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Computer classification and
construction of a novel
prognostic signature based
on moonlighting genes in
prostate cancer

Wangli Mei1,2, Liang Jin1,2, Bihui Zhang1,2, Xianchao Sun1,2,
Guosheng Yang1, Sheng Li3* and Lin Ye1,2*

1Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University,
Shanghai, China, 2Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China, 3Department of Biochemistry, Dalian Medical University,
Dalian, China
Advanced prostate cancer (PRAD) patients have poor prognosis and rising

morbidity despite the ongoing iteration of molecular therapeutic agents. As

newly discovered proteins with several functions, Moonlighting

proteins have showed an important role in tumor progression but has not

been extensively investigated in PRAD. Our study aimed to identify

moonlighting-related prognostic biomarkers and prospective PRAD therapy

targets. 103 moonlighting genes were gathered from previous literatures. A

PRAD classification and multivariate Cox prognostic signature were

constructed using dataset from The Cancer Genome Atlas (TCGA).

Subsequently, we tested our signature’s potential to predict biochemical

failure-free survival (BFFS) using GSE21032, a prostate cancer dataset from

Gene Expression Omnibus (GEO). The performance of this signature was

demonstrated by Kaplan-Meier (KM), receiver operator characteristic (ROC),

areas under ROC curve (AUC), and calibration curves. Additionally, immune

infiltration investigation was conducted to determine the impact of these genes

on immune system. This signature’s influence on drug susceptibility was

examined using CellMiner’s drug database. Both training and validation

cohorts demonstrated well predictive capacity of this 9-gene signature for

PRAD. The 3-year AUCs for TCGA-PRAD and GSE21032 were 0.802 and 0.60

respectively. It can effectively classify patients into various biochemical

recurrence risk groups. These genes were also assessed to be connected

with tumor mutation burden (TMB), immune infiltration and therapy. This work

created and validated a moonlighting gene signature, revealing fresh

perspectives on moonlighting proteins in predicting prognosis and improving

treatment of PRAD.
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Introduction

Generally, the prevalence of PRAD has been growing in recent

decades. According to a recent survey, prostate cancer has risen to

become the second most frequent disease in males globally and the

fifth top reason of tumor-related mortality in men (1). PRAD was

diagnosed in the early stages in approximately 93% of the cases,

with 5-year survival rate approach to 100% (2). In contrast, the five-

year survival rate for individuals with advanced tumors was only

around 30% (3). Advanced PRAD included Gleason score 8-9,

pathological T stage T3-4, pathological N stage N >= 1, as well as M

stage M >= 1 (4). The Prostate-specific antigen (PSA) test was

applied for the early diagnosis of PRAD in early 1990s, and the

number of cases of prostate cancer diagnosed substantially rose.

When it comes to screening for PRAD, PSA is now best first-step

serum test, since it remains the most often utilized biomarker (5).

Although PSA has achieved outstanding achievements in early

diagnosis of PRAD, there is no unanimity as to if PSA may lower

risk of mortality in PRAD patients (6). Thus, it is crucial to identify

biomarkers for early detection of PRAD and as prospective

therapeutic targets for reducing the aggressiveness of PRAD,

preventing distant metastasis, and improving patient outcomes.

Additionally, molecular imaging, such as multiparametric magnetic

resonance of the prostate (mpRNA, a radiologic technique), has

played an important role in the diagnosis, stage, Gleason score and

treatment of PRAD (7, 8). Although radical prostatectomy (RP) has

been regarded as the most effective therapy for PRAD, around 30%

of individuals still develop to biochemical recurrence (BCR)

following RP (9). Having a current PSA concentration > 0.2ug/L

after RP is classified as having a BCR, and it may be a sign of

metastasis as well as a poor prognostic predictor (10). It is forecasted

that around 40% of BCR patients following RP will die from PRAD

within 15 years (11). So, early prediction of BFFS for PRAD patients

was crucial for selecting the optimum therapeutic method and

preventing PRAD development. Currently, standard radiation and

chemotherapy were used to treat PRAD, particularly serious PRAD
Abbreviations: PRAD, prostate cancer; TCGA, The Cancer Genome Atlas;

BFFS, biochemical failure-free survival; GEO, Gene Expression Omnibus;

KM, Kaplan-Meier; ROC, receiver operating characteristic; AUC, areas under

ROC curve; TMB, tumor mutation burden; PSA, Prostate-specific antigen;

RP, radical prostatectomy; BCR, Biochemical recurrence; RNA-seq, RNA

sequencing; mDEGs, m7G-related differentially expressed genes; ESTIMATE,

Estimation of Stromal and Immune cells in Malignant Tumor tissues using

Expression; ICGs, immunological checkpoint genes; LASSO, least absolute

shrinkage and selection operator; HR, hazard ratio; CI, confidence interval;

GSEA, Gene Set Enrichment Analysis; MSigDB , Molecular Signatures

Database; GO, Gene Ontology; BP, Biological Process; CC, Cellular

Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of

Genes and Genomes; SNV, single nucleotide variation; GSVA, Gene Set

Variation Analysis; PCA, Principal component analysis; ssGSEA, single-

sample gene set enrichment analysis; NCI, US National Cancer Institute.
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(12). Nevertheless, for people with serious PRAD, the overall

effectiveness was remained inadequate. As a result, accurate new

diagnostic markers and prognosis models are urgently required to

increase the credibility of early diagnosis and targeted therapy. The

term moonlighting proteins refers to proteins with several

functions. There are over a hundred proteins, including as

enzymes, receptors, saffolds, transcription factors, etc., that have a

secondary function. The moonlighting proteins have a wide range

of biological roles, including control of transcription, apoptosis,

DNA splicing, and DNA repair. Yet, the mechanism by which

moonlighting genes contribute to tumor growth remained disputed

and unclear (13). It is still unknown if the moonlighting gene

signature is substantially relevant with the prognosis of PRAD

patients and their immune microenvironment or treatment.

It was the goal of our study to develop a prognostic signature in

PRAD patients based on moonlighting genes in ability to forecast

the BFFS of PRAD patients, as well as to determine whether the

signature could regulate the immune microenvironment and serve

as a potential therapeutic to improve prognosis of PRAD patients.
Materials and methods

Data acquisition

MoonProt database was used to obtain the 103 moonlighting

genes for Homo sapiens, which are listed in Supplementary

Table 1 (14). RNA sequencing (RNA-seq) and clinical data were

acquired from TCGA (15) and GEO (GSE21032). The TCGA

cohort contained 551 PRAD samples (52 normal samples and

499 tumor samples), while the GEO cohort, which served as an

external validation, contained 185 tumor samples. All samples

were collected after RP with detailed clinical data and follow-up

information. Received RNA-seq data consisted of row-counts.

Clinical information covered age, tumor stage, Gleason score,

and other variables. We identified moonlighting-related

differentially expressed genes (mDEGs) that were statistically

significant with p value< 0.05 (16). Immune, estimate, and

stromal score of TCGA-PRAD samples (Supplementary

Table 2) were obtained from Estimation of Stromal

and Immune cells in Malignant Tumor tissues using

Expression (ESTIMATE) (17). 79 immunological checkpoint

genes (ICGs, Supplementary Table 3) were obtained from

published literature (14, 18, 19).
Construction of a signature for
predicting prognostic of individuals
with PRAD

The BFFS time of mDEGs in TCGA with p< 0.05 was

evaluated using univariate Cox regression analysis, and 16

prognostic-related mDEGs were discovered as candidate genes.
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To narrow the scope of candidate genes, the R package “glmnet”

was applied in conjunction with penalty parameter (l) to

perform least absolute shrinkage and selection operator

(LASSO) Cox regression analysis (20). These genes were

utilized to explore connections between gene expression and

PRAD subtypes. KM curves were drawn to illustrate the BCR

difference between different clusters. Additionally, to evaluate

the clinical features and gene expression levels in different

clusters, we constructed a heatmap.

Each target gene’s hazard ratio (HR) and 95 percent

confidence interval (CI) were calculated using “survminer”

package. The genes’ regression coefficients were obtained by

multivariate Cox regression analysis, and risk score was

calculated using following equation: risk score  =  o
n

i
 

Xi * Yi   (X: coefficients, Y: gene expression). The median risk

score was applied to split patients into 2 clusters with low and

high-risk. In addition, principal component analysis (PCA) was

utilized to see whether these patients were properly separated

into two clusters. The predictive efficacy of this signature in

predicting the BFFS of PRAD patients was evaluated by KM

survival curves and time-dependent ROC.
Internal and external validation of this
signature and clinical correlation analysis

The clinical information of age, tumor stage, and Gleason score

were all taken from the TCGA cohort for internal confirmation.

Additionally, the GEO cohort provided the clinical data for external

validation (GSE21032). In order to determine whether or not this

signature could be considered the independent prognostic factor,

both univariate and multivariable Cox regression analyses were

performed on the data. After multivariate Cox regression analysis

(21), a nomogram was produced using the outcomes and a

calibration curve was generated to verify this nomogram’s accuracy.

Correlations between PRAD clinical features and risk scores, as

well as gene expression levels from this predictive signature, were

evaluated using Pearson’s correlation analysis. Furthermore, KM

curve was employed based on this signature to measure the BFFS of

PRAD patients in different stages.
Gene set enrichment analysis

It was decided to use gene set enrichment analysis (GSEA) to

analyze relative enrichment of certain gene sets across a sample

population and to detect the statistically differential expression

patterns between different risk groups in our study (22).GSEA

software (version 4.1.0) was obtained from https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp (23). The GSEA was carried

out with the help of Molecular Signatures Database (MSigDB)

7.5.1 version. In the categories of Biological Process (BP),
Frontiers in Oncology 03
Cellular Component (CC), Molecular Function (MF), Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, and

immunologic signature gene sets, the gene sets enrichment

analysis was conducted. Gene sets having a normal of P-

value< 0.05 were regarded to be statistically differential gene

sets in this study.
Relationship between this signature and
tumor mutation burden (TMB)

TCGA’s single nucleotide variation (SNV) dataset of PRAD

patients in the form of masked somatic mutations was then

acquired to investigate correlation between TMB of PRAD

patients and risk score derived from this signature (Workflow

Type: aliquot ensemble somatic variant merging and masking)

(24, 25). “Maftools” R package was employed to analyse TMB

scores of individuals with PRAD, and the association between

subgroups was assessed.
Evaluation of tumor immune
microenvironment

An R package called “limma” was utilized to obtain genes

that were expressed differently in individuals with high and low

levels of risk considering |log2FC| ≥ 1 and FDR< 0.05. Gene Set

Variation Analysis (GSVA) (26) was employed to analyze

immune cells infiltrating and immune pathways by “GSVA” R

package with single-sample gene set enrichment analysis

(ssGSEA, https://software.broadinstitute.org/cancer/software/

genepattern/). Additional to this, univariate Cox regression

analysis was conducted on these DEGs in order to find those

that were prognostic-related and scored higher with p< 0.001.

The “corr.test” function in the “psych” R package was utilized to

examine correlation between these genes and immune cells or

immune-related pathways. Immunological-related scores and 79

ICGs were subjected to a correlation analysis in order to learn

more about the link between the signature and the immune

microenvironment with p< 0.05.
Drug sensitivity analysis

Using the CellMiner database, which contains 60 different

cancer cell lines from nine different malignancies, we were able

to obtain drug sensitivity information for the National Cancer

Institute (NCI) 60 in United States (27). The drugs that had been

approved by Food and Drug Administration or were currently in

clinical development were chosen for further investigation.

Under the help of Pearson’s correlation analysis, we were able

to assess relationship between this signature and drug sensitivity.
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Statistical analyses

PRAD patients in TCGA and GEO cohorts were investigated

using univariate and multivariate Cox regression analysis to

construct one signature that predicted prognosis. Patients’

prognosis was assessed using their BFFS. The gene signature’s

prognostic value was demonstrated using the KM curve, ROC

curve and Cox regression analysis. Chi-square tests, corrected chi-

square tests, and Pearson’s correlation analysis were employed to

compare continuous data between two groups. P< 0.05 was used

to determine statistical significance for all of our analyses. All

statistical analyses were carried out by R 4.41 (packages: limma,

glmnet, survminer, prcomp, timeROC, rsm,Maftools, psych, etc.).
Results

Identification of prognostic
moonlighting-related genes in
TCGA-PRAD

According to the results of differential analysis in TCGA

cohort, 76 moonlighting-related genes (Supplementary Table 4)

were recognized as being differently expressed between normal

and prostate cancer tissues with p< 0.05 and FDR< 0.05. Also,

univariate Cox regression inferred 23 predictive genes with the

same criterion (Figure 1A). A heatmap revealed expression levels

of 16 overlapping genes in paracancerous and cancerous prostate

tissues (Figures 1B, C). A correlation network of 16 genes was

established to examine relations between them (Figure 1D).
Tumor classification

Due to the outcomes of the univariate Cox regression and

differential analyses, 16 mDEGs were revealed to be linked with

prognosis of PRAD patients. Next, the LASSO regression

analysis was performed to exclude genes for consideration in

order to establish a favorable signature (Figures 2A, B), and a 9-

gene signature was generated. For the purpose of investigating

relationships between expression of these genes and the different

PRAD groups, we conducted a consensus clustering analysis

with PRAD patients from TCGA. Through a series of iterations

of raising the clustering variable (k) from 2 to 10, we discovered

that when k = 3, these patients could be effectively classified into

3 groups based on these genes (Figure 2C). 3 clusters were also

analyzed for the BFFS time and clearly distinct discrepancies

were observed (P< 0.001, Figure 2D). Gene expression levels,

clusters, clinical characteristics, including age (≤60 or >60 years),

Gleason score (<=6, = 7 or >=8), pathological T/N stage (T1+T2

or T3+T4, N0 or N1), and BCR status (BCR or No BCR) were

shown in a heatmap, and some differences in clinical features

across three clusters were discovered (Figure 2E).
Frontiers in Oncology 04
Construction and validation of
moonlighting-related gene
signature in TCGA

Following is formula for calculating risk score associated with this

signature using multivariate Cox regression analysis: risk score =

(0.061* ARRB2 exp.) + (-0.010* GARS exp.) + (0.048 * OFD2 exp.) +

(0.012* PGK1 exp.) + (0.008* PKM exp.) + (0.057* PLOD3 exp.) +

(0.034 * PNN exp.) + (0.034* TYMP exp.) + (0.075* WDR5 exp.)

(Figure 3A). The 339 individuals (those with missing clinical data and

BCR data excluded) were classified into 170 low and 169 high-risk

categories. BCR status plot revealed that high-risk individuals had

more BCR samples and shorter BCR time (Figures 3B, C). Moreover,

PCA revealed that these individuals were effectively separated into two

groups (Figure 3D). In accordance with such a finding from KM

curve, we discovered that this signature was substantially associated

with BFFS of PRAD patients, with BFFS in high-risk group being

much shorter (Figure 3E, p< 0.001, HR: 0.0138, CI: 0.081- 0.233).

Besides, AUC values of 1-, 3-, and 5-years BFFS assessed by this

signature were around 0.771, 0.802, and 0.771, respectively (Figure 3F).

Internal validation was performed using TCGA data. Table 1

displayed the clinical features of these individuals and the

outcomes of Pearson’s correlation analysis. This signature was

shown to be substantially linked with the development of PRAD,

specifically in pathologic T/N stage, Gleason score, and BCR

status. The univariate and multivariate Cox regression analyses

were used to assess if our signature could be one independent

prognostic factor to predict BFFS in PRAD patients. Following a

univariate Cox regression analysis, we discovered that Gleason

score, pathologic T/N stage, and risk score (p< 0.001, HR =

7.304, 95% CI: 3.453-15.451) were all potentially predictive

markers for PRAD patients in TCGA (Figure 4A). After

performing a multivariate Cox regression analysis, it is

possible that this risk score associated with this signature was

identified as the independent prognostic factor (p< 0.001, HR =

4.977, 95% CI: 2.232-11.099, Figure 4B). Prognostic nomogram

analysis revealed that this signature had excellent prediction

performance for BFFS of PRAD (Figure 4C). In order to

comprehend the accuracy of such a signature, the calibration

curve was drawn to represent the likelihood of BCR at 1, 3, or 5

years in PRAD patients, and the outcome demonstrated the

optimum agreement between the forecast of the nomogram and

the actual observation (Figure 4D).
External validation of this risk prognostic
signature in GEO

Data for samples used for external validation were obtained

from GEO (GES21032), which included 179 PRAD samples in

total. After excluding the individuals who did not have full

clinical or BFFS data, 115 patients were chosen (Table 1). In the

GEO cohort, the risk score was shown to be substantially linked
frontiersin.org
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with the Gleason score and the BCR based on correlation

analysis. The prognostic values of these genes in GEO were

assessed by univariate Cox regression analysis (Figure 5A). On

the basis of identical technique described above, these

individuals were likewise classified into 58 low and 57 high-

risk categories. Meanwhile, patients in high-risk cluster were

more prone to BCR and had shorter BFFS time (Figures 5B, C).

According to the results of the PCA, we could find that these

patients were also well split into two clusters of patients

(Figure 5D). The KM curve revealed a substantial difference

between two groups’ BFFS (Figure 5E). ROC curve analysis in

this cohort illustrated that our model had significant prognostic

value with AUC = 0.692 for 1-year, 0.680 for 3-year, and 0.619

for 5-year BCR (Figure 5F). This signature might potentially

serve as a useful predictor of BFFS in patients with PRAD, as

shown by results of univariate and multivariate Cox regression

analysis (Figures 5G, H). Overall, this signature could well

predict postoperative BCR in patients with PRAD.
Frontiers in Oncology 05
Clinical correlation of the signature in
PRAD patient

The clinical features were correlated with our signature

genes (ARRB2, GARS, ODF2, PGK1, PKM, PLOD3, PNN,

TYMP, WDR5) and risk score according to Pearson’s

correlation analysis. The result of the differential analysis was

shown in Figure 6A, ARRB2, GARS, ODF2, PLOD3, PNN, TYMP

and WDR5 were upregulated in tumor tissues, while PGK1 and

PKM were downregulated. Furthermore, expression levels of

majority of genes were shown to be substantially linked with the

clinical features of PRAD. Particularly, the risk score grew in

conjunction with the development of the tumor in this study (p

value of Gleason score, pathologic T staging, pathologic N

staging and BCR all< 0.001, Figures 6B–F). Then, to further

investigate the predictive usefulness of this signature in PRAD

patients with varying clinical features, we used KM curve

analysis in patients at various stages. According to the results
B

C D

A

FIGURE 1

The candidate moonlighting genes in TCGA. (A) Univariate Cox regression analysis of PRAD for 23 prognostic moonlighting genes with P< 0.05.
(B) Identification of mDEGs correlated with BFFS. (C) The expression of 16 prognosis-related mDEGs between normal and tumor samples.
(D) The correlation network of 16 candidate genes.
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B C

D E F

A

FIGURE 3

The construction of risk signature in TCGA. (A) Coefficient of 9 genes in this signature. (B, C) Distribution, BFFS status and risk score of PRAD
patients. (D) PCA graph for PRAD patients. (E) KM curve for BFFS of PRAD patients based on high and low-risk groups. (F) ROC curves of 1, 3, 5-
year for this signature.
B C

D

E

A

FIGURE 2

Classification of PRAD based on moonlighting genes in TCGA. (A, B) Lasso regression analysis of 16 candidate moonlighting genes, and 9 genes
were excluded for the signature. (C) The classification of PRAD patients based on the consensus clustering matrix (k = 3). (D) KM curves of BFFS
between 3 clusters. (E) Heatmap of the clinicopathologic features and 9 genes in 3clusters.
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of the analysis, we could find that the BFFS time of patients with

different age, Gleason score >=7, pathologic N0 stage and

different pathological T stage had significant BFFS difference

in different risk clusters (Figure 7). The outcomes of patients
Frontiers in Oncology 07
with N1 and Gleason score = 6 were unfavorable, perhaps

because to the limited sample size. In general, this signature

provided a decent prediction impact for the majority of patients

with different stages of PRAD.
B

C D

A

FIGURE 4

Internal validation of risk signature in TCGA. (A, B) Univariate and multivariate Cox regression analysis in TCGA cohort. (C) Nomogram based on
this signature for 1, 3, 5-year BFFS prediction (The red point represented the prediction of one patient in TCGA cohort). (D) Calibration graph for
agreement test between 1, 3, 5-year BFFS prediction and actual observation.
TABLE 1 Clinical characteristics of PRAD patients in different risk clusters.

Clinical characteristics (samples) TCGA cohort (339) GSE21032 cohort (115)

Low risk High risk p value Low risk High risk P value

Age (years) <=60 78 (23%) 69 (20%) 0.407 38 (33%) 34 (30%) 0.647

>60 92 (27%) 100 (29%) 20 (17%) 23 (20%)

Pathologic N N0 159 (47%) 122 (36%) <0.001 55 (48%) 48 (42%) 0.074

N1 11 (3%) 47 (14%) 3 (3%) 9 (8%)

Pathologic T T1+T2 78 (23%) 39 (12%) <0.001 38 (33%) 30 (26%) 0.224

T3+T4 92 (27%) 130 (38%) 20 (17%) 27 (23%)

Gleason score <=6 14 (4%) 5 (1%) <0.001 15 (13%) 13 (11%) 0.025

=7 116 (34%) 54 (16%) 38 (33%) 28 (24%)

>=8 40 (12%) 110 (32%) 5 (4%) 16 (14%)

BCR No 162 (48%) 121 (36%) <0.001 49 (43%) 33 (29%) 0.003

Yes 8 (2%) 48 (14%) 9 (8%) 24 (21%)
front
P value was calculated by Pearson’s correlation to evaluated correlation between signature and clinical characteristics.
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Possible biological mechanisms of the
signature in PRAD

In order to investigate the possible pathways that were

substantially associated with this signature in PRAD, GSEA

was applied between high and low-risk TCGA clusters. When

a nominal p value< 0.05 was found, gene sets were regarded

differentially enriched. GSEA revealed significant differences in

enrichment of MSigDB collection (c5.go.v7.5.symbols.gmt, c2.

cp.kegg.v7.5.symbols.gmt, c7.immunesigdb.v7.5.symbols.gmt).

Results of GSEA for Gene Ontology (GO), KEGG and

immunesigdb were shown in Figures 8A–C respectively. We

found that GOCC U1 SNRNP (normalized enrichment score,

NES = 2.19), GOBP HOMOLOGOUS CHROMOSOME

PAIRING AT MEIOSIS (NES = 2.14), KEGG CELL CYCLE
Frontiers in Oncology 08
(NES = 1.78) and KEGG BASE EXCISION REPAIR

(NES = 1.91) were more active in high-risk group.
The relationship between risk
score and TMB

To understand correlation between some common mutated

genes with different risk levels, the heatmaps were drawn in high

and low-risk clusters (Figure 9A). Waterfall maps were constructed

to evaluate genetic mutation difference between subgroups, and

results demonstrated that TP53, TNN and SPOP had higher

mutation rate in high-risk groups, while SPOP, TTN and KMT2D

had higher mutation in low-risk groups (Figure 9B). KM curve was

used to study the effect of TMB (Supplementary Table 5) on PRAD
B C

D E F

G H

A

FIGURE 5

External validation of risk signature in GEO cohort. (A) Univariable Cox regression of 9 genes in GEO cohort. (B, C) Distribution, BFFS status and
risk score of PRAD patients. D PCA graph for PRAD patients. (E) KM curve for BFFS of PRAD patients based on subgroups. (F) AUC of time-
dependent ROC curves. (G, H) Univariate and multivariate Cox regression analysis in GEO cohort.
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patients’ prognosis, results revealed that there was not significant

BFFS difference between high and low TMB score groups which

were classified depended on median TMB score (Figure 9C).

However, we could find that this signature had great influence on

patients’ prognostic nomatter what TMB scores they had (p< 0.001,
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Figure 9D). Furthermore, the TMB was used to complete a

correlation test between subgroups. PRAD patients in high-risk

group exhibited increased TMB (p = 0.032, Figure 9E), indicating

that they had more mutant tumor cells and that immunotherapy

may be more effective for them.
B C

D E F

A

FIGURE 6

Clinical association analysis of this signature in TCGA. (A) Differential expression of 9 genes between normal and tumor tissues. (B-F) The
association between the signature and clinical characteristics. (ns, p >= 0.05; *0.01 <= p < 0.05; **0.001 <= p < 0.01; ***p <0.001)
B C DA

FIGURE 7

KM curves based on clinical features for BFFS of this signature in TCGA. The KM curves of patients based on ages (A); Gleason scores (B);
pathological stage (C) and pathological stage (D).
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B

C

A

FIGURE 8

Results of GESA in TCGA. (A) The results of GSEA in GO (BP, CC, MF). (B) The results of GSEA in KEGG. (C) The results of GSEA in immunologic
signature gene sets. (curves above horizontal line: positive correlation; the curve below horizontal line: negative correlation; the heatmap below
curves: the enrichment degree of these pathways or gene sets in PRAD patients).
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Analyze of tumor immune
microenvironment and immunotherapy

The microenvironment, which included immune cells,

inflammatory factors, extracellular matrix, and different

growths, had a significant influence on the diagnosis and

treatment of cancer. To investigate the connection between

various immune cells and immunological-related pathways,

correlation analysis was performed on PRAD infiltrating

immune subsets. Figures 10A, B represented the outcome of

the association between immune subgroups that infiltrate

tumors. There was a stronger association between immune

cells or pathways if the correlation coefficient was closer to 1.

SsGSEA was then used to examine enrichment scores of 16
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immune cells and 13 pathways in TCGA, and 616 DEGs were

discovered between subgroups. Result showed that high-risk

group had significantly higher infiltration scores in immune

cells (such as dendritic cell family, T follicular helper cells, and

macrophages) and immune-related pathways (such as check-

point, human leukocyte antigen, inflammation-promoting, T

cell co-stimulation), while had lower scores in mast cells,

neutrophils and Type II interferon (IFN) response

(Figures 10C, D). PRAD patients’ enrichment scores for these

cells and pathways were visualized using a heatmap

(Figure 11A). T helper cells, human leukocyte antigen and

major histocompatibility complex (MHC) class I were found

to be upregulated in PRAD. Among the 616 DEGs reported

above, the univariate cox analysis discovered 21 prognostic-
B

C D

A

E

FIGURE 9

The correlation between TMB and the signature in TCGA. (A) The heatmaps of the correlation between some common mutated genes in both
high-risk and low-risk groups. (B) Waterfall plots mutated genes in both subgroups. (C, D) KM curves of patients with different TMB and risk
levels. (E) The differential analysis of TMB between different risk groups.
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related DEGs with p< 0.001. Figure 11B demonstrated the

enrichment of these genes in immune cells and pathways. We

discovered a strong connection between IGKV4-1, IGHV5-51,

and BST and these particular cells and pathways during our

research. This signature was found to have a considerable impact

on the immune microenvironment, which may benefit PRAD

patients in terms of treatment and prognosis. To further

investigate correlation between signature and immunity scores

and immunotherapy, the correlation analysis of immune,

estimate and stromal scores from ESTIMATE was performed

between subgroups. Estimate score and immunological score

were considerably higher in high-risk group (p< 0.05), indicating

that this signature was highly related with the body’s immune

system (Figures 12A–C). Then, differential expression analysis of

ICGs between subgroups was employed by Wilcoxon-test with |

log2FC | ≥ 0.4 and p< 0.05. The ICGs such as CD70, HLA-DOB

and PDCD1 were identified upregulated in high-risk group

(Figures 12D–L). These ICGs had great potential to become

new therapeutic targets, which may improve prognosis for

PRAD patients.
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Correlation between risk score and
sensitivity of drug to chemotherapy

Pearson’s correlation analysis was used to examine

correlation between the signature and drug sensitivity of NCI-

60 cell lines. We found a positive correlation between this

signature and methylprednisolone and sabutoclax, as well as a

negative correlation between dasatinib and pluripotin and

vismodegib (Figure 13).
Discussion

In our study, we discovered a novel signature (ARRB2, GARS,

ODF2, PGK1, PKM, PLOD3, PNN, TYMP, WDR5) based on

moonlighting-related genes, which was significantly associated

with prognostic, immune microenvironment and therapy of

PRAD patients. This signature could be one independent

prognostic factor to predict BFFS of PRAD patients. It was also

associated with immune status and immunotherapy. So, our study
B

C D

A

FIGURE 10

Immune infiltrating and correlation analysis. (A) Correlation between different immune cells. (B) Correlation between different immune-related
pathways. (C, D) Analysis of enrichment scores of immune cells and immune-related pathways. (ns, p >= 0.05; *0.01 <= p < 0.05; **0.001 <= p
< 0.01; ***p < 0.001)
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FIGURE 12

The analysis of immune scores and ICGs. (A-C) Pearson’s association analysis of ESTIMATE score, immune score and stromal score between
subgroups. (D-L) Association analysis of some ICGs.
BA

FIGURE 11

Immune microenvironment in TCGA-PRAD cohort. (A) Enrichment degree of immune cells and pathways in PRAD patients. (B) Association
between prognostic-related DEGs and immune cells or pathways (DEGs: differential expression genes between high-risk and low-risk groups;
red: positively correlated, violet: negatively correlated).
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suggested that the 9-gene signature deserves further study in clinical

as a potential prognostic model.

In recent years, the prevalence of PRAD has been on the rise.

Patients’ prognoses are still unpleasant, particularly for those

with advanced tumors (3). Evidence suggests that the frequency

of PRAD is influenced by the expression of certain genes, as well

as environmental and lifestyle variables such pathogen infection,

physical and chemical factors, and dietary factors (28). The

significance of BCR genomic alterations in PRAD cannot be

overstated, with ETS family mutations accounting for around

45% of PRAD patients (29). Nevertheless, a novel set of

biomarkers to predict the occurrence, development, and

outcomes of PRAD patients was required to be developed.

The idea of “moonlighting” proteins suggests that some

proteins can have many functions, which lends credence to the

idea that human monogenic diseases are phenotypically

complicated (30). There are numerous moonlighting proteins

(enzymes, transcription factors, scaffolds, adhesins, etc.) that offer

molecular linkages between diverse biological processes. The

moonlighting genes have several biological activities, including

modulation of cell motility, angiogenesis, RNA splicing, and

mRNA translation inhibition. Also mentioned is that the

close association between moonlighting genes and cancer (31).

103 moonlighting genes for Homo sapiens were acquired. For

example, one of the moonlighting genes, BRCA1, has been verified

to associated with RNA polymerase II holoenzyme and acted as a
Frontiers in Oncology 14
transcription regulator (32). Our study analyzes the relationship

between this signature and prognostic, immunemicroenvironment,

TMB and drug sensitivity.

Among the 9 moonlighting genes from the signature, some

have been reported in PRAD. CXCR7/Src/EGFR-mediated

miyogenic signaling is negatively regulated by ARRB2, a tumor

suppressor, which plays a crucial role in controlling CXCR7/EGFR-

mediated tumor cell proliferation (33). For patients with PRAD,

ODF2, an antigen identified by treatment-associated autoantibodies,

could be considered as a feasible and customized immunotherapy

option (34). Prostate cancer cells release PGK1, which regulates

bone metastatic activity by increasing osteoblastic activity and

decreasing osteoclastic function (35, 36). PKM2/PKM can be

activated in PRAD patients to speed up transfer of extracellular

vesicles to bone marrow stromal cells and control androgen

responses to deal with the decreased androgen levels and hypoxia

(37). Furthermore, PKM2/PKM play a crucial role in regulating cell

cycle and tumor metabolism, including glycolysis (38). PNN, a

desmosome-associated protein that regulates cell cycle, cell

invasion, migration, and EMT processes, might be a viable

therapeutic target for PRAD, and PNN can regulate PI3K/AKT

and ERK/MAPK pathway (39), which contribute greatly to the

development of PRAD (40). WDR5 has been reported to be a

significant epigenomic integrator of histone phosphorylation and

methylation, be an important driver of androgen-dependent PRAD

cell proliferation and be upregulated in PRAD (41). Even though
FIGURE 13

Association between this signature and drug sensitivity.
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they have not been studied further in PRAD, the other genes have

important biological functions as well. tRNA-charging enzyme

GARS has been found as a biomarker for a variety of cancers.

Apoptosis in hepatocellular carcinoma cells can be inhibited by

reduction of GARS, whereas overexpression can accelerate cell

growth, diminish xenograft necrosis, and increase CD206+

tumor-associated macrophage infiltration (42). PLOD3 has also

been verified to be connected with colorectal cancer’s progression

(43), lung cancer (44) and ovarian cancer (45). In triple-negative

breast cancer, increased TYMP expression was significantly related

with a positive reaction to capecitabine (46). Although GARS,

PLOD3 and TYMP have been studied extensively, the specific

functions of the genes in PRAD have not been researched, which

is deserved for further research.

A new predictive signature for PRAD depended on

moonlighting genes had been validated in TCGA and GEO

cohorts, which we analyzed in our analysis. Immune

microenvironment and immunotherapy were also suggested to

be associated to this signature. However, there are some

limitations of this signature. When it comes to prognostic

performance, for example, RNA-seq and clinical data were

gathered from public sources, which may have some limitations.

Artificial intelligence (AI) is helping researchers analyze larger

data sets and provide faster, more accurate diagnoses of PRAD

(47). AI combined with molecular characterization and

radiogenomics could better enhance the accuracy of PRAD

diagnosis and help choose the most appropriate treatment

option, which can be further combined with our research (8).

From this research, we selected 9 moonlighting genes as

biomarkers to predict the progress and prognostic of PRAD,

which may increase the costs for each patient, so our signature

needs to be further improved in further research and simplify

signature to construct a more accurate and effective signature. So,

we need more experimental data and further research to assess

prognostic value of this signature in PRAD. Further investigation

is required on the specific mechanisms and functions of

moonlighting genes to promote the progression of cancer (13).

In conclusion, our research uncovered a unique prognostic

signature for PRAD depended on moonlighting molecular

subtypes. There were not only significantly difference in their

prognoses between high and low-risk groups, but also significantly

difference in PRAD clinicopathologic characteristics, immune

microenvironment, TMB and immunotherapy. To enhance the

therapeutic impact and accomplish tailored therapy of PRAD

based on the gene signature, more research will be conducted on

subgroup-specific targeted treatment and biomarkers.
Conclusion

In this work, we identified a unique prognostic

signature associated with moonlighting, which could be an
Frontiers in Oncology 15
independent prognostic factor for PRAD patients. Besides, we

discovered a strong relationship between this signature and the

occurrence and development of PRAD, as well as the

immunological microenvironment. It was closely correlated to

immunological checkpoints and chemotherapeutic sensitivity.
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