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Abstract

Motivation: Non-negative matrix factorization (NMF) is a common tool for obtaining low-rank

approximations of non-negative data matrices and has been widely used in machine learning, e.g.

for supporting feature extraction in high-dimensional classification tasks. In its classical form, NMF

is an unsupervised method, i.e. the class labels of the training data are not used when computing

the NMF. However, incorporating the classification labels into the NMF algorithms allows to specif-

ically guide them toward the extraction of data patterns relevant for discriminating the respective

classes. This approach is particularly suited for the analysis of mass spectrometry imaging (MSI)

data in clinical applications, such as tumor typing and classification, which are among the most

challenging tasks in pathology. Thus, we investigate algorithms for extracting tumor-specific spec-

tral patterns from MSI data by NMF methods.

Results: In this article, we incorporate a priori class labels into the NMF cost functional by adding

appropriate supervised penalty terms. Numerical experiments on a MALDI imaging dataset con-

firm that the novel supervised NMF methods lead to significantly better classification accuracy and

stability as compared with other standard approaches.

Availability and implementaton: https://gitlab.informatik.uni-bremen.de/digipath/Supervised_

NMF_Methods_for_MALDI.git

Contact: tboskamp@uni-bremen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The pathological diagnosis of a tumor found in a tissue specimen,

including the determination of the tumor origin and genetic subtype,

is crucial for individualized therapy decision and accurate prognosis.

This task, often referred to as tumor typing, is conventionally based

on microscopic examination of stained tissue sections, as well as mo-

lecular or genetic tests (Klauschen et al., 2015; Kruglyak et al.,

2014), and often is subtle and requires extensive training and

experience.

Naturally, since the early stages of digital pathology, large efforts

have been devoted to support expert diagnosis by statistical and

computational methods (Pantanowitz et al., 2010). Moreover, mass

spectrometry imaging (MSI), which has been established over the

last decade as a routine methodology in analytical chemistry and

proteomics research, has demonstrated a high potential for a variety

of tasks in clinical pathology (Kriegsmann et al., 2015; Schwamborn

and Caprioli, 2010). However, the high complexity and large data

volumes of MSI experiments demand for appropriate, dedicated

computational analysis tools.

Recent reports on applications of MSI to tumor typing are the

starting point for our present research (Casadonte et al., 2014;

Kriegsmann et al., 2015; Veselkov et al., 2014). The proposed meth-

ods primarily rely on the extraction of spectral features (single peaks

or more complex spectral patterns) from large sets of training data.

In the mentioned sources, both statistical tests for detecting discrim-

inative spectral features, as well as computational methods, such as
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principal component analysis (PCA), probabilistic latent semantic

analysis (PLSA) or non-negative matrix factorization (NMF) have

been applied. These spectral features then form the basis for

constructing a subsequent classification scheme (LDA, logistic

regression, etc.). In particular, spectral patterns based on NMF de-

composition have been demonstrated to result in competitive or

even improved classification schemes for different tumor typing

tasks (Boskamp et al., 2016).

These results on NMF-based tumor typing rely on a first un-

supervised step for extracting spectral patterns followed by a subse-

quent supervised training of a classification model. In this article,

however, we aim at (i) motivating and analyzing classification

schemes based on supervised NMF, and (ii) evaluating the potential

of such methods for tumor typing using matrix-assisted laser desorp-

tion/ionization (MALDI) MSI.

Concerning the first aim, we will combine the NMF data decom-

position with the construction of the classification scheme in a uni-

fied approach. We will do this in the context of regularized NMF

decompositions, where the classification error for either logistic

regression or linear discriminant analysis (LDA) is added as a separ-

ate penalty term.

Concerning the second aim, we will evaluate the derived classifi-

cation schemes using MALDI MSI data from a collection of tissue

microarrays (TMAs) of different types of lung cancer tissue samples.

Due to the comparatively large number of patients (N¼304), this

challenging dataset exhibits a large biological variation, as well as

apparent technical variation between the different measurements.

According to our main hypothesis, we expect that the spectral pat-

terns determined by the supervised NMF methods are more relevant

for the respective classification task, as compared with the unsuper-

vised NMF approach, and hence result in a higher classification

accuracy.

The article is organized as follows: Section 2 describes a general

and well-established approach to regularized NMF functionals and

their use in classification contexts. In Section 3, we introduce our

proposed supervised NMF models and corresponding algorithms. In

Section 4, we present the results of extensive numerical experiments

evaluating the different variants of supervised NMF and classifica-

tion schemes. The final section is devoted to a discussion of the

results and an outlook on future research directions.

2 Non-negative matrix factorization

Matrix factorization methods address the task of computing a low-

rank approximation to a given, typically large data matrix Y of di-

mension n�m. In matrix notation, this requires to determine matri-

ces K and X of dimensions n�p and p�m, respectively, such that

p� m;n and Y � KX. Such methods are the basis for a large variety

of applications including compression, feature extraction or basis

learning (Golub and Van Loan, 1996; Lee and Seung, 2001). If the

data are non-negative, as it is the case for MALDI MSI, it is often

desirable to request that K and X are also non-negative, leading to a

NMF.

In a standard situation, the data matrix Y combines n data vec-

tors of length m (rows of data matrix Y), which are related to n enti-

ties under consideration (e.g. MALDI spectra). Computing an NMF

helps to determine p characteristic non-negative basis vectors that

allow to approximate the full data matrix Y (basis learning).

Computing such an NMF decomposition based only on the data ma-

trix Y is usually only a first step in a more complex processing pipe-

line for analyzing the data.

In this article we assume that the individual entities are labeled,

e.g. ‘tumor’ or ‘non-tumor’ in a tissue typing application. In a clas-

sical two-step classification pipeline, the computation of an NMF

decomposition is followed by constructing a linear or non-linear

classification model (e.g. LDA or logistic regression). The label in-

formation is only used in the classification step, which is why this

step is called a ‘supervised’ learning step, whereas the NMF decom-

position is performed ‘unsupervised’.

In the following, we will first motivate the application of NMF

methods for MSI-based tumor typing, summarize the basic known

results on unsupervised NMF methods and corresponding algo-

rithms, and outline the role of NMF in typical two-step classifica-

tion schemes. The supervised NMF approach will then be described

in Section 3.

2.1 Non-negative matrix factorization for tumor typing
A typical MALDI MSI experiment results in a data matrix Y consist-

ing of measured spectra for different spatial locations of a tissue sec-

tion or TMA (Fig. 1). The data matrix consists of data vectors

Yi;� 2 R
m
�0; i ¼ 1; . . . n, each one representing the spectrum measured

at the spatial position with index i (see Supplementary Appendix C,

for details).

The application of NMF methods for tumor typing is motivated

by the assumption that only a comparatively small number p of

metabolic processes or protein structures are represented in the data-

set. It is hence feasible to assume that p spectral patterns Xk;� 2
R

m
�0; k ¼ 1; . . . ;p with p� min ðn;mÞ are sufficient for approxi-

mating the full dataset, and that there exist coefficients Kik 2 R�0

such that Yi;� �
Xp

k¼1
KikXk;�. This results in a low-rank approxi-

mation of the data, i.e. Y � KX. Even if not measured directly, the

pseudo spectra Xk;� (the rows of X) can be interpreted as mass spec-

tra, the spatial distribution of which is given by the respective

pseudo channels K�;k (columns of K). Hence, the non-negativity of K

Fig. 1. Schematic MALDI MSI workflow. Tissue sections (a) are subjected to sample preparation including deparaffination, antigen retrieval, on-tissue tryptic di-

gestion and matrix application (b). Prepared tissue sections are inserted into the MALDI MSI instrument (c) and mass spectra (d) are acquired. When fixing single

m/z values, the intensities in the measurement area can be visualized as m/z images (e), reflecting the molecular distribution of peptides with corresponding

masses
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and X supports the biological interpretability, making NMF meth-

ods an ideal tool for analyzing MSI datasets and for extracting char-

acteristic spectral patterns as a basis for classification and tumor

typing.

2.2 Tikhonov functionals for NMF
The NMF problem, i.e. computing factors K, X such that Y � KX,

is commonly formulated as a minimization problem with a suitable

discrepancy term. In this article, the discrepancy measure will al-

ways be the standard Frobenius norm, i.e. the sum of squared matrix

coefficients, denoted by jj � jj2F.

To deal with the non-uniqueness of the NMF, with numerical

instabilities and scaling issues, as well as to equip the matrices K and

X with additional desirable properties, we incorporate additional

penalty terms u‘ into the cost function. Thus, the general minimiza-

tion problems is of the form

min
K;X�0

1

2
jjY � KXjj2F þ

X
‘

a‘u‘ðK;XÞ; (1)

with regularization parameters a‘ 2 R�0 controlling the influence of

the penalty terms.

The variety of potentially useful penalty terms u is huge and

needs to be guided by the application in mind. Here, we introduce

‘2-regularization terms for X and K (Frobenius norm) as the simplest

form of Tikhonov regularization, which avoids scaling issues and

results in a better condition of the minimization problem.

Moreover, an ‘1-penalty term on X is introduced, increasing the

sparsity of X, thus resulting in sparser pseudo spectra with more

characteristic m/z peaks.

More precisely, this leads to the unsupervised NMF model

min
K;X�0

1

2
jjY � KXjj2F þ kjjXjj1 þ

l
2
jjKjj2F þ

�

2
jjXjj2F FR (2)

with suitable regularization parameters k;l; ��0, which will be

abbreviated as FR (Frobenius, regularized).

Furthermore, we intend to introduce orthogonality constraints

on the pseudo spectra Xi;�; such that XX> � I; which results in less

correlated and—together with the non-negativity of X—sparser

pseudo spectra.

However, instead of directly adding the fourth-order penalty

term jjI �XX>jj2F in the cost functional, we introduce a third auxil-

iary variable W 2 R
p�m
�0 and split the constraint in two penalty

terms. Thus, the problem is transformed to

min
K;X;W�0

1

2
jjY �KXjj2F þ kjjXjj1 þ

l
2
jjKjj2F þ

�

2
jjXjj2F

þ r1

2
jjI �XW>jj2F þ

r2

2
jjW �Xjj2F; FRO

(3)

with additional regularization parameters r1;2�0. This NMF model

is abbreviated as FRO (Frobenius, regularized, orthogonal). The spe-

cial case without ‘1;2-regularization (k; l; � ¼ 0) will be referred to

as FO (Frobenius, orthogonal).

2.3 Algorithms
All models presented in the previous section are formulated as mini-

mization problems. These models include multiple matrix variables,

i.e. K, X, as well as W for the FO and FRO models. The cost func-

tionals are convex as long as only a single matrix variable is varied,

but they are non-convex in the Cartesian product spaces for (K, X)

and (K, X, W), respectively.

We follow the classical approach of majorize-minimization

(MM) algorithms, (Lange, 2016) leading to alternating matrix vari-

able updates. The key idea is to shift the minimization to surrogate

functions that majorize the original cost function locally and are eas-

ier to minimize. Suitable surrogate functions for NMF-Tikhonov

models as well as the resulting update rules are summarized in

Supplementary Appendix A.

Rescaling the rows of X further improves the stability of the al-

gorithm as well as the interpretability/comparability of the resulting

spectral patterns Xk;�. Incorporating rescaling is equivalent to multi-

plying X, respectively K, with a diagonal matrix D ¼
diag ðjjXk;�;k ¼ 1; ::; pjjÞ from the left, respectively with D�1 from

the right. While rescaling is often found to be necessary with the FR

model, it is less relevant with the FRO model, as the orthogonaliza-

tion of X in the NMF decomposition implies ‘2-normalization.

2.4 Classification methods based on NMF

decompositions
Typical classification methods are based on two steps: In the first

step, the original data vectors are transformed into some feature vec-

tors, usually of much lower dimension. In the second step, the actual

classification scheme is applied to the feature data, resulting in a bin-

ary or multi-class assignment.

Depending on the nature of the original data, different

approaches for defining features can be suitable. In cases where the

data vectors represent measurements of some physical quantity, cor-

relations with suitably defined or computed basic pattern vectors are

widely used. In the context of MALDI MSI data analysis, we con-

sider features obtained by correlating a spectrum y (row vector of

length n) with a set of pseudo spectra constructed by NMF methods,

i.e. the row vectors of X. Hence, the data vector y is mapped to the

feature vector f (row vector of length p) by f ¼ yX>.

For generating the classification model, we assume that a suffi-

ciently large set of training data Y is given together with correspond-

ing class labels u (ground truth), such that uðiÞ 2 f0; 1g denotes the

class label of the ith data vector Yi;�. The feature vectors correspond-

ing to the full set of training data Y are computed by F :¼ YX>,

yielding a matrix F 2 R
n�p
�0 of row feature vectors. Note that we

only consider the case of binary classification here, although the gen-

eral concepts are easily extended to the multi-class case.

In this article, we consider two different binary regression mod-

els as classification methods: LDA and logistic regression. Both

models are optimized by solving a minimization problem

min bUðu;F;bÞ, where U denotes some cost function measuring the

discrepancy between the true class labels and the assignments of the

classification model, and b 2 R
~p denotes the set of model parame-

ters (for details, see Supplementary Appendix B, as well as Chapter

4 in Bishop, 2006).

The overall approach of constructing and using a two-step classi-

fication method is visualized in Figure 2. For constructing the model,

an annotated set of training data is used. An unsupervised NMF is

computed from the training data, yielding the pseudo spectra that

define the feature map. Feature vectors are then computed by apply-

ing the feature map to the training data, and are used together with

the label annotations for optimizing the classification model. Once

the feature map and the classification model are computed, the clas-

sification of a new data vector consists of applying the feature map

to obtain a feature vector as the input for the classification model.

Combining the different unsupervised NMF decomposition

schemes (FR, FO, FRO) described in this section with either LDA or

logistic regression results in six different classification schemes:
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FR_lda, FR_log, FO_lda, FO_log, FRO_lda and FRO_log. In add-

ition, the computation of the NMF decopompositons may or may

not incorporate a rescaling of X and K in each iteration, leading to

12 different classification schemes. A characteristic subset of these

methods will be evaluated in Section 4 in comparison to the super-

vised approaches presented in the next section.

3 Supervised NMF methods

3.1 Motivation
The NMF methods described in the previous section yield decompo-

sitions of the data matrix Y that provide a good approximation

using only a small number p of basis patterns (rows of X) and chan-

nels (columns of K). Thus, we can expect X to consist of those spec-

tral patterns that were found to be, in some sense, most dominant in

the data. In the context of classification problems, however, we are

not primarily interested in the most dominant components or in an

accurate data approximation.

Instead, we wish to extract those spectral patterns that allow to

well discriminate between spectra acquired from different tissue

phenotypes, such as, for example tumor and normal tissue. The

spectral features reflecting these different tissue types, however, are

often subtle and much less expressed than the most dominant spec-

tral components. Hence, they may well be considered irrelevant by a

standard NMF decomposition, causing them to be suppressed in the

resulting feature map Y 7!YX> and resulting in a decreased classifi-

cation accuracy.

In the following, we will propose an extension of the standard

NMF methods that allows to incorporate the a-priori label informa-

tion associated with the different tissue types into the NMF mini-

mization problem, guiding the NMF algorithm to spectral basis

patterns that are most informative and relevant with respect to the

classification task. The term ‘supervised NMF’ will be used to distin-

guish between these extended NMF methods and the standard, un-

supervised methods.

3.2 Models and algorithms
In this section, we discuss the different supervised NMF models

which are used in this article and describe shortly the respective up-

date rules and their derivation.

The supervised NMF method differs from the standard unsuper-

vised approach in that the classification task is done in parallel to

the feature extraction. This is realized by integrating the cost func-

tion of the classification method into the NMF cost functional.

Here, we consider either LDA or logistic regression as classification

scheme (see Section 2.4 and Supplementary Appendix B). Using the

notation of the previous sections and the cost functionals in

Equations (5) and (7) in Supplementary Appendix B, leads to the

basic supervised NMF models Flda

min
K;X;b�0

1

2
jjY � KXjj2F þ

c
2
jju� YX>bjj2F Flda (4)

and Flog

min
K;X�0;

b

1

2
jjY � KXjj2F þ

c
n

�Xn

i¼1

log ð1þ e½1jYX>	i;�bÞ � u>½1jYX>	b
�
; Flog

(5)

with the regularization parameter c�0. Note that Flda (4) requires

the non-negativity constraint on b since we assume in this model that

u is a superposition of the correlation images YXk;�
>: However, from

model Flog (5) and Equation (6) in Supplementary Appendix B.2, it

is necessary for b to assume negative values in the logistic regression

case in order to be able to model probabilities smaller than 0.5.

Analogously to Section 2.2, we also consider the combination of

the supervised Flda NMF model with ‘1- and ‘2-regularization terms

for K and X, as well as terms enforcing the orthogonality of X.

These additional penalty terms have the same structure as the corre-

sponding terms in the unsupervised case. Thus, iterative algorithms

can again be determined following the MM scheme and constructing

suitable surrogate functionals (see Supplementary Appendix A).

This leads to the regularized supervised NMF models FRlda and

FROlda with the following update rules:

K K�

YX>

KXX> þ lK

D K>KX þ r1XW>W þ r2X þ cbb>XY>Y þ �Xþ k

X X�

K>Y þ ðr1 þ r2ÞW þ cbu>Y

D

W  W�

ðr1 þ r2ÞX
Wðr1X>Xþ r2IÞ

b b�

XY>u

XY>YX>b

For FRlda, let r1 ¼ r2 ¼ 0 and ignore the rule for W. Note that

the above rules are multiplicative and preserve non-negativity as

long as the matrices are initialized non-negative.

As regards model Flog (5), minimization with respect to K leads

to the same cost functional as in Flda (4), and therefore to the same

update rules for K: Due to the different structure of the logistic re-

gression term, however, we need to follow a different approach for

the updates of X and b. More specifically, we use a special variant

of the stochastic gradient descent approach method ADADELTA

Fig. 2. Standard process of NMF-based data classification
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(Zeiler, 2012). This adaptive method uses the information of previ-

ously computed gradients to evaluate the next step size and introdu-

ces two parameters to be chosen before performing the iterations:

one parameter representing a decay rate and the second one for sta-

bility reasons. The required gradients of the cost functional in model

Flog (5) with respect to X and b can be easily calculated analytically

for this approach, which leads to ADADELTA updates DX and Db
(see Zeiler, 2012 for details). To ensure the non-negativity of X; a

projection step (denoted by projðXÞ) is included that replaces all

entries Xi;j
0 with a small positive constant. This finally results in

the Flog update rules:

K K�

YX>

KXX>

X projðXþ DXÞ

b bþ Db

Note that we do not add further regularization terms to the Flog

functional. This has two reasons: First, adding additional regulariza-

tion terms with respect to K could be handled by the same update

rules as for Flda, whereas adding additional regularization with re-

spect to X would require adapting the minimization scheme for

functionals mixing logarithmic and quadratic penalty terms, which

is not the focus of this article. Second, numerical tests indicate that

the logistic regression term added to the Frobenius discrepancy term

already yields sufficient regularization. In fact, the Flog algorithm

will produce the best classification results, as seen in Section 4.

3.3 Combination with classification
We now assume that a supervised NMF decomposition using a vari-

ant of Flda or Flog as described in the previous section has been

computed. The next step is the construction of a classifier based on

these NMF vectors, i.e. a function mapping new data ~Y 2 R
~n�m to a

class prediction ~u 2 f0; 1g~n . For that purpose we discuss two

approaches.

Integrated approach: Directly utilizing the coefficient vector b
from the supervised NMF model (Flda (4) or or Flog (5), respective-

ly) yields the first version, which we call integrated classifier. It will

be indicated by an _int suffix in the model names (see below). For

the Flda variants one computes ~YX>b 2 R
~n , which assigns a real

value to each new spectrum in ~Y . Next, entries below some thresh-

old t are mapped to class 0, all other entries to class 1. The threshold

t is determined from the training data by calculating YX>b 2 R
n

and choosing t such that the target performance measure (see

Section 4.1) is optimized.

For the Flog variants, the regression values, computed by (8) in

Supplementary Appendix B.2, can directly be interpreted as proba-

bilities for class 1. It is hence natural to apply the threshold 0.5, i.e.

entries with a probability less than 50% are predicted to belong to

class 0, entries with a higher probability to class 1.

Optimized approach: The second approach performs the classi-

fier training in a separate step after solving the supervised NMF

model. We keep the characteristic patterns X determined by the

supervised NMF, but we ignore the coefficient vector b. Instead we

use a subsequent optimization for training an independent classifier

(LDA or logistic regression) using the feature data YX> and the class

labels u. New MALDI data ~Y is then classified by applying the clas-

sifier on the feature data ~YX>. These variants will be indicated by

an _lda or _log suffix.

Combining the different supervised NMF models with the above

integrated or optimized classification methods leads to a large var-

iety of classification schemes. Our main aim is to demonstrate the

effect of including supervised terms in the NMF construction direct-

ly as opposed to the classical two-step approach (unsupervised

NMF, classifier). To this end, we have selected the following models

for comparison and evaluation: FRlda_lda, FRlda_log, FRlda_int,

FROlda_lda, FROlda_log, FROlda_int, Flog_lda, Flog_log and

Flog_int.

4 Results and discussion

In the following, we present the numerical results obtained by apply-

ing the classification schemes introduced in the previous sections to

the MALDI MSI dataset described in Supplementary Appendix C.

This dataset contains 4667 spectra of length 1699, it is obtained

from eight TMAs of lung tumor tissues, denoted by L1 to L8. Each

TMA consists of a collection of adenocarcinoma (ADC) and squa-

mous cell carcinoma (SqCC) biopsies, proportions of both tissue

types were roughly similar in all TMAs. MALDI MSI data were

acquired in separate experiments for each TMA. The classification

task consists in distinguishing between the tumor types ADC and

SqCC, corresponding to class labels u¼0 and u¼1, respectively.

A comparison of the performance achieved on this task by the

different classification schemes are given below. Moreover, the char-

acteristics of the different NMF decompositions are investigated and

compared with biological interpretations available from previous

work.

4.1 Classification performance
In order to obtain a realistic estimation of a classification model’s

performance, the available data have to be divided into a training

and a test set (see Fig. 2). The results presented below were obtained

by applying a standard cross-validation (CV) scheme known as

k-fold CV. Since we wanted to evaluate the robustness of the classi-

fication methods toward technical variation between different

MALDI MSI experiments, we chose to perform an 8-fold CV on

TMA level.

More specifically, from the total set of TMAs L1 to L8, eight dif-

ferent training subsets were formed, each one consisting of seven

TMAs. In each of the eight CV folds, a classification model was

trained on seven training TMAs and tested on the respective remain-

ing test TMA not included in the training set. Thus, each CV fold

yields a classification result (prediction) for one of the TMAs, and

the union of all predictions represents the complete prediction

obtained using the respective classification scheme. Note that this

CV scheme covers both the feature extraction and the classification

step, as the NMF decompositions are computed on the training data

only.

The accuracy of a classification result is evaluated by computing

the sensitivities for both classes, i.e. the number of correctly classi-

fied spectra in each class divided by the total number of spectra in

this class, and taking the average of both sensitivities. This metric,

known as balanced accuracy, has the advantage of being independ-

ent of the relative proportions of the classes within the respective

test data (Sokolova and Lapalme, 2009).

In total, 13 different classification schemes were evaluated. Since

the number of features p has a strong influence on the accuracy of

many models, we varied this hyperparameter from 10 to 100 in steps

of 10. The balanced accuracies for a subset of the most relevant

methods is shown in Figure 3 (left), results for all methods as well as

details on the regularization parameters used are presented in

Supplementary Appendix D.
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As can be observed, the methods Flog_int and Flog_log based

on the supervised NMF model Flog (5) achieve the highest per-

formance of approximately 90%, independent of the number of

features p. They are followed by the FR_lda method achieving a

maximum performance close to 85%. Most of the other methods

achieve balanced accuracy values below 80%. Furthermore, the

following detailed observations can be made (see Supplementary

Appendix D):

• Among the unsupervised methods, FR is superior to the FRO

model. Both achieve better results when combined with LDA

classification as compared with logistic regression.
• While the supervised methods Flog_int and Flog_log outperform

all others, Flog_lda performs significantly worse.
• Similarly, FR(O)lda_int and FR(O)lda_log perform better than

FR(O)lda_lda, although the effect is less expressed.
• While FRlda_int and FRO_int show very similar performance,

FROlda_lda and FROlda_log perform worse than their

FRlda_lda/log counterparts.

In addition to the overall classification performance, we investi-

gated the performance variation between the eight CV folds for each

classification schemes. In particular where two methods show simi-

lar overall performance, it is of interest to compare the respective

performance variation, as a lower variation indicates a method’s

higher robustness toward biological and technical variability. As can

be seen in Figure 3 (right), performance variation of Flog_int is sig-

nificantly smaller than that of Flog_log, although both show almost

the same stable overall performance. On the other hand, no signifi-

cant differences in performance variation are noted between

FRlda_int and FRlda_log.

4.2 Characteristic spectral patterns
The above results demonstrate that classification schemes based on

the supervised NMF model Flog achieve the highest balanced accur-

acy values and lowest variation among all investigated methods.

Most notably, these results are achieved with even a small number

of features and are stable across the whole range of feature counts.

This motivates the assumption that in these methods only a small

number of basis vectors Xi;� is actually relevant, and that there is

only little variation in these vectors between different training sets.

To reduce complexity, we replace the 8-fold CV from the previ-

ous section by a 2-fold CV, in which the full dataset is split in two

subsets, A ¼ fL1 . . . L4g and B ¼ fL5 . . . L8g. Balanced accuracy

Fig. 3. Left: Performance of selected classification schemes for different numbers of features and using 8-fold CV. Right: Performance variation for selected classi-

fication schemes for different numbers of features. Each vertical bar represents the minimum and maximum balanced accuracy achieved in the individual CV

folds

Fig. 4. Classification performance achieved with selected supervised and unsupervised NMF models in the 2-fold CV scenario

Fig. 5. Comparison of the number of active weights for Flog and FR_log.

Weights greater than 10% of the maximum absolute weight value are consid-

ered active
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results for some of the classification schemes are shown in Figure 4.

Note that in this scenario, each classifier is trained on only four out

of eight TMAs, which explains the performance decrease as com-

pared with 8-fold CV. Moreover, we extended the variation of the

number of features to include p 2 f1 . . . 10g.
As discussed in Section 3.2, the vector of regression weights b in

Flog (5) reflects the level of influence of the spectral patterns on the

logistic regression term in the NMF model. More specifically, the

i þ 1th entry in b is related to the ith pseudo spectrum Xi;�. Thus,

we can interpret the values b as the relevance of the respective

pseudo spectra for the classification model.

Figure 5 shows how the number of active weights, i.e. weights sig-

nificantly different from zero, changes with the number of features p.

While for Flog the number of active weights remains almost unchanged

at a certain level, it continues to increase with p in the traditional ap-

proach FR_log and is often very close to the total number of weights.

Obviously, the supervised NMF model tends to concentrate the infor-

mation relevant for the classification task on a few pseudo spectra.

This is not possible with the unsupervised NMF models, on the other

hand, as these are independent of the subsequent classification.

A closer investigation of the pseudo spectra X generated by the

Flog model reveals a high correlation among the basis vectors.

Moreover, these patterns exhibit little dependency on the number of

features and thus can be interpreted as being characteristic for the

two classes ADC and SqCC.

To illustrate this, Figure 6 shows the weighted linear combin-

ation of pseudo spectra, given by xb ¼ X> bb, which is the discrimin-

atory pattern underlying the Flog_int classification scheme. In fact,

the dominant features in this pattern align well with results pub-

lished previously on the discrimination of ADC- and SqCC tissue of

the lung (see Supplementary Appendix D, for further details).

5 Conclusion

In the past years, NMF has been established as a valuable tool for

generating low-rank approximations of large datasets. Such methods

have recently been applied to classification problems, where the NMF

serves as a feature extraction step prior to the training of a classifica-

tion model. In the context of such applications, we have presented an

extension of the classical NMF framework by incorporating the class

information on the training data into the NMF feature extraction

step. Formally, this has been achieved in a natural way by introducing

additional penalty terms into the NMF objective functional, thus

being able to solve the modified problem with algorithms that are

similar to those for the original problem. Moreover, this approach

allows to unify the feature extraction and classifier training steps,

reducing computation time and algorithmic complexity.

We have evaluated several variants of this supervised NMF ap-

proach on a challenging classification task related to MALDI MSI

and its application to tumor typing in pathology. The comparison of

the novel methods based on a supervised NMF decomposition with

more conventional NMF-based classification schemes reveals an

improved classification accuracy in some of the investigated meth-

ods. In particular, methods based on a logarithmic regression-type

extension of the NMF decomposition significantly outperform all

other methods in our experiments.

An in-depth analysis of the pseudo spectra and discriminative

patterns generated by the supervised NMF decompositions yields a

high stability of the method with respect to the training subset and

the feature space dimension. Moreover, the generated patterns are

amenable to a biological interpretation, thus allowing to confirm

the hypothesized discriminative markers by complementary analysis

techniques. In our application, we were able to extract discrimina-

tive markers that nicely match mass spectrometric markers identi-

fied by other researchers.

In future work, we plan to extend the application of this method

to multi-class classification problems, as well as developing methods

for making an optimal choice of the method’s hyperparameters.
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