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With the rapid development of flexible electronic devices, flexible transparent

conductive materials acted as the charge transport layer or electrical

interconnect in the devices are of great need. As one of the representative

conductive materials, poly(3,4-ethylenedioxythiophene) (PEDOT) has received

more andmore attention due to its high transparency in the visible region, good

flexibility, especially the tunable conductivity. In order to achieve high

conductivities, various of effective approaches have been adopted to modify

the PEDOT thin films. However, some strategies need to be carried out in

hazardous solvents, which may pollute the environment and even hinder the

application of PEDOT thin films in emerging bioelectronics. Therefore, in this

mini review, we focus on the discussion about the modification methods for

PEDOT thin films in green solvents. According to the source of PEDOT, the

modification methods of PEDOT thin films are mainly described from two

aspects: 1) modification of in-situ PEDOT, 2) modification of PEDOT complex

with poly(styrenesulfonic acid) (PEDOT:PSS). Finally, we conclude with the

remaining challenges for future development on the PEDOT thin films

prepared by green methods.
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Introduction

Flexible transparent conductive films have gained great attractions due to their

promising application in electromagnetic shielding (Bora et al., 2019), antistatic layers

(Al-Dahoudi et al., 2001), lighting displays (Yu et al., 2011), touch sensors (Worfolk et al.,

2015) and bioelectronics (Berggren and Richter-Dahlfors, 2007). In recent years, various

types of flexible transparent conductive films have been developed, including metallic

oxides (Minami, 2008), metallic nanomaterials (Schneider et al., 2016; Hu et al., 2019),

carbon nanomaterials (Kim et al., 2009; Hecht et al., 2011) and conducting polymers (Das

and Prusty, 2012). Among them, conducting polymers show the merits of organic

polymers with good mechanical properties, which meets the demand for flexible

electronic devices. Furthermore, conducting polymers are of good biocompatibility
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and their properties can be fine-tuned by modulating the

chemical structures and doping, which is essential to be

applied in the field of biological systems (Feron et al., 2018).

These unique and irreplaceable properties demonstrated that

conducting polymers have a good prospect of practical

application.

Poly(3,4-ethylenedioxythiophene) (PEDOT) has been one of

the most widely-studied conducting polymers since 1988 when

the PEDOT was first invented by Bayer AG (Jonas et al., 1988).

Up to now some strategies have been developed to synthesize

PEDOT, such as oxidative chemical polymerization,

electrochemical polymerization and transition-metal-catalyzed

polymerization (Jiang et al., 2020). As the first approach to be

applied in synthesizing PEDOT, oxidative chemical

polymerization is still the dominant method to prepare

PEDOT now. Based on the oxidative chemical polymerization,

two main types of PEDOT can be obtained. One is in-situ

PEDOT, which is directly synthesized on the site of

application and need not reprocess the PEDOT thin films.

The other is PEDOT dispersion, among which PEDOT

dispersed with poly(styrenesulfonic acid) (PEDOT:PSS) is the

most representative. PEDOT:PSS is usually prepared and

dispersed in aqueous solution first, and further processing

into films is necessary for application. The properties of the

PEDOT thin films are strongly dependent on the polymerization

conditions and secondary treatment. Therefore, many efforts

have been made to improve the electrical properties of the

PEDOT thin films. However, some strategies need to be

conducted in hazardous solvents such as N-methyl-2-

pyrrolidone (NMP) (Gueye et al., 2016) and pyridine

(Winther-Jensen et al., 2005), which will be harmful to the

environment. Even worse, the toxic solvent residual in the

PEDOT thin films may cause cytotoxicity when applied in

bioelectronics. Consequently, it is essential to avoid the use of

toxic solvents and modify the conductive properties of PEDOT

thin films in green and sustainable solvents. In this mini review,

we focus on the in-situ PEDOT and PEDOT:PSS, and summarize

the modification methods for PEDOT thin films in green

solvents. Finally, the perspectives and remaining challenges for

development of high-quality PEDOT by green methods are

proposed.

Modification of PEDOT in green
solvents

PEDOT is prepared by polymerization of 3,4-

ethylenedioxythiophene (EDOT) monomers. To achieve the

synthesis of PEDOT, EDOT monomers are first oxidated

from neutral state to cationic radicals by oxidants, and then

followed by polymerization. Through changing the solvents used

for polymerization, reaction kinetics and PEDOT chain length

can be tuned effectively. Consequently, solvents have a great

effect on the conductivity of the resulting PEDOT thin film (Ha

et al., 2004). In addition, secondary treatments in green solvents

are also the general methods to modify the conductive properties

of PEDOT thin films (Shi et al., 2015).

Modification of in-Situ PEDOT

In-situ PEDOT is that the EDOTmonomers are polymerized

in situ to form PEDOT under the action of oxidant. Up to now,

three synthetic strategies (Figure 1) have been developed to

prepare in-situ PEDOT: solution-cast polymerization (SCP),

vapor phase polymerization (VPP) and oxidative chemical

vapor deposition (oCVD). Due to the in-situ polymerization,

the synthetic processes influence the properties of in-situ PEDOT

greatly. Therefore, modification of in-situ PEDOT thin films with

green solvents mainly focuses on the synthetic processes.

SCP is the original and simplest method to be applied in

synthesizing PEDOT. In 1988, Bayer AG developed two reagents

known as Baytron M (EDOT monomer) and Baytron C (an

oxidative solution of iron (III) p-toluenesulfonate (Fe(OTs)3) in

butanol) (Jonas et al., 1988). Simply spinning a mixture of these two

reagents (pot-life: 10–20 min) on the substrate can obtain the

PEDOT thin film. Alcoholic solvents are the common solvents

used to synthesize PEDOT for SCP. Alcoholic solvents with high

boiling point usually show high viscosity and hinder the reaction

kinetics, which is bad for longer chain formation. However, high

boiling point solvents are not easy to volatilize, thus affording a

longer reaction time to form longer polymer chains, which allow

higher conductivities to be achieved. Shashidhar et al. have

systematically investigated the influence of the alcoholic solvents

(methanol, propanol, n-butanol, 2-methoxyethanol, pentanol,

hexanol) on the conductivities of SCP PEDOT thin films (Ha

et al., 2004). Interestingly, the PEDOT thin films prepared by

both high and low boiling point alcoholic solvents exhibit nearly

consistent conductivities, which demonstrates that the two

competing factors discussed above are balanced. Therefore, it is a

little difficult to choose alcoholic solvents with high or low boiling

point for the SCP method to prepare PEDOT thin films.

VPP is a general method to prepare conducting polymers,

but it was not until 2003 that Kim et al. first used this strategy to

synthesize PEDOT (Kim et al., 2003). A typical VPP method

could be divided into three steps (Bhattacharyya et al., 2012;

Brooke et al., 2017). Firstly, a solution of oxidant (e.g., FeCl3
(Cho et al., 2014), Fe(OTs)3 (Fabretto et al., 2012) and iron (III)

trifluoromethanesulfonate (Fe(OTf)3) (Brooke et al., 2018))

with or without additive is deposited on the substrate by a

casting or coating process. Then the substrate with oxidant

layer is exposed to the EDOT vapor for polymerization. Bottom

up (the oxidant mixture diffuses from bottom to up) (Brooke

et al., 2014) and top down (the monomer diffuses from top to

down) (Nair et al., 2009) are two possible mechanisms for the

film growth, which is still controversial up to now. Finally, the
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deposited film is washed to remove impurities for purification.

Water vapor in the reaction environment proved to be an

effective proton scavenger and the polymerization will not

occur without water vapor (Fabretto et al., 2008). However,

Fe(III) oxidants have a propensity for water absorption, which

easily lead to crystal formation. Therefore, high humidity

during polymerization usually creates holes in the PEDOT

thin film, thus decreasing the conductivity of the

corresponding PEDOT thin film (Zuber et al., 2008). To

overcome this problem, Fabretto et al. use an amphiphilic

copolymer polyethylene glycol−polypropylene

glycol−polyethylene glycol (PEG−PPG−PEG) to reserve the

water and suppress crystal growth of oxidant. In addition to

water storage and inhibition of crystal formation, the

copolymer can reduce the effective reactivity of the oxidant,

which has a similar effect to pyridine (Mueller et al., 2012). But

the oxidant layer shows liquid-like state while using

PEG−PPG−PEG in the polymerization process, which is

different from the gel-like state for pyridine inhibitor (Evans

et al., 2012). Because the PEG units have an affinity for “water”

(hydrophilic domain) and the PPGmoieties show an affinity for

“oil” (hydrophobic domain), further studies demonstrate that

the PEG/PPG ratio and molecular weight of PEG−PPG−PEG

have a great effect on the conductivities of the PEDOT thin

films, wherein the PEG−PPG−PEG of 5,800 Da (PEG/PPG

ratio = 0.58:1) could afford a sheet-like film with the

conductivity of ca. 3400 S cm−1 (Fabretto et al., 2012).

oCVD is another vapor deposition method to fabricate in-

situ PEDOT, which was first developed by Gleason et al. in 2006

(Lock et al., 2006). The synthesis process of oCVD involves only

one step in which the vapors of EDOT monomer and volatile

oxidant (e.g., FeCl3 (Gharahcheshmeh and Gleason, 2019),

CuCl2 (Im et al., 2008), SbCl5 (Nejati et al., 2014), VOCl3
(Nejati and Lau, 2011) and halogen gases (Chelawat et al.,

2010)) meet and immediately undergo oxidative

polymerization to obtain the PEDOT thin films on the

substrate. Water vapor can also influence the properties of

oCVD PEDOT, which is similar with the VPP method. While

coevaporating water vapor with EDOT monomer and FeCl3
oxidant during the oCVD process, the water vapor will assist

in dissolving FeCl3 oxidant. Therefore, Fe
+ and Cl− ions can be

utilized efficiently, thus resulting in a relatively high doping level

for PEDOT thin films when compared with the oCVD PEDOT

thin films prepared with no water vapor. In addition, water vapor

facilitates the stacking of the PEDOT chains perpendicular to the

substrate, which is beneficial to the charge transport, thus

obtaining a high conductivity of 1042 S cm−1 for water-assisted

oCVD PEDOT thin film (Goktas et al., 2015).

Modification of PEDOT:PSS

PEDOT:PSS is usually synthesized in an aqueous solution

with peroxodisulfates (e.g., K2S2O8 and Na2S2O8) and Fe(III)

FIGURE 1
Utilization of green solvents to modify the in-situ PEDOT thin films prepared by SCP, VPP and oCVD.
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salts (e.g., FeCl3 and Fe2(SO4)3) as the oxidizing reagents.

Compared with aforementioned in-situ PEDOT, PEDOT:PSS

is commercially available as a stable aqueous dispersion, in which

hydrophilic and insulating PSS acts as both a counter-ion and a

soluble template for hydrophobic and conducting PEDOT (Lang

et al., 2009). Therefore, PEDOT:PSS is a promising conductive

material, which can be easy to process by green eco-friendly

techniques. Although extremely convenient, this has limited the

conductivity optimization of PEDOT:PSS on the synthesis level.

Therefore, additive-treatment for PEDOT:PSS aqueous solution

and post-treatment of PEDOT:PSS thin film in green solvents

have been two common modification methods to improve the

conductivities of PEDOT:PSS thin films (Figure 2).

Green solvents such as polar solvents, polyols and ionic

liquids have been used as additives for PEDOT:PSS aqueous

solution to enhance the conductivities of PEDOT:PSS thin

films. In 2002, Kim et al. first studied the effects of polar

solvents on conductivity of the PEDOT:PSS thin film (Kim

et al., 2002). While adding dimethyl sulfoxide (DMSO) in

PEDOT:PSS aqueous solution, the conductivity increased

from 0.8 S cm−1 to 80 S cm−1, which is more remarkable

than addition of N,N-dimethylformamide (DMF) and

tetrahydrofuran (THF). Since then, DMSO has been widely

used as an additive to improve the conductivity of PEDOT:

PSS (Lee et al., 2014; Lim et al., 2014). Polyols like ethylene

glycol (EG) (Wichiansee and Sirivat, 2009), glycerol (Lee

et al., 2010) and sorbitol (Onorato et al., 2010) are also added

into PEDOT:PSS aqueous solution to enhance the

conductivity, wherein EG is a widely-used additive. It was

proved that addition of EG can increase the carrier mobility

and carrier density of PEDOT:PSS thin films, thus increasing

the conductivity (Wei et al., 2013). Ionic liquids are another

additive for PEDOT:PSS aqueous solution to improve the

conductivity of PEDOT:PSS thin films. Due to no volatility,

ionic liquids can remain in the PEDOT:PSS thin films, which

is different from the high boiling point solvents. In 2007, a

series of ionic liquids was first envisaged as additives to

enhance the conductivities of PEDOT:PSS thin films,

wherein 1-butyl-3-methylimidazolium tetrafluoroborate

((BMIm)BF4) afforded the highest conductivity of 136 S

cm−1 (Döbbelin et al., 2007). When compared with

(BMIm)BF4 (287 S cm−1), 1-ethyl-3-methylimidazolium

tetracyanoborate ((EMIm)TCB) is a better additive which

makes the PEDOT:PSS thin film exhibit a conductivity of

2084 S cm−1 (Badre et al., 2012).

Apart from additive-treatment for PEDOT:PSS aqueous

solution, post-treatment of PEDOT:PSS thin film in green

solvents is also a common modification method to improve

the conductivities. Polar solvents such as methanol (Alemu

et al., 2012), EG (Okuzaki et al., 2009) and DMSO (Ouyang

et al., 2004) have been widely used to post-treat PEDOT:PSS

thin film. The hydrophilicity and dielectric constant of the

FIGURE 2
Modification of PEDOT:PSS thin films based on additive-treatment for PEDOT:PSS aqueous solution and post-treatment of PEDOT:PSS thin
film in green solvents.
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alcohols have a great effect on the conductivity enhancement.

While using methanol for post-treatment of PEDOT:PSS thin

film, the conductivity increases from 0.3 to 1362 S cm−1, which

is better than using ethanol and propanol (Alemu et al., 2012).

Aqueous solutions of salt and zwitterion are also applied in

post-treatment of PEDOT:PSS thin film. Ouyang et al. has

systematically studied the cation effect of salts on the

conductivity of PEDOT:PSS thin film. The result shows

that salts with cations of positive soft parameter (Cu2+,

Ag+, and In3+) can significantly enhance the conductivity of

the PEDOT:PSS thin film, while the ones whose cations have

negative soft parameter (Li+, Na+, Mg2+, and Ni2+) have

negligible effect (Xia and Ouyang, 2009). Further studies on

the anions of salts demonstrate that the conductivity

enhancement is relevant to the acid dissociation constants

of the anions. A salt with higher dissociation can benefit the

association of the anions with PEDOT+, thus leading to the

more significant conductivity enhancement (Xia and Ouyang,

2010). Acid aqueous solution is another choice for post-

treatment of PEDOT thin films. Both strong acids like

H2SO4 (Xia et al., 2012) and weak acids like

methanesulfonic acid (Ouyang, 2013) and formic acid

(Mengistie et al., 2014) have been studied for conductivity

improvement of PEDOT:PSS thin films. For example, Kim

et al. have reported the solution-processed crystalline

formation in PEDOT:PSS via H2SO4 post-treatment (Kim

et al., 2014). The concentrated H2SO4 treatment induces a

significant structural rearrangement in the PEDOT:PSS with

the removal of PSS and leads to the formation of crystallized

nanofibrils via a charge-separated transition mechanism.

Therefore, a conductivity of 4380 S cm−1 is obtained for

PEDOT:PSS thin film after post-treatment with

concentrated H2SO4.

In fact, treatment of PEDOT:PSS is not limited to using only one

method or reagent. In order to achieve high conductivities,

combination of these strategies has been utilized to treat the

PEDOT:PSS. For instance, Kim et al. prepared PEDOT:PSS thin

filmswith the highest conductivity of 1418 S cm−1 through adding EG

into the PEDOT:PSS aqueous solution and subsequent post-

treatment of PEDOT:PSS thin film with an EG bath (Kim et al.,

2011). Subsequently, Pipe et al. adopt the similar method to

investigate the PEDOT:PSS (DMSO-mixed) thin films post-treated

with an EG bath (Kim et al., 2013). In addition, post-treatment of

PEDOT:PSS thin film with a mixture of solvents is also a general

method to improve the conductivities of PEDOT:PSS thin films. Luo

et al. post-treat PEDOT:PSS thin films with a mixed solution of

DMSO and (BMIm)BF4 (Luo et al., 2013). The results show that all

the PEDOT:PSS thin films post-treated with the mixed solution

exhibit higher conductivities comparedwith the pristine films. Kumar

et al. find that the conductivity of the PEDOT:PSS thin film post-

treated with a mixed solution of p-toluenesulfonic acid (TsOH) and

DMSO can increase to ca. 3500 S cm−1 (Mukherjee et al., 2014).

Conclusion and perspective

As one of the most widely-studied conducting polymers,

PEDOT shows the merits of good flexibility, high transparency in

the visible region and tunable conductivity. The conductivities of

the PEDOT thin films are strongly dependent on the deposition

conditions and secondary treatments. Therefore, many methods

have been developed to improve the conductive properties of the

PEDOT thin films. In this mini review, we summarize the

modification of two types of PEDOT (in-situ PEDOT and

PEDOT:PSS) in green solvents. The modification methods of

in-situ PEDOT are mainly introduced from the aspect of

synthetic strategies (SCP, VPP and oCVD), while the

modifications of PEDOT:PSS are presented according to

treatment methods (additive-treatment for PEDOT:PSS

aqueous solution and post-treatment of PEDOT:PSS thin

film). Although significant progress has been made in the

conductivity of PEDOT, there are still some challenges. First,

strategies are urgently needed that can afford a PEDOT thin film

prepared by dispersion methods with a high conductivity

comparable to the in-situ PEDOT due to the green eco-

friendly process of PEDOT dispersions. In addition,

microstructure plays a crucial role on the conductivity of

PEDOT, but there is still a lack of effective and green

methods to control the stacking orientation of PEDOT chains

in the PEDOT thin film. Finally, the conductive mechanism of

PEDOT is controversial, which needs further study to guide the

modification of PEDOT thin films by green non-pollution

approaches.
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