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Absence of telomerase activity and telomerase
catalytic subunit mRNA in melanocyte cultures

K Dhaene 1, G Vancoillie 2, J Lambert 2, JM Naeyaert 2 and E Van Marck 1

1Laboratory of Pathology, University of Antwerp (UIA), Department of Medicine, Universiteitsplein 1, B-2610 Wilrijk–Antwerp, Belgium; 2Department of
Dermatology, University Hospital Gent, De Pintelaan 185, B-9000 Gent, Belgium

Summary The classic model of activation of telomerase, for which activity has been found in most cancers including cutaneous malignant
melanoma (CMM), dictates that enzyme activity is generated by pathological reactivation of telomerase in telomerase-negative somatic cells.
However, recent data demonstrated physiological up-regulation in some normal cell types when established as proliferating cultures,
indicating that, in some cancer types, telomerase is expressed by the process of up-regulation in telomerase-competent precursor cells. In
this study, cultures of epidermal melanocytes, progenitor cells of CMM, were established and harvested in the logarithmic phase of growth.
Telomerase activity was looked for using a non-isotopic variant of the telomeric repeat amplification protocol, and transcript expression of the
hTERT gene, the rate-limiting catalytic telomerase subunit, was investigated by the reverse transcription polymerase chain reaction. Neither
telomerase activity nor hTERT mRNA could be detected in proliferating melanocyte cultures. Our in vitro data argue against the model of
telomerase as a common biomarker of cell proliferation. The results further suggest that telomerase is tightly controlled in normal
melanocytes, and that telomerase is reactivated rather than up-regulated in melanocytic precursors during melanoma initiation or
progression. © 2000 Cancer Research Campaign
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Telomeres, stretches of repetitive DNA sequences associated
specific DNA binding proteins at the ends of eukaryotic chro
somes, progressively shorten with every cell division bec
DNA polymerase can not replicate the end of a linear template
‘End-replication Problem’) (Allsopp et al, 1995; Kipling, 1995
Gradual telomere erosion has been suggested to be a ‘m
clock’ and tumour suppressor mechanism, triggering senesc
and cell death when telomere reduction eventually destab
chromosomes (Harley, 1991). Acquisition of the immortal phe
type is an obligatory event for most human cancers and stab
tion of telomere length is thought to be a critical molecu
condition in the multistep pathway to cellular transformation 
immortalization (Newbold et al, 1982; Rhyu, 1995). Telomeras
a ribonucleoprotein complex that, by the action of an internal
RNA template (hTERC), a catalytic subunit (hTERT) and
possible helper protein (hTEP1), adds telomeric DNA to the 
of chromosomes, thereby halting their erosion with each cell 
sion (Feng et al, 1995; Harrington et al, 1997; Nakamura e
1997). Based on the results of the conventional telomerase 
merase assay and of the sensitive telomeric repeat amplific
protocol (TRAP assay), which showed enzyme activity in o
85% of human cancer tissues and immortal cell lines but n
normal primary cell cultures or normal tissues, it was extrapol
that, putatively by a genetic event, telomerase activity is ‘tur
on’ during in vivo tumorigenesis (the ‘classic’ telomerase re
tivation model), thereby freeing premalignant cells from 
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restraint of their finite life span (Counter et al, 1992; Kim et
1994). However, extensive TRAP analyses and RNA expres
studies of hTERT – the only rate-limiting subunit discovered to
– revealed that many normal cell types too, of which the maj
of cancers are derived from, are weakly telomerase-positiv
vivo (Counter et al, 1995; Harle-Bachor and Boukamp, 19
Kolquist et al, 1998; Ramakrishnan et al, 1998). Other cell ty
scored telomerase-negative in vivo, appear competent to ex
telomerase when subjected to a sufficient proliferative stimulu
vitro (Belair et al, 1997; Greider, 1998). Therefore, it is curre
only valid to apply the classic reactivation model to a partic
organ system when the cell of origin is effectively telomera
negative, not just in its in vivo state but also when subjecte
‘excessive’ growth stimulation (‘revised’ classic model or typ
scenario) (Wynford-Thomas, 1999).

Cutaneous malignant melanoma (CMM) is a cancer origina
in melanocytes, a skin-cell type derived from the neural c
(Quevedo and Fleischmann, 1980). CMM is characterized 
rapid growth rate, the invasion of local tissue and a propensit
metastasis. The incidence and mortality rates of CMM are r
dramatically throughout the world (Boyle et al, 1995). Cytogen
and molecular studies in CMM suggest that mutations in se
genes are critical in the susceptibility, development and pro
sion of CMM, which is believed to develop in a multistep fash
(Albino, 1995). CMM evolves from melanocytic precursors 
the formation of clinicopathologically defined intermediate lesi
of varying stability (Briggs, 1985). Interestingly, an increase
telomerase activity has been found during progression
melanocytic lesions from melanocytic naevi to metastatic CM
indicating that telomerase activity may play a role in tumour i
ation and progression (Taylor et al, 1996; Bosserhoff et al, 1
Glaessl et al, 1999; Parris et al, 1999) (see Table 1). Howeve
1051
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Table 1 Overview of telomerase activity (%) in melanocytic lesions, as reported in the literature

Taylor et al, Bosserhoff et al, Ueda et al, Parris et al, Glaessl et al,
1996 1997 1997 1999 1999

Melanocytic naevi – 5/17 (29.4%) – – 10/36 (27.7%)
Atypical naevi – – – – 4/5 (80%)
Spitz’s naevi – – – – 2/3 (66%)
Primary CMM 5/6 (83.3%) 7/11 (64.0%) 4/5 (80.0%) 22/32 (69%) 28/31 (90.3%)
CMM metastasis 1/1 (100%) 8/10 (80.0%) – – 12/13 (92.3%)
CMM cell lines – 8/8 (100%)a – – 8/8 (100%)a

aMel Im, HTZ-19, Mel Ei, Mel Wei, Mel Juso, Mel Ju, Mel Ho, SK Mel 28.
not known whether telomerase is initially de novo reactivated
merely quantitatively up-regulated during CMM carcinogene
because it is not known whether epidermal melanocytes 
competent to express telomerase in physiological circumstanc

To investigate the competence of epidermal melanocyte
express telomerase, we determined telomerase activity and ex
sion of hTERT, hTEP1 mRNA and hTERC RNA, using the TRA
assay and reverse transcription polymerase chain reaction 
PCR) respectively, in proliferating melanocyte cultures.

MATERIALS AND METHODS

Melanocyte cultures

Ten primary MCCs were obtained from neonatal foreskins 
cultured in M199 medium supplemented with 2% fetal calf ser
(FCS), 10–9 M choleratoxin, 10 ng ml–1 basic fibroblast growth
factor, 10µg ml–1 insulin, 1.4µM hydrocortisone and 10µg ml–1

transferrin, as described previously (Naeyaert et al, 1991). P
primary MCCs were maintained in low calcium (0.03 mM) M199
medium supplemented with the aforementioned additives and 
FCS. Assessment of growth was performed in triplicate by 
counting using a Bürker haemocytometer and a Coulter cou
according to standard procedures. The melanocytic nature o
MCC cells was evidenced by indirect immunofluorescence us
the NKIbeteb antibody (Monosan, The Netherlands) against
(pre)melanosomal silver protein, as described (Lambert et
1998). For analysis of telomerase activity and transcript exp
sion, cell extracts and total RNA were collected from proliferat
MCCs during logarithmic phase of growth. A precise assessm
of the proliferating cell fraction in matched cytospins of the
MCCs was facilitated by a streptavidin–biotin–peroxidase-ba
immunocytochemical approach with the monoclonal antibod
Ki-S5 and Ki-S2 (provided by Prof. Dr R Parwaresch, Institute
Haematopathology, University of Kiel, Germany). Ki-S5 binds
a formalin-resistant epitope of the Ki-67 antigen, yields identi
results in fresh material and fixed tissues, and, unlike Ki-67, d
not cross-react with cytoplasmic antigens of epithelial ce
(Kreipe et al, 1993). Ki-S2 binds to an epitope that is pres
during the entire cell cycle, with exception of the rate-limiting G
phase, thereby being a more accurate marker of the actively p
erating cell fraction than Ki-S5 (Rudolph et al, 1998). Hum
dermal foreskin fibroblasts, as well as G 361 melanoma cells
HL-60 cells served as telomerase-negative and -positive c
respectively.
British Journal of Cancer (2000) 82(5), 1051–1057
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Non-isotopic TRAP assay

Lysate preparation and the TRAP assay were performe
described previously (Dhaene et al, 1998), with minor modif
tions. Briefly, 106 MCC cells were lysed by retro-pipetting 
200µl of ice-cold lysis buffer. After 30 min of incubation on ic
the lysates were centrifuged at 14 000g for 60 min at 4°C, and the
total protein concentration of the supernatant standard
according to Bradford (approximately 1µg µl–1). Six microlitres
of supernatant were used for the TRAP assays. After an i
incubation period (30°C for 30 min), telomerase products we
amplified using TS and ACX primers (35 cycles at 94°C for 30 s,
53°C for 30 s and 72°C for 30 s). Assay specificity was confirme
by inclusion of an RNAase preincubation control step, and Taq
inhibition checked by including the 36 bp internal contr
Presence of telomerase inhibitors was tested by mixing neg
MCC extracts with positive HL-60 extracts in a 1:1 ratio. Ev
assay included a telomerase-positive sample (HL-60), a te
erase-negative sample (dermal fibroblasts) and an extrac
sample to detect PCR amplification of primer dimers. Amplic
were electrophoresed on a 12.5% non-denaturing polyacryla
gel (19:1), stained with ethidium bromide and analysed by
CCD camera-coupled Gel Doc 1000 Molecular Analyst Softw
package (Bio-Rad Laboratories GmbH, Germany).

RT-PCR analysis of telomerase transcripts

Total RNA was isolated using Tri Reagent (Sigma Chemical 
USA). cDNAs were synthesized from 1µg of total RNA in RT
buffer containing random hexamers (Pharmacia Biotech, Swe
and the MMLV reverse transcriptase (Promega Benelux BV, 
Netherlands). For amplification of hTEP1, hTERC and hTE
transcripts, primers and cycling conditions were applied,
described previously (Dhaene et al, 1999) (see also Tabl
Briefly, primer pairs TLP1/U4792 and TLP1/L5102 (333
amplicon) and HTR-F and HTR-R (112 bp amplicon) were use
detect hTEP1 and hTERC cDNA. hTERT cDNA was looked
using two sets of primers. Primers LT5 and LT6 (145 bp amplic
amplify a telomerase-specific hTERT sequence (T-motif), whe
primers TERT-2164S and TERT-2620A (457 bp amplic
amplify two conserved reverse transcriptase motifs (A and
thereby spanning two splice sites, which cause 36 bp and 1
transcript deletions (α and β splice sites respectively). During fir
and second hTERT cDNA amplification β-actin-specific interna
control primers (95 bp) were added at 72°C of cycle 13 and 15
respectively. Amplification of genomic DNA was controlled 
omitting the RT-step in appropriate control reactions.
© 2000 Cancer Research Campaign
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Table 2 Oligonucleotides and cycling conditions used for detection of hTEP1, hTERC and hTERT
transcripts by RT-PCR

Oligonucleotides C °/time (sec) Cycles

hTEP1 cDNA amplification (333 bp)a 94°/30 30
TLP1/U4792: 5′-CTTGGAATTGGGTCTGGTCTCTCG-3′ 62°/45
TLP1/L5102: 5′-CACAGCAGTAGGGGATGAGGAAAC-3′

hTERC cDNA amplification (112 bp)a 94°/30 25
HTR-F: 5′-CCTAACTGAGAAGGGCGTAGGC-3′ 65°/60
HTR-R: 5′-CTAGAATGAACGGTGGAAGGCG-3′

First round hTERT cDNA amplification (145 bp)b 94°/20
LT5: 5′-CGGAAGAGTGTCTGGAGCAA-3′ 68°/40 33
LT6: 5′-GGATGAAGCGGAGTCTGGA-3′ 72°/30

Second round hTERT cDNA amplification (457 bp)b 95°/25
TERT-2164S: 5′-GCCTGAGCTGTACTTTGTCAA-3′ 68°/50 35
TERT-2620A: 5′-CGCAAACAGCTTGTTCTCCATGTC-3′ 72°/50

β-actin cDNA amplification (95 bp)b (see Materials and Methods)
774: 5′-GGGAATTCAAAACTGGAACGGTGAAGG-3′
775: 5′-GGAAGCTTATCAAAGTCCTCGGCCACA-3′

aNakayama et al (1998); bUlaner et al (1998).

A B

Figure 1 Immunocytochemistry of cytospinned cultured human melanocytes (streptavidin–biotin–peroxidase technique, original magnification ×100), showing
Ki-S5 staining (A) in 60% of nuclei, and Ki-S2 immunoreactivity (B) in 30% of melanocytes (arrows)
RESULTS

Immunofluorescence with the melanosome-specific NKIbe
antibody confirmed the melanocytic nature of cultured MCC
with signals confined to the perinuclear area, along the dend
and in the tips of the dendrites. The proliferative rate was foun
be approximately 4.5–5 days per population doubling (data
shown). In MCCs in logarithmic phase of growth 60% and 30%
cells showed Ki-S5 and Ki-S2 nuclear staining respectiv
(Figure 1A,B).

A non-isotopic TRAP procedure was used to assay telome
activity in extracts of proliferating MCCs. In a previous report, t
sensitivity of our ethidium bromide-based procedure was ev
ated, and 100 telomerase-positive cells were found to be suffic
for the detection of telomerase activity (Dhaene et al, 1998). In
present study, results reproducibly showed no telomerase ac
in extracts of proliferating MCCs and of dermal fibroblasts (Fig
2A). False-negative results due to the presence of TaqDNA poly-
merase inhibitors or telomerase inhibitors were excluded since
internal control could be amplified and ladder signals of telo
erase-positive HL-60-extracts did not disappear after mixing w
telomerase-negative extracts of MCCs (Figure 2B). In extract
© 2000 Cancer Research Campaign
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G 361 melanoma cells, like with HL-60 cells, strong enzy
activity was detected.

RT-PCR, specifically amplifying transcripts of the internal RN
template hTERC, of the catalytic subunit hTERT and of an ass
ated protein hTEP1, was used to study expression of the va
components of the telomerase complex in proliferating MC
Under all applied cycling conditions, PCR products were 
generated when omitting the RT step, making DNAase treatm
unnecessary (data not shown). We detected expression of hT
and hTEP1 in G 361 cells and in proliferating MCCs. In contr
we observed the 145 bp hTERT RT-PCR product only in 
cancer-derived cell lines but not in fibroblasts nor in any of 
MCCs (Figure 3A). We further applied the primers designed
Ulaner et al (1998) that span both the β and the α splice site,
causing 182 bp and 36 bp deletions respectively. PCR with
2164/2620 primers revealed alternative splicing of the hTE
gene in all neoplastic cells (Figure 3B). Among the four amplifi
tion products, representing the full-length hTERT transc
(457 bp), the α-deleted transcript (421 bp), the β-deleted transcript
(275 bp), and the α- and β-deleted transcript (239 bp), th
β-deleted transcript was clearly over-represented, while 
α-deleted transcript was hardly detectable. Only the full-len
British Journal of Cancer (2000) 82(5), 1051–1057
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Figure 2 Representative non-isotopic TRAP assay results of telomerase activity status in supernatant from melanocyte cultures (MCC) and G 361 melanoma
cells (inverted digitized images). (A) Extracts of HL-60 cells and foreskin fibroblasts (FB) served as positive and negative control respectively. For every assay, a
36 bp internal control band is visible (arrow). A RNAase-treated control (+ at top), showing loss of signal, doubled each positive sample. Lysis buffer alone (Lb)
was applied as another negative control. The assay result is indicated at the bottom of the figure. (B) Failure of the telomerase negative extracts of MCCs to
inhibit the telomerase-positive HL-60 extracts in a mixing experiment. Telomerase-negative extracts of MCC 221, 222 and 225 mixed with HL-60 extract in a 1:1
ratio
transcript is thought to code for active reverse transcrip
activity. As expected, no 457 bp amplicon but also none of
other spliced variants were detected in any of the MCCs 
fibroblasts. Overall, the absence of hTERT expression in prol
ating MCCs was confirmed using two different RT-PCR protoc

DISCUSSION

Regarding their telomerase state, normal progenitor cells of te
erase-positive tumours can be subdivided into three categ
(Wynford-Thomas, 1999). The cell of origin constitutive
expresses a low (Type 3), a high (Type 2) or no (Type 1) lev
telomerase activity. The latter state is only acceptable when
cell type is shown to be effectively telomerase-negative w
subjected to ‘excessive’ growth stimulation. De novo expres
(Type 1 scenario) vs quantitative up-regulation (Type 2 an
scenarios) of telomerase activity, occurring during carcinogen
are supposed to be fundamentally distinct biological process
to what the tightness of telomerase regulation is. This s
addressed the question whether epidermal melanocytes are c
tent to express telomerase under proliferation-inducing condit

Methodologically, we had to deal with an ongoing deb
Indeed, conflicting reports have appeared concerning cell c
dependent regulation of telomerase activity in cancer cells
telomerase-expressing normal cells, like T lymphocytes. M
groups found that telomerase is largely absent in cells that 
exit the cell cycle (Go), and that telomerase activity does not v
British Journal of Cancer (2000) 82(5), 1051–1057
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significantly at the other cycle stages (Mantell and Greider, 1
Holt et al, 1996, 1997). In contrast, others concluded that Go-cells
have detectable telomerase, whilst maximal telomerase activ
present in S phase cells (Yamada et al, 1996; Zhu et al, 1996
circumvent this discrepancy, and to obtain an estimation o
least possible percentage of telomerase-positive melanoc
cytospins were stained with the monoclonal antibody Ki-
which excludes Go-cells and cells in the rate-limiting G1 phase
(Rudolph et al, 1998). Thirty per cent of melanocytes showed
S2 immunoreactivity, which means that, the length of the S p
equalling the lengths of both the G2 and the M phase, at lea
1.53105 melanocytes per 200µl CHAPS lysis buffer (4500 cell
in assay) could have had detectable telomerase activity. We p
ously determined that telomerase activity of a minimum of 4

telomerase-positive cells 200µl–1 CHAPS lysis buffer (100 cells in
assay) was detected in the ethidium bromide-based TRAP 
(Dhaene et al, 1998), indicating that the observed lack of te
erase activity in proliferating MCCs reported here, was subs
tial, and did not result from insufficient sensitivity of the ass
Moreover, using two different RT-PCR protocols, neither f
length nor spliced hTERT transcripts were detected in any o
ten MCCs, thereby further corroborating our conclusions. Ind
hTERT encodes the proteinaceous subunit of the telome
complex, which, by a reverse transcriptase-like activity, catal
the synthesis of telomeric repeats. Whereas hTERT expressio
be found in the absence of telomerase activity, suggesting
occurrence of post-translational modification, telomerase act
© 2000 Cancer Research Campaign
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Figure 3 (A) Representative results of RT-PCR analysis for the expression
of hTERC, hTEP1 and hTERT in HL-60 cells (positive control), G 361
melanoma cells and cultured melanocytes (MCC). Expression of hTERT
mRNA was determined using primers LT5/LT6 (145 bp amplicon). Amplicons
were electrophoresed on a 2% agarose gel. (B) Representative results of RT-
PCR analysis for the expression of hTERT using primers TERT-2164 and
TERT-2620. Amplicons were electrophoresed on a 6% polyacrylamide gel
(inverted digitized image). TRAP assay results for telomerase activity
(bottom), the 95 bp β-actin internal control amplicon (arrowheads), and length
markers (M) are indicated
is always accompanied by hTERT expression (Nakamura e
1997). In G 361 cells, as is known for HL-60 cells, three additio
transcript variants were found. However, the significance of
distribution pattern of the spliced products awaits knowledge
the role of the individual mRNA variants and elucidation whet
these variants are translated into biologically functional prote
Thus, our report adds epidermal melanocytes to the list of
types, including fibroblasts, mammary epithelium and embryo
kidney cells, which do not express telomerase activity even w
proliferating actively (Counter et al, 1992; Kim et al, 1994).
© 2000 Cancer Research Campaign
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Telomerase activity has been detected in the majority of prim
CMMs (range 64.0–90.3%) and CMM metastases (ra
80–100%), indicating that telomerase may play a role
melanoma carcinogenesis (see Table 1). Accounting for over
of the cases, CMM is generally believed to derive de nov
normal skin from fully dendritic mature epidermal melanocy
(Ackerman, 1988). Thus, our data suggest that melanocyte
physiologically telomerase-incompetent, and that telomeras
pathologically reactivated during melanoma carcinogenesis. 
pathogenic pathway corresponds with the aforementioned re
classic model (Type 1 scenario), in which the cell of origin
telomerase-negative, and in which telomerase reactivatio
directly selected in precrisis tumour cell populations, resultin
an immortal tumour with telomeres stabilized at or above the c
threshold (Wynford-Thomas, 1999). On the other hand, the sp
association of a subset of CMMs with benign naevi points 
possible malignant transformation of naevus cells (Hastrup 
1991). Whilst telomerase activity has been found to increase
benign melanocytic naevi to atypical naevi and further to C
and metastatic CMM cells (see Table 1), both the reactivation
the up-regulation pathway are difficult to defend, since 
telomerase-status of naevus cells is uncertain. It is worthw
mentioning that it has been hypothesized that stem cells – ei
pluripotential perineural cell within the neurocutaneous unit, 
committed melanoblast – are precursors of melanocytes, in
normal and abnormal differentiation, and that stem cells cou
regarded as possible precursors of tumour cells (Cramer, 
Greaves, 1996). Stem cells are considered telomerase-comp
meaning that, if CMM would develop from it, there is no need
reactivation of telomerase. A latter scenario is currently envis
as a Type 2 conceptual framework (Wynford-Thomas, 1999).

Mechanisms regulating telomerase reactivation are po
understood. It is classically stated that telomerase up-regulat
forced by critical telomere erosion beyond the point where
multiplication normally stops. An in vitro situation is seen dur
continuous culture of SV-40 Large T antigen or HPVE6/
transformed telomerase-negative human cells which event
undergo ‘crisis’ – the condition in which cellular chromosomes
characterized by ultra-short telomeres and that coincides 
telomerase activation (Wright et al, 1989; Counter et al, 1992
present it is not known whether HPV viruses, for which D
sequences have been found in some CMMs, can be responsi
an in vivo equivalent of crisis during CMM carcinogene
(Scheurlen et al, 1986; Klingel et al, 1987; Takamiyagi et
1998).

The great majority of individual studies showed a signific
positive association between incidence of CMM and high leve
intermittent solar exposure, suggesting that even a single 
may suffice to stimulate tumour growth (Elwood and Jops
1997). All the evidence suggests that it is the UV portion of
solar spectrum which is relevant. However, the contribution
specific wavelength bands (290–320 nm for UVB and 3
400 nm for UVA radiation) and the action spectrum for melano
induction in humans remains unknown (International Agency
Research on Cancer, 1992). It has been reported that telom
is activated during radiation-induced malignant transforma
of human cells and in mouse skin (Pandita et al, 1
Balasubramanian et al, 1999), and in the sun-exposed sk
humans, indicating a possible modulation of telomerase activi
UV exposure (Taylor et al, 1996; Ueda et al, 1997). The predi
British Journal of Cancer (2000) 82(5), 1051–1057
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1056 K Dhaene et al
is that one or more tumour suppressor genes prevent activati
telomerase in normal human cells (deLange, 1998). Therefor
needs further study to find out if UV can directly eliminate su
genes, for which candidates are thought to locate on the shor
of chromosome 3 (Cuthbert et al, 1999). Alternatively, telomer
reactivation might be an epiphenomenon of UV light-induc
genotoxic stress, as proposed by adherents of the ‘co-sele
hypothesis’ (Kipling, 1997). In this report, we excluded that pro
erative behaviour, which both in vitro and in vivo is another eff
of UV light (Libow et al, 1988; Gilchrest et al, 1998), can co-sel
telomerase activity. Finally, recent cloning and sequence ana
of the hTERT gene promoter revealed the presence of binding 
for transcription factors including the c-Myc proto-oncoprotein
(Cong et al, 1999). The latter activates telomerase by indu
expression of its catalytic subunit, indicating that hTERT is
target of c-Myc activity (Wu et al, 1999). Interestingly, altere
expression of c-mychas been reported in both cultured melano
cells and in tumour samples (Weterman et al, 1994).
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