PPAR-α,
PPAR-γ [41]

FA 18:2 n-6 Dietary source Dendritic cells Reduced infiltration of LN and activation of
T-cell. Reduced IL-12 increased IL -10 [71,72]

FA 20:5 Synthetic Mast Cells Decreased activation [73]

FA 22:6 n-3 Synthetic Dendritic cells Increased IL-12
Reduced IL-6 and IL-10 [74]

FA Metabolites
PGE2 Endogenous Lymphocytes Inhibitor TH1 response (IL-12) [21]

Leukotriene B4 Endogenous, supplement Neutrophil Adherence to endothelia (CD11a and CD 11b) [32]
Inflammasome

Palmitic acid (C16:0)
Oleic acid (C 18:1)

Supplement
Supplement and dietary

sources

NLRP3 inflammasome
NLRP3 inflammasome

Increased IL-1β, IL-18
Decreased IL-1β, TNF-α, IL-6

[44,45]
[43]

2.4. Maintaining Data Quality and Rigor in Studies Involving Bioactive Lipids

Activity of bioactive lipids is controlled by enzymatic conversion to inactive metabolites or
sequestering them in phospholipids and thereby producing oxidized phospholipids. The levels of
bioactive lipids in human plasma have been quantified down to the picomolar (pM) range [75], and a
reliable way of analyzing modulation in these bioactive lipids is through mass spectrometry-based
approaches. For those interested in oxidized phospholipids (i.e., lipids with bioactive lipids esterified
to the phospholipid backbone) and their functions, a combination of chromatographic methods and
ion mobility methods are required to distinguish phospholipids with traditional fatty acids from
phospholipids containing sequestered eicosanoids (Figure 3c).

Prior to determining the abundance and function of phospholipids that contribute to the production
of bioactive lipids, the overall lipidomic composition needs to be determined. Infusion-based
lipidomics-based approaches such as MS/MSAll provide a rapid method to determine lipidomic
compositions (Figure 3a). This simplified approach provided a comprehensive coverage of lipids in a
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short run time [76], enabling the identification of the lipids as well as their constituent components
such as the fatty acids. Problems of isobaric overlap can be addressed by liquid chromatography-based
tandem mass spectrometry but require significantly longer run times with the advantage of resolving
isomeric lipid species, i.e., lipids with similar exact mass, based on their retention time and fragmentation
pattern (Figure 3b). Identification and analysis of oxidized phospholipids benefit from the use of liquid
chromatography-based separation to determine the lipid classes that sequester the bioactive lipid,
followed by the comprehensive characterization of the lipid molecule based on accurate mass and
fragmentation by tandem MS (Figure 3c).
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With respect to studying omega-3 and omega-6 fatty acids involvement in a disease state or changes
occurring at cellular level, comprehensive and targeted LC-MS/MS MRM methods enable simultaneous
quantification of more than 100 lipid metabolites, including prostaglandins, leukotrienes, and other
eicosanoids, resolvins, protectins, and other free fatty acids like arachidonic acid, eicosapentaenoic
acid and docosahexaenoic acid [12,77,78] (Figure 3c (Targeted method)).

3. Implications of Bioactive Fatty Acids and Their Metabolites on Human Health

The US Food and Drug Administration (FDA) regulates the requirements for appropriate food
labeling in the Title 21CRF101, including labeling of dietary supplements. In 2003, a final rule published
in the Federal Register required that trans fatty acids be included in nutrition labeling, based on
requests from the Center for Science in the Public Interest, due to the detrimental effects of such
nutrients on plasmatic lipoproteins with potential increased risk of cardiovascular and metabolic
diseases (i.e., increased low density lipoprotein-cholesterol (LDL-C)) [79,80].

In an effort to regulate the industry and inform the public on food and nutrition, the Food and
Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO)
provided a report of an expert consultation on fats and fatty acids in human nutrition. Published
in 2008, this guidance is a useful reference on nutritional requirements and recommended dietary
lipid intakes. This expert consultation focused on the role of specific fatty acid groups, such as the
role of long-chain polyunsaturated fatty acids (LCPUFA) in neonatal and infant mental development,
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besides their role in maintenance of long-term health and prevention of specific chronic diseases.
It was recommended that the n-3 PUFA and n-6 PUFA include more than one fatty acid with distinct
attributes and biological function, and labelling them based on category may not be the best path
forward. Due to an increasing acknowledgement of the importance of lipids during the initial years of
life, this report also describes the requirements and the recommendations for fat and fatty acid for
infants of 0–2 years and children of 2–18 years old, respectively [80].

A landmark randomized controlled trial was initially published in 2013 and then republished
in 2018, is the ‘Primary Prevention of Cardiovascular Disease with a Mediterranean Diet’ [39,81]
(PREDIMED). In the PREDIMED study, the consumption of energy unrestricted high-fat diets
supplemented with extra-virgin olive oil or nuts, foods rich in unsaturated fatty acids, induced
an impressive 30% relative risk reduction of major cardiac events compared to subjects who were
counseled to follow a relatively low-fat diet. In addition, the subjects randomized to the high-fat diets
experience a lower incidence of type 2 diabetes, therefore suggesting that the consumption of healthy
fats also improves metabolic outcomes, in addition to cardiovascular outcomes [39]. These results not
only support the concept that increasing the consumption of healthy fats (i.e., unsaturated n-3 fatty
acids) may prevent cardiovascular diseases, but also that perhaps the prior cut-off of 30%–35% of total
calories deriving from fat recommended by the FAO and WHO was still a sub-optimal amount, with
the risk of precluding healthy subjects as well as patients with established diseases from the beneficial
effects of the high-healthy fats diet. In fact, a recent presidential advisory from the American Heart
Association [38] emphasized focusing on replacement of saturated fatty acids with unsaturated fatty
acids to reduce the risk of cardiovascular diseases, without recommending a specific goal for total fat
intake in terms of total % of calories. Other studies assessing the benefit of using polyunsaturated
fatty acids in conditions other than cardiovascular disease can be found as follows in (Table 2). While
discussions on the efficacy of the use of bioactive lipids in each of these studies is out of the scope of this
review, it can be appreciated that sustained supplementation with high amounts of n-3 polyunsaturated
fatty acids promote improved health outcomes.

Table 2. Clinical studies involving polyunsaturated fatty acids.

Study Design Lipids Study Endpoints Results Ref.

Double blind RCT study Omega-3 long-chain
polyunsaturated fatty acids

Allergic symptoms in children
from mothers supplemented with

2.7 g omega-3 LCPUFA daily

Fewer allergies in children whose
mothers received high omega-3

LCPUFA supplement.
[39]

REDUCE-IT study—double blind
RCT study Eicosapentaenoic acid Cardiovascular death 2 g of EPA twice daily reduce risk of

ischemic events. [82]

Double blind RCT study Eicosapentaenoic acid Reduction of depressive
symptoms

Omega-3 supplementation benefit
patients with major depressive

episode without comorbid anxiety
disorder.

[83]

PREDIMED study random
subsample—parallel-group

randomized trial
Mediterranean diet Cardiovascular events

Incidence of cardiovascular events
was lower in patients receiving

Mediterranean diet supplemented
with extra-virgin oil or nuts.

[84]

PREDIMED study random
subsample—parallel-group

randomized trial
Mediterranean diet Effect of HDL particles on reverse

cholesterol transport

The diet increased cholesterol efflux,
decreased cholesteryl ester transfer
protein activity and increased HDL

ability to esterify cholesterol.

[37]

Double blind RCT study Fish oil n-3-PUFA Muscle strength and average
isokinetic power

n-3 PUFA therapy slows muscle mass
decline and function in older adults [85]

Double blind RCT study Fish oil n-3-PUFA Response of lysophospholipids to
obesity

Obesity impact lysophospholipid
metabolism abolishing its sensitivity

to n-2 PUFA.
[86]

Compassionate protocol Fish oil-based lipid emulsion Resolution of cholestasis (plasma
conjugated bilirubin <2 mg/dL)

All survival demonstrated resolution
of cholestasis, compared with only

10% of non-surviving.
[87]

Double blind RCT study EPA-DHA intake Creatinine–cystatin C-based GFR

Long term supplementation with 400
mg/d of EPA-DHA provides slower

kidney function decline in
CKD patients.

[88]

Open-label randomized study EPA-DHA intake
Cumulative rate of all-cause
death, non-fatal myocardial

infarction, and non-fatal stroke

Treatment significantly lowered risk
of death and cardiovascular death. [89]
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4. Conclusions

Diet plays a major role in affecting metabolic and cardiovascular health. Particularly, fatty acids
such as omega-3 and omega-6 have been subject of intense scrutiny in the last decades. Multiple studies
agree on the fact that supplementation with bioactive lipids results in an increased bioavailability;
cell type specific and systemic. Acknowledgement and appreciation of the antagonistic roles of n-3
PUFA/MUFA and SFA/n-6 PUFA in inflammation provide avenues for further research into their
mechanism of action. While it has been difficult to determine if fatty acids interact with pattern
recognition receptors by cognate interactions, there is consensus about their mechanism of action and
final targets (reviewed in [90]). Commonality between studies that report on the benefits of n-3 fatty
acids on health is that they are long term studies with high doses of supplementation. Thus, suggesting
the need for a sustained intake to modify host lipid composition and thereby reduce the severity of
diseases involving lipid-mediated signaling and inflammatory cascade. In addition to that, separate
reports suggesting that n-3 fatty acids when present in concentration in excess of 40 uM in vitro and
in vivo elicit beneficial effects by suppressing pro-inflammatory responses even at the cellular level
argue in favor of determining endogenous concentrations of n-3 fatty acids in studies that did not show
an affect with supplementation. In addition to their small window of bioactivity and rapid turnover,
the field of study is marred by looking at systemic effects in diseases with localized etiology.

Much like immune function, bioactive lipids classically act in localized autocrine and paracrine
circuits, the downstream effects of which determine physiological outcomes. Thus, while systemic
evaluation of levels of bioactive lipids are informative of circulating levels, they represent the resting
physiological levels unless sampling is performed in a state of active inflammation or disease.
Furthermore, in supplementation studies, the quantification of a few bioactive lipids outside of the
context of its precursors and metabolites provides incomplete information about their efficacy and
may be thought to contribute to the variability in studies involving bioactive lipids.

Further research on testing the efficacy of lipid formulations rich in n-3 fatty acids/MUFAs by
advanced lipidomics approaches to specifically monitor the flux of bioactive lipids [91] in relation
to inflammation in intervention studies are warranted. Such studies hold promise to dispel any
ambiguity that may remain with regards to the role of n-3 fatty acids/MUFAs as beneficial interventions
in acute and chronic conditions that lead to the presentation of metabolism-associated disorders like
cardiovascular diseases.
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