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A B S T R A C T

Poor spatial resolution and low signal-to-noise ratio (SNR) along with the finite image sampling constraint make
lesion segmentation on Nuclear Medicine (NM) images (e.g., PET–Positron Emission Tomography) a challenging
task. Since the size, signal-to-background ratio (SBR) and SNR of lesion vary within and between patients, per-
formance of the conventional segmentation methods are not consistent against statistical fluctuations. To over-
come these limitations, a hybrid region growing segmentation method is proposed combining non-linear diffusion
filter and global gradient measure (HNDF-GGM-RG). The performance of the algorithm is validated on PET im-
ages and compared with the 40%-fixed threshold and a state-of-the-art active contour (AC) methods. Segmented
volume, dice similarity coefficient (DSC) and percentage classification error (% CE) were used as the quantitative
figures of merit (FOM) using the torso NEMA phantom that contains six different sizes of spheres. A 2:1 SBR was
created between the spheres and background and the phantom was scanned with a Siemens TrueV PET-CT
scanner. 40T method is SNR dependent and overestimates the volumes ð� 4:5 timesÞ. AC volumes match with
the true volumes only for the largest three spheres. On the other hand, the proposed HNDF-GGM-RG volumes
match closely with the true volumes irrespective of the size and SNR. Average DSC of 0.32 and 0.66 and % CE of
700% and 160% were achieved by the 40T and AC methods respectively. Conversely, average DSC and %CE are
0.70 and 60% for HNDF-GGM-RG and less dependent on SNR. Since two-sample t-test indicates that the per-
formance of AC and HNDF-GGM-RG are statistically significant for the smallest three spheres and similar for the
rest, HNDF-GGM-RG can be applied where the size, SBR and SNR are subject to change either due to alterations in
the radiotracer uptake because of treatment or uptake variability of different radiotracers because of differences in
their molecular pathways.
1. Introduction

Positron Emission Tomography (PET), a Nuclear Medicine (NM)
based medical imaging modality, provides functional images of the
tumour with quantitative information of the radiotracer uptake. Robust,
precise, and reproducible segmentation of the tumour on PET images is
vital for machine learning based accurate diagnosis, treatment planning
and response assessment. However, poor spatial resolution due to the
partial volume effect (PVE) resulting from finite resolution of the PET
camera and low signal-to-noise ratio (SNR) make delineation of the
tumour on PET images a challenging task. Functional volume segmen-
tation of clinical images conventionally relies on manual delineation of
region of interest (ROI) by expert radiologist either on PET images
m 26 September 2019; Accepted
evier Ltd. This is an open access a
directly by going through each 2D slice to obtain precise boundary in-
formation or using co-registered anatomical images (CT or MRI)
(Hogenauer et al., 2016; Trigonis et al., 2014). The accuracy of the
manual ROI delineation on the PET images is very much dependent on
the intensity window chosen for visualization (Chen et al., 1998). The
clinician also need to mentally reconstruct a structure in 3D since only
2D image slices can be seen which is time consuming and tedious work
(Shareef et al., 1999). Irrespective of the method employed, manual
delineation of ROIs is always laborious, highly operator dependent,
requires significant knowledge of local anatomy and may be expected to
produce significant intra and inter observer variability (Krak et al.,
2005; Maroy et al., 2008) which makes manual delineation less repro-
ducible (Foster et al., 2014).
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To overcome the limitations of manual delineation method and make
the segmentation method robust, precise, and reproducible, a number of
computer-aided segmentation techniques have been proposed for PET
images, that can usually be classified as semiautomatic or fully automatic
methods (Foster et al., 2014; Li et al., 2008; Zaidi and El Naqa, 2010).
Since the intensity in PET images directly correlates with the radiotracer
uptake, intensity threshold based segmentation method is widely used
due to its simplicity and predictability. However, due to poor spatial
resolution, the histogram of PET images are not bimodal and hence
determination of an optimal threshold is a challenging task. Inaccurate
threshold may result in either overestimation or underestimation of the
tumor volume. Threshold intensity (IThreshold) is generally defined as a
percentage of the maximum intensity (IMax) within the roughly delin-
eated volume and is given by

IThreshold ¼ α� IMax (1)

where α varies from 0 to 100%. A fixed value of α is usually used for
threshold based segmentation. A value of 40% for α is proposed by Erdi
et al. (1997) for lesions larger than 4 ml with a signal to background ratio
greater than five. Several other researchers have also been using 40%
threshold (40T) for tumour segmentation on PET images (Hong et al.,
2007; Nestle et al., 2005; Schinagl et al., 2007; Wanet et al., 2011).
However, the same fixed threshold value may not be optimal across
different situations where statistical fluctuations are expected either due
to treatment or progression of the disease. To overcome these challenges,
several adaptive threshold based methods have been proposed over the
years (Daisne et al., 2003; Jentzen et al., 2007; Schaefer et al., 2008). One
of the main drawback of the adaptive threshold method is that the pa-
rameters need to be calibrated for each individual scanner and recon-
struction protocol and indirectly dependent on the maximum intensity,
IMax. Gradient based segmentation method is another alternative to the
threshold based method (Geets et al., 2007; Wanet et al., 2011). How-
ever, it has found limited applicability in PET image segmentation
because it requires substantial amount of preprocessing to get rid of the
noise. Several region growing methods have also been proposed for
automatic PET image segmentation method (Day et al., 2009; Li et al.,
2008; Tan et al., 2017). The criteria of inclusion of voxel in the region for
these region growing methods generally depends on the statistics of the
surrounding voxels and thus the delineated ROIs vary with the statistical
fluctuations. On the other hand, the performance of these methods is very
much dependent on the selection of the seed point.

This paper proposes a fully automatic and easily implementable
hybrid region growing tumour segmentation method combining a novel
non-linear diffusion filter and global gradient measure (HNDF-GGM-RG)
primarily based on the works of Tamal (2017) and Hojjatoleslami and
Kittler (1998). The method overcomes the limitations of the existing
region growing methods and does not require calibration like adaptive
threshold based method. A stopping criteria for the proposed region
growing method is automatically selected based on the global gradient
information of the region of the smoothed images rather that the local
neighborhood gradient information. The performance of the method is
compared with the most widely investigated 40% fixed threshold and a
state-of-the-art Chan and Vese model of active contour (AC) methods
(Chan and Vese, 1999; Kass et al., 1987) using lesions with different size
and SNR.

2. Materials and methods

2.1. Non-linear diffusion filter (NDF)

The stopping criteria of the diffusion process or diffusion coefficient is
generally determined by the gradient intensity information (Perona and
Malik, 1990). However, for low resolution images (e. g., NM images),
only the gradient intensity information is not sufficient to define the edge
specifically in the presence of high noise. Since the orientation of the
2

gradient vector is systematic on the boundary and random for noise, it
has been showed that utilization of the gradient vector orientation
coherence within a fixed size window along with the gradient intensity
can provide superior results compared to the conventional edge based
diffusion filtering method (Tamal, 2017). In this case the diffusion co-
efficient cðx; yÞ is calculated as (Tamal, 2017)

cðx; yÞ¼ exp
�
�
�k rIσðx; yÞ k �ασðx; yÞ

κ

�2�
(2)

where rIσðx; yÞ is the gradient magnitude of the original image Iðx; yÞ
smoothed with a Gaussian kernel of width,. k is a parameter that is used
to control the level of smoothing. ασ is the sum of the cosine angles of
gradient vectors of the smoothed image within a predefined window and
is calculated for each 2D slice to form a 3D volume of the cosine angles. In
such case, ασ is represented in 2D by ασðx; yÞ and determined as

ασðx; yÞ¼ cosðθÞðx; yÞ¼
Xp

i¼1

Xq

j¼1

rIσðx; yÞ:rIσði; jÞ
k rIσðx; yÞ kk rIσði; jÞ k (3)

ðx; yÞ indicates the location of the current pixel and ði; jÞ is the index of
the pixel within the window with p and q specifying the size of the
window.

2.2. Peripheral contrast measure based region growing (PCM-RG)

The central idea of the peripheral contrast measure based region
growing (PCM-RG) method is that the region is grown by pixel aggre-
gation by using similarity and discontinuity measures (Hojjatoleslami
and Kittler, 1998). In this method, once an arbitrary pixel is selected as a
seed point, amongst all the boundary pixels of the seed point, the pixel
with the highest grey level value can only be included in the current
region. In this way, the pixels with the higher grey levels are included
first in the regions followed by the absorption of the boundary pixels with
the monotonically lower and lower gray levels. During the inclusion of
each single pixel, current boundary (CB) and internal boundary (IB) are
determined. CB is the set of pixels adjacent to the current region and
belongs to the background (Figure 1(a)). On the other hand, IB is defined
as the boundary produced by the set of connected outermost pixels or
edge pixels and belongs to the current region (Figure 1(a)). Both CB and
IB evolve as the current region grows.

2.3. Hybrid non-linear diffusion filter and global gradient measure based
region growing (HNDF-GGM-RG)

The above region growing method cannot provide accurate
segmented ROI when the signal to background ratio (SBR) or contrast is
low and noise is high as in the case of PET images. The method is also
required to be modified and adapted for 3D medical images. Instead of
calculating PCM directly from the original image which is unreliable, a
method is proposed to use the smoothed images filtered using both the
gradient vector orientation and gradient magnitude information. A
global gradient measure based stopping criteria is then proposed to apply
on the filtered images. The method will be called as HNDF-GGM-RG and
is defined as

HNDF�GGM¼ abs
�
1
I

XI

i¼1

vi � 1
J

XJ

j¼1

vj

�
(4)

where vi are the voxels on the edge of ROI (IB) and vj are the voxels on
the boundary of the ROI (CB) respectively of the filtered image. The
method requires two passes to provide the final segmented results. In
the first pass, the region growing process is run to include a predefined
number of voxels (VInitial) which is determined by the roughly delin-
eated ROI cossntaining the tumour. Voxel containing the maximum
intensity, IMax within the ROI is selected as the seed point for the



Figure 1. (a) Region growing method with current boundary (CB), internal boundary (IB) and current region. (b) a 26-connected voxel neighborhood system.
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region growing method. For 3D a 26-connected voxel neighborhood
system is implemented to find the boundary voxels. In a 26-connected
system, each voxel is neighbor to other voxel if they share same faces,
edges or corners. In the system, each voxel with coordinates
Figure 2. Illustration of Boundary evolving process of the proposed HNDF-GGM-RG
original ROI, background, current boundary (CB), current region and internal bound
Region growing method starting from a seed point (dark grey) and its boundary (da
internal boundary (black) of the current region evolves as the region (dark grey þ bl
voxels within the roughly delineated area (VInitial) are included, HNDF-GGM is calcu
number of voxels. Voxel number corresponding to the maximum HNDF-GGM (red fill
segmented region starting from the same seed point.
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½ðx�1; y; zÞ; ðx; y�1; zÞ; ðx; y; z��1Þ; ðx�1; y; zÞ; ðx�1; y�1; zÞ; ðx�1;
y�1; zÞ; ðx�1; y; z�1Þ; ðx�1; y; z�1Þ; ðx; y�1; z�1Þ; ðx; y�1; z�1Þ; ðx -
�1; y�1; z�1Þ; ðx�1; y�1; z�1Þ or ðx�1; y�1; z�1Þ� is connected to
a voxel with coordinate ðx; y; zÞ. The 26-connected system is
method. Light blue, light grey, dark blue, dark grey and black colours represent
ary (IB) respectively. (a) True ROI (light blue) in a background (light grey). (b)
rk blue). (c) to (h) show how the current boundary (dark blue) and edge or the
ack) grows. For every region starting from only one voxel or seed voxel until all
lated for each step using Eq. (2). The graph shows the HNDF-GGM against the
ed circle) is the final number of voxel (VFinal) that should be included in the final
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graphically depicted in Figure 1(b). The same 26-connected voxels are
used to find the global gradient for each stage of the region growing
process. As each individual voxel gets included in the region, the
current boundary and the internal boundary of the ROI evolves
(Figure 2). For the inclusion of each individual voxel, HNDF-GGM is
calculated using Eq. (4). Upon completion of the region growing
covering the whole roughly delineated ROI, the final stopping criteria
(i.e., the number of voxels to be included in the region) is defined by
the number of voxels (VFinal) that corresponds to the maximum HNDF-
GGM (Figure 2). Once VFinal is determined, the region growing method
is run again (second pass) starting from the same seed point with the
stopping criteria being defined by the VFinal. Since the HNDF-GGM uses
the difference between two neighboring boundaries rather than that of
two neighboring voxels, it is less sensitive to noise compared to the
other gradient magnitude based methods that only rely on gradient
measure in a particular direction (e.g., x, y and z directions). More-
over, the proposed method does not use the information of the image
statistics and hence is robust to change in size, contrast and SNR.

The HNDF-GGM-RG algorithm for PET images is summarized below:
B ¼ HNDF-GGM-RG (I, ROI).
Input:

1. I: PET image;
2. ROI: a rough region of interest manually delineated to enclose the

tumor.

Intermediate Output:

3. NDF-I: filtered image after applying filter on the original PET image

First pass:

1. Determine the total number of voxel (VInitial) from roughly delineated
ROI to include in the region;

2. Define the voxel (VMax) as seed point that contains maximum in-
tensity, IMax.

3. Iteration:

For k ¼ 1: 1: VInitial
Obtain global gradient measure for inclusion of each voxel: HNDF-

GGM ¼ HNDF-GGM-RG (NDF-I, ROI,VMax);
End

4. Determine final voxel number (VFinal) corresponding to the highest
HNDF-GGM.
Figure 3. (a) Torso NEMA phantom with six fillable spheres and a
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Second pass:

1. Start region growing at VMax
2. Iteration:

For k ¼ 1: 1: VFinal
Update the segmented image: B¼HNDF-GGM-RG (NDF-I, ROI,VMax);
End
Output:

1. B: binary image with segmented region containing VFinal number of
voxels.

2.4. Validation

The torso NEMA phantom containing six spheres with diameter of 10,
13, 17, 22, 28 and 37 mm (0.52, 1.15, 2.57, 5.58, 11.49 and 26.52 cm3

volume) was filled with 1668 KBq/ml 18F solutions (Figure 3). The
uniform background was filled with 838 KBq/ml 18F solution to yield 2:1
SBR or contrast between the homogeneous hot spheres and the colder
uniform background. Low contrast of 2:1 was chosen for validation
because for higher contrast levels the performance of most the segmen-
tation methods converges.

The phantom was scanned on the TrueV PET-CT scanner (Siemens,
USA) for 120 min in a 3D mode which provides 109 image planes or
slices covering a 21.6 cm axial FOV (field of view). The 3D images were
then reconstructed using a 256 � 256 � 109 matrix with voxel di-
mensions of 2.67 � 2.67 � 2.00 mm. Five different scan durations (900,
1200, 2000 and 4000 s corresponding to 15, 20, 33.3 and 66.6 min) to
represent different levels of SNR were reconstructed using OSEM
reconstruction algorithm with 4 iterations and 21 subsets. To reconstruct
five different non-overlapping and overlapping realizations for all dura-
tions the starting time of each static frame were shifted. A 4-mm FWHM
(full width at half maximum) Gaussian filter was applied on all the
reconstructed images after applying radioactivity decay correction. The
boundaries calculated from the known diameter and position of each
sphere was then used to estimate the true volume of interest (VOITrue).

2.5. Validation measures

The performance (robustness, accuracy and reproducibility) of the
HNDF-GGM-RG method was compared with the most widely investi-
gated 40% fixed threshold and active contour (AC) methods for different
statistical situations (size and SNR). For the purpose of the validation,
along with the segmented volumes, Dice Similarity Coefficient (DSC) and
cold insert in the middle. (b) The dimensions of the shperes.
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Classification Error (CE) were also analyzed for each segmentation
method. DSC provides quantitative measures of spatial overlap index
with the VOITrue. It can be used to evaluate segmentation accuracy. DSC
is given by

DSC¼ 2
�
VOITrue \ VOISeg

�
VOITrue þ VOISeg

(5)

where \ is the intersection and VOISeg is the segmented volume. DSC
value 0 indicates complete non-overlap and 1 indicates complete match
or overlap between two volumes.

Percentage classification error (CE) is defined as

CE¼ 100� ðPCEþ NCEÞ
VOITrue

(6)

where PCE (positive classification errors) refers to the background voxels
that are classified as voxels belonging to the sphere. On the other hand,
NCE (negative classification errors) refers to the voxels within the sphere
belonging to the background. Higher CE value is indicative of poor seg-
mentation accuracy.

3. Results

Representative segmentation results of one realization for 40T, AC
and HNDF-GGM-RG along with the true volumes for 13 and 28 mm
sphere for all acquisition durations are shown in Figure 4. Average vol-
umes of five realizations along with their standard deviations for all six
spheres and acquisition durations are shown in a bar graph in Figure 5.

For 10 mm sphere, the average segmented volumes across different
acquisition durations for 40T, AC and HNDF-GGM-RG methods are
15.04, 7.03 and 0.93 cm3 generating average error of 2792%, 1252% and
78% respectively (in comparison to VOITrue of 0.52 cm3). For 13 mm
sphere, 40T method segments the same roughly delineated ROI irre-
spective of acquisition durations (average volume of 19.70 cm3 with
1612.74% error). The mean volume for the AC method for this sphere is
6.58 cm3 with 472% error. The performance of HNDF-GGM-RG method
significantly improves for 13 mm sphere with the average sphere volume
of 1.73 cm3 with 50% error. The absolute average errors of for the 40T
Figure 4. Segmentation results of 40T, AC and HNDF-GGM-RG on one slice of the N
sphere for 900 s (a, e), 1200 s (b, f), 2000 s (c, g) and 4000 s (d, h) acquisition dur

5

method are 995%, 490%, 277% and 188% with average segmented
volumes of 28.14, 32.95, 43.39 and 76.39 cm3 for 17mm, 22mm, 28mm
and 37 mm spheres respectively. Since 40T method is not able to accu-
rately segment the lesions from background for low contrast, the final
segmented ROI is very much dependent on the roughly delineated ROI.

AC method provides mean segmented volume of 5.85, 5.71, 10.04
and 23.49 cm3 with 127%, 18%, 13% and 12% error respectively. For the
NDF-GGM-RG method, the error values are 46%, 46%, 31% and 22% for
the same spheres with average segmented volumes of 1.39, 3.01, 7.86
and 20.54 cm3. The standard deviations of volumes for the 40T method
are higher compared to that of the AC and HNDF-GGM-RG method
indicating that the volumes delineated by the 40T method are less
reproducible specially for 22 mm, 28 mm and 37 mm spheres. One the
other hand, for 13 mm and 17 mm spheres, the 40T method delineated
similar ROIs as the roughly delineated ROIs and therefore, the standard
deviations for these two spheres are much lower but with high error.

The average percentage errors across different sizes and SNR are
approximately 131% and 45% for AC and HNDF-GGM-RG methods
respectively with the error for the AC method is very much dependent on
SNR if the size of the tumour is small ð� 17 mmÞ. However, the 40T
method is dependent on the noise irrespective of the size of the sphere.

Average dice similarity coefficient (DSC) of five realizations is shown
for all three methods in Figure 6. DSC is always the highest for the HNDF-
GGM-RG method for the smallest three spheres compared to the 40T and
AC. For the 10 mm diameter sphere, DSC is very low for all methods. For
the 13 mm and 17 mm spheres, average DSC for HNDF-GGM-RG method
is 0.49 and 0.68 respectively. For the same two spheres, DSC for the 40T
method is 0.11 and 0.15 and for the AC is 0.27 and 0.57 with the AC
method being very much dependent on SNR (0.36–0.82 for 17 mm
sphere). For the biggest three spheres (22 mm, 28 mm and 37 mm), the
average DSC are, 0.65, 0.77 and 0.87 for the HNDF-GGM-RG method.
0.31, 0.46 and 0.56 for the 40Tmethod. 0.72, 0.83 and 0.90 are the DSCs
for the AC method. Though the DSCs are similar for both HNDF-GGM-RG
and AC for the biggest three spheres, the differences between the average
DSC for the proposed method between acquisition durations are negli-
gible indicating lower dependency on the noise.

The average percentage classification error (CE) of five realization of
all the six spheres are shown in Figure 7. CE decreases with the increase
EMA phantom. Top row: 13 mm diameter sphere. Bottom row: 28 mm diameter
ations representing different SNR.



Figure 5. Mean segmented volumes (cm3) of five realizations for all six spheres and acquisition durations along with the VOITrue. The error bar represents standard
deviation of the means. Each of the panel (a to e) represents mean and standard deviation of the segmented volumes for one sphere size starting from the smallest.

Figure 6. Mean dice similarity coefficient (DSC) of five realizations for all six spheres and acquisition durations. The error bar represents standard deviation of the
means. Each of the panel (a to e) represents mean and standard deviation of the DSC for one sphere size starting from the smallest.
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Figure 7. Mean percentage classification error (CE) of five realizations for all six spheres and acquisition durations. The error bar represents standard deviation of the
means. Each of the panel (a to e) represents mean and standard deviation of the CE for one sphere size starting from the smallest.
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of the size of the spheres for all three methods. . CE values for the
biggest five spheres (13 mm–37 mm) are 137%, 50%, 55%, 38% and
23% for the HNDF-GGM-RG method compared to 1689%, 1145%,
537%, 274%, and 193% of 40T and 515%, 179%, 61%, 33% and 19% of
AC. Since, the 40T method always segment ROIs much bigger than the
original volume, percentage CEs are always higher for this method.

The CEs for the 40T method are dependent on the SNR and the
standard deviation for each case is very high. The CE of the AC method is
only dependent on the SNR for the smallest three spheres. On the other
hand, the differences in CE for the HNDF-GGM-RG method are less than
15% across acquisition durations.

The one-way ANOVA test performed on all spheres of all three
methods indicates that the methods are significantly different with p ≪
0:05. Two-Sample t-Test with AC and HNDF-GGM-RG also shows that
these methods are significantly different for the smallest three spheres.
However, for the 22 mm, 28 mm and 37 mm sphere, these two methods
are not significantly different with the value of p being 0.14, 0.67 and
0.17 respectively.

4. Discussion

Accurate segmentation of suspected lesion in PET is very
important for further analysis for diagnosis, treatment planning and
response assessment of the disease. Threshold based method is
widely used because of its simplicity to implement and predict-
ability. However, dependency on the size and noise makes it less
accurate specially when the contrasts and counts are low. This
paper proposes a novel hybrid global gradient measure based re-
gion growing method for low contrast and high noise NM images.
The performance of the proposed methods was compared with the
most widely investigated 40T threshold and state-of-the art active
contour (AC) methods for different sizes and acquisition durations
using Torso NEMA phantom.
7

For the smallest three spheres, the 40T method segment the same
roughly delineated ROI. These spheres are subject to high level of partial
volume effects (PVE) arising from limited resolution of PET camera and
finite image sampling (Soret et al., 2007). Because of that, the value of
the IMax is much lower and thus 40% threshold is too low compared to the
optimum threshold value. The correction for PVE is vital when the
diameter of the lesion is 2–3 smaller the than resolution of the scanner
typically measured as full width half maximum (FWHM) (Bettinardi
et al., 2014). The typical resolution of the TrueV PET-CT scanner used for
this study is approximately 6 mm FWHM and therefore, the segmented
volumes using the 40T method are grossly mismatched. For the biggest
three spheres, where PVE corrections are not essential, volumes of the
segmented ROIs by the 40T method increase with the increase of
acquisition duration. DSC decreases and percentage CE increase with the
acquisition duration. This is because, noise is reduced with the increase
of acquisition duration and at 4000 s the noise is the lowest. 40%
threshold is not optimum in such cases and the percentage threshold
needs to be increased to avoid the gross overestimation of the volumes.
This investigation also indicates that the 40T method is not only
dependent on the size but also on the noise since IMax is also dependent
on the size and noise (Akamatsu et al., 2015). Previous study has
confirmed the effects of size on the threshold based segmentationmethod
(Erdi et al., 1997). However, the effects of noise on the threshold based
segmentation method was not explicitly addressed in the literature.

For the proposed HNDF-GGM-RG and AC, the accuracy (volume,
reproducibility, DSC and CE) of the segmented volumes also becomes
better with the increase of the sphere size. However, the differences in
accuracy are much lower compared to the 40T method and are much less
dependent on the noise. For the smallest two spheres with 13 mm and 17
mm diameter, the accuracy of the segmented volumes is significantly
improved using the HNDF-GGM-RG method compared to both 40T and
AC. This is because, the proposed method does not dependent on the
maximum intensity value IMax and conventional detection of the edge
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both of which vary with the size and noise or acquisition duration of the
image.

Overall, the proposed HNDF-GGM-RG segmentation method seg-
ments volume with less error, high DSC and low CE compared to the 40%
threshold across different sizes and acquisition durations and for the
smallest three spheres compared to the ACmethod. Themethod also does
not require any user intervention and easy to implement. It is also
insensitive to the location of the seed point.

5. Conclusion

A novel fully automatic hybrid global gradient measure based region
growing (HNDF-GGM-RG) segmentation method is presented in this
study and the accuracy of the segmentation method was compared with
the most widely investigated 40% fixed threshold and ACmethods across
different sizes and SNR for low contrast. The HNDF-GGM-RG method
provides more accurate results and is robust to the changes in size and
noise. The method can be applied where the size of the lesion and uptake
can change due to treatment. The method can also be used for different
radiotracers where variable uptake are expected due to differences in
molecular pathways of the tracers. The method is also fully automatic
and does not require to select the seed point. The higher accuracy,
reproducibility and robustness of the segmented volumes by the pro-
posed HNDF-GGM-RG method indicate that it can be implemented for
routine clinical purposes.
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