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A B S T R A C T   

Aim: Corona Virus Disease 2019 (COVID-19) was a lung disease with high mortality and was highly contagious. 
Early diagnosis of COVID-19 and distinguishing it from pneumonia was beneficial for subsequent treatment. 
Objectives: Recently, Graph Convolutional Network (GCN) has driven a significant contribution to disease 
diagnosis. However, limited by the nature of the graph convolution algorithm, deep GCN has an over-smoothing 
problem. Most of the current GCN models are shallow neural networks, which do not exceed five layers. 
Furthermore, the objective of this study is to develop a novel deep GCN model based on the DenseGCN and the 
pre-trained model of deep Convolutional Neural Network (CNN) to complete the diagnosis of chest X-ray (CXR) 
images. 
Methods: We apply the pre-trained model of deep CNN to perform feature extraction on the data to complete the 
extraction of pixel-level features in the image. And then, to extract the potential relationship between the ob-
tained features, we propose Neighbourhood Feature Reconstruction Algorithm to reconstruct them into graph- 
structured data. Finally, we design a deep GCN model that exploits the graph-structured data to diagnose 
COVID-19 effectively. In the deep GCN model, we propose a Node-Self Convolution Algorithm (NSC) based on 
feature fusion to construct a deep GCN model called NSCGCN (Node-Self Convolution Graph Convolutional 
Network). 
Results: Experiments were carried out on the Computed Tomography (CT) and CXR datasets. The results on the 
CT dataset confirmed that: compared with the six state-of-the-art (SOTA) shallow GCN models, the accuracy and 
sensitivity of the proposed NSCGCN had improve 8% as sensitivity (Sen.) = 87.50%, F1 score = 97.37%, pre-
cision (Pre.) = 89.10%, accuracy (Acc.) = 97.50%, area under the ROC curve (AUC) = 97.09%. Moreover, the 
results on the CXR dataset confirmed that: compared with the fourteen SOTA GCN models, sixteen SOTA CNN 
transfer learning models and eight SOTA COVID-19 diagnosis methods on the COVID-19 dataset. Our proposed 
method had best performances as Sen. = 96.45%, F1 score = 96.45%, Pre. = 96.61%, Acc. = 96.45%, AUC =
99.22%. 
Conclusion: Our proposed NSCGCN model is effective and performed better than the thirty-eight SOTA methods. 
Thus, the proposed NSC could help build deep GCN models. Our proposed COVID-19 diagnosis method based on 
the NSCGCN model could help radiologists detect pneumonia from CXR images and distinguish COVID-19 from 
Ordinary Pneumonia (OPN). The source code of this work will be publicly available at https://github.com/T 
angChaosheng/NSCGCN.   
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1. Introduction 

The COVID-19 global pandemic is a public health event [1] that 
triggered a global health crisis. As of 10 December 2021, more than 267, 
865,289 cases of infection have been confirmed worldwide, and greater 
than 5,285,888 patients died. COVID-19 is an infection caused by a new 
type of coronavirus, which can be spread through respiratory droplets, 
close contact, and high-concentration aerosols. COVID-19 can cause 
breathing difficulties in severe cases and rapidly develop into acute 
respiratory distress syndrome, septic shock, metabolic acidosis, and 
even death by multiple organ failure. Consequently, early diagnosis and 
treatment are vital in preventing diseases from becoming severe. 

COVID-19 is usually diagnosed by reverse transcription-polymerase 
chain reaction (RT-PCR), which can detect novel coronavirus [2]. 
However, its sensitivity is not high enough [3]. As supplementary 
diagnosis methods, CT and CXR can improve the diagnosis rate of 
COVID-19 and reduce the false-positive rate. Because of the low-cost and 
low-radiation dose, the CXR images have been widely used in COVID-19 
diagnosis [4]. 

Nonetheless, the manual interpretation of images by radiologists is a 
time-consuming task and is susceptible to the internal factors of the 
experts (such as fatigue, emotions, etc.). In addition, the X-ray images 
between COVID-19 and OPN have similar image features. Therefore, it is 
necessary to solve this problem by auxiliary diagnosis technology 
combined with computer vision and artificial intelligence. 

The GCN are a hot subject in artificial neural networks research. It 
can effectively extract features based on a non-Euclidean structure. 
Recent research has suggested that GCN achieved excellent results in 
medical image analysis. For example, Zhang et al. [5] proposed a 
memory-based GCN model to diagnose Parkinson’s disease. Song et al. 
[6] used the topology of brain nerves to generate cognitive state cate-
gory labels and then fulfil the task of advertising diagnosis by GCN. Chu 
et al. [7] considered the potential complementary topological informa-
tion on different spatial scales and proposed a multi-scale graph repre-
sentation learning framework, which uses multi-scale GCN 
representation learning for Autism identification. Song et al. [8] pro-
posed a multi-centre attention map with each node representing a topic 
to consider the influence of data source, gender, acquisition equipment 
and disease status of these training samples in GCN, which improve the 
diagnostic accuracy of early AD. Ye et al. [9] used a GCN to capture the 
topology of the region of interest (ROI) images and complete breast 
cancer screening. Elazab et al. [10] proposed a multi-site (centre) graph 
convolutional network with a supervision mechanism for COVID-19 
diagnosis from X-ray radiographs. 

In deep learning predictors, deeper neural networks help improve 
the performance of the model [11–13]. Furthermore, as the research 
went further and more detailed, the deep GCN caused extensive concern 
in the academic circle. However, some experiments have further 
concluded that, because of the excess layers stacked in the GCN models, 
all nodes’ representation converges to a fixed point, independent of node 
features. The excess layers lead to the problem of gradient disappear-
ance [14]. As a result, most of the latest GCN models do not exceed five 
layers. Thomas N. Kipf and Welling [15] tried to use Dropout to solve the 
problem, but it could not effectively prevent the occurrence of 
over-smoothing. Li et al. [16] proposed applying the residual connection 
and densely connected of CNN to GCN and made some progress in the 
point cloud segmentation task, but they did not solve the problem of 
growing volumes of parameters caused by densely connected. Although 
56 layers of DenseGCN can be trained, it can only be run on a small 
dataset. 

We propose the NSCGCN model to distinguish Healthy Control (HC), 
COVID-19, and OPN. In our proposed model, NSC has been designed to 
compress the number of feature maps. It was significant for guarantee-
ing the integrality and authentication of information transmitted by the 
feature. Furthermore, we have trained a deep GCN model with more 
than 200 layers, and the growth rate of DenseGCN parameters was 

reduced. Our proposed NSCGCN model has been applied to the public X- 
ray dataset to demonstrate its effectiveness. The experimental results 
showed that the NSCGCN could achieve better than other GCN and deep 
CNN models. 

We aim to create a deep GCN model with the proposed NSC algo-
rithm to distinguish between HC, COVID-19, and OPN. The contribu-
tions are as follows: 

(i) A novel deep GCN has been created for medical image classifi-
cation for the first time. Deep GCN has a solid nonlinear fitting 
ability, which can extract the invisible relationship between 
features and improve the classification performance;  

(ii) A node-self convolution algorithm based on the graph has been 
proposed in our proposed model. It not only realizes the inter-
action and integration of cross-channel information but also re-
duces the dimension of the feature and the parameters of the 
convolution kernel;  

(iii) A new feature reconstruction algorithm is proposed. It can retain 
the spatial structure information of the original feature maps;  

(iv) Deep CNN and DenseGCN have been introduced as the backbone 
model and modified for COVID-19 distinguish task;  

(v) We have compared the proposed COVID-19 diagnosis method 
with SOTA GCN, deep CNN, and COVID-19 diagnosis methods. 

The arrangement of this paper is as follows: First, the related work of 
GCN is briefly introduced in Section 2. Section 3 introduces the frame-
work proposed and the dataset in detail. Then the experimental settings 
are introduced in detail, and the experimental results and discussions 
are shown in Section 4. Finally, the conclusion is shown in Section 5. 

2. Related work 

2.1. Graph-structured data acquisition 

There are two difficult problems in Deep GCN. One of the most sig-
nificant challenges is that the inputs of GCN should be graph-structured 
data [17]. Two standard methods have been presented to convert 
medical image data structure. The direct way to collect medical 
graph-structured data is to use extremely specialized medical image 
instruments and equipment. It can ensure the integrity of data features. 
In the population graph [18], the nodes were patients’ MRIs processed 
by professional equipment such as the software connectome calculation 
scheme, configurable pipeline for the study of connectomes, and data 
analysis for resting-state fMRI and neuroimaging analysis kit. And the 
edges were the patient’s phenotypic data. Song et al. [6] applied the 
software MedlNRIA, FSL toolbox, and Freesurfer Desikan-Killiany atlas 
to get diffusion images with segmentation from the brain MRIs collected 
from GE scanners, Philips scanners, and Siemens scanners. Then, they 
regarded the connection strengths between the paired ROIs obtained by 
fibre counting as the adjacency matrix of the graph-structured data. 
Marzullo et al. [19] obtained the symmetric connection matrix between 
voxels from MRIs as the adjacency matrix of graph-structured data by 
medical imaging tools, such as software Eddy-current distortions, 
MRtrix spherical deconvolution algorithm, and probabilistic streamline 
tractography algorithm. 

However, the cost of the data-acquisition process mentioned above is 
an issue. The following method is generally adopted. At first, a CNN was 
employed to extract the medical image feature, and then the graph- 
structured data can be obtained by feature reconstruction algorithms. 
For example, Du et al. [20] first used CNN to extract ROI features. GCN 
has been used to simulate the amplification mechanism of the radiolo-
gist operation to determine whether the ROI was amplified. The ROI of 
lesions could be amplified automatically. Secondly, the breast cancer 
detection of X images has been completed by GCN. Ye et al. [9] divided 
the image into different ROI blocks. They adopted U-net [21] to segment 
the ROI and then captured the topology of the ROI image by GCN. 
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Finally, a fully connected network (FC) was used to classify the feature 
vector and finish the diagnosis task of breast cancer. In conclusion, it is a 
mainstream hybrid technology with CNN as a feature extraction module 
and GCN as a classification module. 

2.2. Deep GCN 

Although GCN has excellent potential in medical image deep 
learning, the number of graph convolutional layers of the GCN 
mentioned above does not exceed five layers. A deeper model implies 
better nonlinear expression skills and can absorb more multifaceted 
transformations, which is able to fit more complex feature inputs. 
However, the research conducted by Kipf and Welling [15] showed that 
when the number of model layers exceeds five layers, excessive 
smoothness appears in the deep GCN model, seriously affecting the 
model performance. Li et al. [14] used the eigendecomposition tech-
nique to prove that the graph convolution of the GCN model is simply a 
special form of Laplacian smoothing. The GCN over-smoothing is that 
the representation of nodes within the same connected component tends 
to converge to the same eigenvector with increasing the number of 
layers. Huang et al. [22] and Yang et al. [23] also proved the 
over-smoothing problem caused by the features of the GNNs. There is a 
general recognition of the urgent need to address the over-smoothing 
caused by deepening GCN. 

Kipf and Welling [15] add a residual connection to solve the 
smoothing problem, which can directly transfer the features of the node 
itself from the upper layer to the next layer and ensure the nodes do not 
tend to converge to the same eigenvector: 

Z(l+1) = D̂
− 1

2 ÂD̂
− 1

2X(l)W(l),

X(l+1) = σ
(
Z(l+1))+ X(l)

(1)  

where A is the adjacency matrix of G(V,E), D is the degree matrix of G(V,

E), Dii =
∑

j(Ai,j), E is an edge-set, X is the feature vector of node-set V, 
W represents the learnable parameter matrix, σ is an activation function, 
l is layers number. 

Chiang et al. [24] believe that the residual module ignores the 
weights of neighbour nodes. So, they strengthened the feature weights of 
the nodes themselves on the basis: 

X(l+1) = σ
((

D̂
− 1

2 ÂD̂
− 1

2
+ I

)
X(l)W(l)

)
(2) 

Beyond over-smoothing comes the over-fitting problem as the 
number of network layers increases. 

Yang et al. [23] proved that the deep GCN model could learn to resist 
over-smoothing during the training process. The reason that affected the 
model’s performance lies in the over-fitting of the model. They thought 
the mean-subtraction trick could solve this problem. 

Li et al. [16] thought that densely connected could alleviate 
over-fitting and strengthen the transfer of features. They proposed a 
deep GCN model based on densely connected and obtained SOTA results 
in the point cloud segmentation task. The jumping knowledge (JK) 
framework proposed by Xu et al. [25] can be combined with various 
GCN, effectively improving the model’s performance. 

The formula of the convolutional layer in the DenseGCN model 
proposed by Li et al. [16] is as follows: 

Gn+1 =F(Gn,Wn)

= F(L(Gn,Gn+1, ...,G0),Wn)
(3)  

where F is a graph convolution operation, and L is a feature connection 
function, which densely connects the features of the input graph G0 with 
the output features of all the intermediate GCN layers. 

However, the deep graph learning algorithm in the field of medical 
images is still a struggle. We adopted a pre-trained model to extract 
advanced features and proposed a neighbourhood algorithm to 
construct the graph-structure. We proposed a novel algorithm based on 
feature fusion, which can solve the problems of over-fitting, over- 
smoothing, and memory consumption caused by the deep GCN. 

2.3. Deep CNN 

Deep CNN, such as GoogLeNet [26], VGG [27], ResNet [28], and 
DenseNet [29], have shown excellent performance in medical image 
classification. Most downstream applications still use ResNet and its 
variants as the backbone network. Cheng et al. [30] proposed a modular 
group attention block that captures feature dependencies in medical 
images in both channel and spatial dimensions and stacked these group 
attention blocks in the ResNet style to improve model classification 
performance. Extensive experiments by Rathore et al. [31] on ADNI [32] 

Fig. 1. The flow chart of our proposed COVID-19 diagnosis method.  
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dataset showed that the DenseNet model improved classification accu-
racy by about 9% compared to traditional machine learning, which 
proved the usefulness of the DenseNet model. Kong and Cheng [33] 
fused DenseNet and VGG, introduced an attention mechanism (global 
attention machine block and category attention block) to extract depth 
features and used ResNet to segment effective image information to 
achieve fast and accurate classification. 

2.4. Transfer learning 

Transfer learning allows CNN to rapidly transition from one domain 
to another to improve the reuse rate of models and reduce the cost of 
repeated training, which proves to be an efficient and low-cost learning 
technique. For example, Karim et al. [34] migrated relevant knowledge 
from the source data set to the target data set, which solved the problem 
of the small amount of available data for small molecule compounds. 
Parvin et al. [35] proposed the modality adaptation technique to 
effectively transfer and fuse the domain knowledge of multimodality 
and improve the performance of multimodal applications. Besides, the 
pre-trained convolutional neural network has been successfully used as a 
preprocessing tool and is widely used in medical image classification 
[36,37]. Ay et al. [38] used six different CNN architectures as bench-
mark models for performance evaluation, used the weights and archi-
tectures of pre-trained models trained on ImageNet and tuned to the 
medical image domain. In the pressure-injury image classification task, 
they froze the weights of all pre-trained network layers except the last 
layer and only updated the weights of new layers in the backward pass. 
By freezing the network weights, overfitting is prevented. Ahmed [39] 
based on a pre-trained CNN and image noise filter without data 
augmentation and fine-tuning settings, used a denoising CNN as a pre-
processing tool and combined the denoising preprocessing stage with a 
classification method for medical image classification. Jones et al. [40] 
extracted ROIs around suspicious lesions and computed the radiomics 
features from each ROI and the automated features from the VGG16 
network using transfer learning. Then they converted a single-channel 
ROI image to a three-channel pseudo-ROI image by superimposing the 
original, bilaterally filtered, and histogram equalized image. Two 
VGG16 models using pseudo-ROIs and three unprocessed stacked raw 
ROIs were used to extract automated features. Finally, they used a linear 
support vector machine for classification based on the extracted 
features. 

3. Research method 

In this section, the dataset and the proposed NSCGCN have been 
illustrated in detail. As shown in Fig. 1, the proposed framework consists 
of three modules: (i) The features extraction module has been built to 
extract advanced input image features by the deep CNN models pre- 

trained in ImageNet. (ii) The features reconstruction module has been 
built to convert the feature into graph-structured data by the proposed 
neighbourhood feature reconstruction algorithm. (iii) The classification 
module has been built to classify the input graph-structured data by our 
proposed NSCGCN model. 

3.1. Dataset and preprocessing 

We first introduce the small CT dataset to justify the performance of 
the deep GCN model, and then use the large CXR dataset to verify the 
performance of our proposed COVID-19 diagnosis method. 

3.1.1. CT dataset 
We use the publicly available CT dataset covid19-ct-scans2 to justify 

the performance of the deep GCN model NSCGCN. The dataset contains 
CT images of 20 patients with covid-19 and segmentation results of lung 
and infection by experts. All images are three-dimensional images with 
sizes ranging from 400 × 400 × 300 to 800× 800× 45. As shown in 
Fig. 2, Fig. 2(a) represents the original medical image, Fig. 2(b) repre-
sents the lung mask image marked by the expert, Fig. 2(c) represents the 
lung infection mask marked by the expert, and Fig. 2(d) represents the 
mask superimposed by the lung and infection. 

We first use the lung segmentation image labelled by experts to 
separate the lung region from the original image. And then, apply the 
sliding window with the size 50 × 50 to the original, the lung infection 
mask and the lung region mask images simultaneously. Taking all pixels 
in the sliding window as an input and then setting the number of 
infected pixels in the sliding window in the lung infection mask image as 
m, the number of lung pixels in the lung area mask image as n and the 
threshold j = 125. If the lung pixel n exceeds this threshold, the image 
cropped out of the original image by the sliding window will be used as 
the experimental sample image. If the number of infected pixels m ex-
ceeds 125, the sample image cropped out by the sliding window is an 
infected image labelled as 1. Otherwise, it is a normal image labelled as 
0. This process can be expressed as: 

l=
{

1,m ≥ 125
0,m < 125 (4) 

The sliding window covers the image from left to right and from top 
to bottom, with steps of 50 in width and height and 5 in depth. Finally, 
85,725 cropped images were obtained, including 15,059 infected and 
70,666 normal images. As shown in Table 1, 1500 images of each 
category were randomly selected for testing, and the rest were used for 
training. 

The number of normal images is much larger than that of infected 

Fig. 2. Sample in the CT dataset.  

2 https://www.kaggle.com/andrewmvd/covid19-ct-scans. 
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images, which will cause the classifier to be more inclined toward 
normal images. Therefore, it may cause false positive and false negative 
problems, which means that it is difficult for the model to find the 
infection image. Therefore, we introduce the cost matrix, and the cost 
ratio ct can be calculated by Eq (5), which is being set to 5: 

ct =Ninfection
/

Nnormal (5)  

3.1.2. CXR dataset 
We use the publicly available CXR dataset COVID19_Pneumonia_-

Normal_Chest_Xray_PA_Dataset3 to verify the validity of our proposed 
COVID-19 diagnosis method. X-ray samples of COVID-19 in the dataset 
were retrieved from different sources for the unavailability of a large 
specific dataset. As shown in Table 2, the dataset contains 2313 HC, 
2313 OPN, and 2313 COVID-19 case samples, totalling 6939 samples. At 
the same time, a 5-fold cross-validation method is employed to assess the 
stability and reliability of the NSCGCN. Before the experiments, the 

dataset was randomly divided into five subsets to ensure that the data 
division used in all experiments was the same. The number of each 
category sample is the same, and the positive and negative samples are 
balanced. Examples of HC, OPN, and COVID-19 samples are shown in 
Fig. 3. The second row is 2 CXR images of COVID-19, which showed the 
multiple small patch shadows and interstitial changes, and the third row 
is CXR images of OPN, which showed the shadow of significant leaf 
consolidation. 

Furthermore, the sizes of the RGB images range from 2721 × 2438 ×

3 to 1336× 1128× 3. The images were standardized before being input 
into the pre-trained model. The image sizes were scaled to 224× 224×

3. The pixel-values were divided by 255 and thus normalized to [0,1]. 
Meanwhile, the pixel values were normalized by the mean value and 
standard deviation from ImageNet. The distribution of the pixel-values 
was transformed into standard Gauss distribution N(μ,σ2): 

x=
x − μ

σ (6)  

where x denotes individual image data, μ = [0.485,0.456,0.406], σ =

[0.229,0.224,0.225]. 

3.2. Feature extraction module 

We consider the limited number of labelled training samples insuf-
ficient to retrain the entire model from scratch. To attain high classifi-
cation accuracy, we follow the transfer learning method [4] and propose 
a feature extraction module based on the deep CNN models trained on 
the ImageNet to extract the pixel-level features from medical images 
more effectively. 

As shown in Table 3, to explore the best feature extraction model, we 
propose different schemes to remove the top-layers parts of Dense-
Net201, DenseNet121, ResNet101, ResNet50, ResNet18, Vgg16 and 
GoogLeNet to obtain different feature extraction model. The removed 
parts are labelled as A, B, or C for different top-layers removal schemes 
for each model. 

Table 1 
Sample division.  

Category Training Testing 

Infection image 13,559 1500 
Normal image 69,166 1500  

Table 2 
Dataset details.  

Subsets HC COVID-19 OPN Total 

dataset1 462 462 462 1386 
dataset2 462 462 462 1386 
dataset3 463 463 463 1389 
dataset4 463 463 463 1389 
dataset5 463 463 463 1389 
Total 2313 2313 2313 6939  

Fig. 3. Sample in the CXR dataset.  

3 https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-ch 
est-xray-pa-dataset. 
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As shown in Fig. 4, take DenseNet201 as an example. To transfer the 
parameters of the pre-trained model to our feature extraction model, we 
modify the original DenseNet201 model to get different feature maps. 
We propose three different top-layers removal schemes. In Scheme A, we 
can get a feature extraction module by removing the classification layer 
after Dense Block 4. The features-maps A can be obtained when the CXR 
images have been fed into the model. The other two of our proposed 
removal schemes are similar to scheme A. We can obtain Scheme B by 
removing the top-layers after Transition Layer 3, and Scheme C by 
removing the top-layers after Dense Block 3. Furthermore, we can get 
features-maps B and C depending on the schemes accordingly. 

The size of the output feature-maps of the convolutional layer is: 

Hout =
H + 2ph − Kh

sh
+ 1 (7)  

where H represents the size of the input image, Ph is the padding size, Kh 
is the convolution kernel size, and Sh is the stride size. 

The number of the output feature-maps channels of the convolu-
tional layers in DenseNet is: 

cl+1 = c0 + k × (l − 1) (8)  

where c0 represents the number of channels of the input feature in each 

Dense Block, l represents the number of layers in each Dense Block, k is 
the growth rate of the DenseNet, k = 32. 

As shown in Table 4, we obtained three feature-maps sets with sizes 
7× 7× 1920, 7× 7× 896, and 14× 14× 1792. Then, those sets are fed 
into the feature reconstruction module to get graph-structured data. 

3.3. Feature reconstruction module 

It was found that using a grid structure to convert images into graph- 
structured data can obtain better classification results than such tradi-
tional ways as down-sampling [41]. So we propose a feature recon-
struction algorithm based on the neighbourhood structure of the image. 

First, we introduce the neighbourhood structure of the image. The 8- 
neighbourhood nodes of the pixel node p(0,0) can be described as 
follow: 

p1(1, 1), p2(0, 1),
p3(− 1, 1), p4(1, 0),

p5(− 1, 0), p6(1, − 1),
p7(0, − 1), p8(− 1, − 1)

(9) 

Then, the 8-neighbourhood set N8(p), 4-neighbourhood setN4(p), 
and D-neighbourhood set ND(p) of the node p(x, y) can be obtained: 

N8(p) = {p1, p2, p3, p4, p5, p6, p7, p8}

N4(p) = {p2, p4, p5, p7}

ND(p) = {p1, p3, p6, p8}

(10) 

As shown in Fig. 5, The 8-neighbourhood graph comprises the 4- 
neighbourhood graph and the D-neighbourhood graph. The D-neigh-
bourhood graph consists of two subgraphs. 

Table 3 
Top-layers removal scheme of different deep CNN.  

Model SchemeID Top-layers removal scheme Feature-maps 
size 

DenseNet201 A The classifier layers after the 
Dense Block 4 

7× 7× 1920 

B The layers after the Transition 
Layer 3 

7× 7× 896 

C The layers after the Dense Block 3 14× 14×

1792 
DenseNet121 A The classifier layers after the 

Dense Block 4 
7× 7× 1024 

B The layers after the Transition 
Layer 3 

7× 7× 512 

C The layers after the Dense Block 3 14× 14×

1024 
ResNet101 A The layers after the conv5_x layer 7× 7× 2048 

B The layers after the conv4_x layer 14× 14×

1024 
ResNet50 A The layers after the conv5_x layer 7× 7× 2048 

B The layers after the conv4_x layer 14× 14×

1024 
ResNet18 A The layers after the conv5_x layer 7× 7× 512 

B The layers after the conv4_x layer 14× 14× 256 
Vgg16 A The layers after the 5th maxpool 

layer 
7× 7× 512 

B The layers after the 4th maxpool 
layer 

14× 14× 512 

GoogLeNet A The layers after the inception5b 7× 7× 1024 
B The layers after the inception5a 7× 7× 832  

Fig. 4. The scheme of removing the top-layers in DenseNet201.  

Table 4 
DenseNet201 structure.  

Layer Output Size DenseNet201 

Convolution 112× 112× 64 7× 7 conv 
Pooling 56× 56× 64 3× 3 max pool 
Dense 

Block 1 
56× 56× 256 

6×

[
1 × 1 conv
3 × 3 conv

]

Transition Layer 1 56× 56× 128 1× 1 conv 
28× 28× 128 2× 2 average pool, stride 2 

Dense 
Block 2 

28× 28× 512 
12×

[
1 × 1conv
3 × 3conv

]

Transition Layer 2 28× 28× 256 1× 1 conv 
14× 14× 256 2× 2 average pool 

Dense 
Block 3 

14× 14× 1792 
48×

[
1 × 1 conv
3 × 3 conv

]

Transition Layer 3 14× 14× 896 1× 1 conv 
7× 7× 896 2× 2 average pool 

Dense 
Block 4 

7× 7× 1920 
32×

[
1 × 1conv
3 × 3conv

]

Classification 1× 1× 1000 7× 7 average pool  
1000D FC, softmax  
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And then, the Neighbourhood Feature Reconstruction Algorithm is 
described in Table 5. The algorithm’s input is a feature-maps, and the 
algorithm’s output is a graph G(V, E). The graph G(V,E) is an un-
weighted undirected graph, the nodes V represent the feature vector of 
the feature maps, and the edges E calculated by the neighbourhood 
feature reconstruction algorithm represent the edges between nodes. 

In the Neighbourhood Feature Reconstruction Algorithm, for input 

feature-maps P of size n× n, the feature vector of the feature-maps are 
looped, and each feature vector of the feature-maps is treated as a node 
in the output graph G(V,E). At the same time, the neighbourhood nodes 
are constructed for each node. If the corresponding neighbourhood 
nodes legally exist in the image range, the connection between every 
two nodes is added to E. The feature reconstruction module is composed 
of the neighbourhood feature reconstruction algorithm. 

The input of the feature reconstruction module is the feature maps of 
size n × n obtained from the feature extraction module. Furthermore, 
the output is a graph G(V,E), the number of |V| is n2. The number of E in 
the 8-neighbourhood structure is: 

|E| = (n − 1) ∗ n ∗ 2+ 2 ∗ (n − 1) ∗ (n − 1)
= 2(n − 1)(2n − 1)

(11) 

The feature maps obtained from the feature extraction module can be 
converted into the graph-structure. In our proposed model, the number 
of nodes |V| is 49, 49, 196, the number of edges |E| is 156, 156, 702, and 
the number of each node feature-channels |c| is 1920, 896, and 1792. 

3.4. Classification module 

We elaborated on the function and implementation details of the 
proposed NSC in this section. Then NSCGCN Block was built based on 
the NSC, and NSCGCN was built based on the NSCGCN Block. NSCGCN 
was the backbone network of the classification module. 

3.4.1. Proposed node-self convolution algorithm 
We found that the feature fusion algorithm plays the role of the 

bottleneck layer in DenseNet. The role of the bottleneck layer is to 
reduce the number of input feature maps, integrate the features on each 
channel, and reduce the amount of computation. There are other 
methods to reduce the amount of computation in GCN, such as neigh-
bourhood sampling and graph pooling. However, they are only suitable 
for shallow GCN. In the deep GCN, neighbourhood sampling will sample 
the entire graph, and graph pooling will lose essential node information. 
There is a lack of an efficient method to solve the memory storage 
problem caused by increased feature dimensions in deep GCN. 

Thus, we propose a new feature fusion algorithm based on the graph- 
structured data named node-self convolution (NSC). The detail of the 
proposed NSC is shown in Fig. 6: Each node is a features vector with five 
channels in the graph Gl(Xl,Al) First, remove the connection of the 
graph Gl(Xl,Al) and only retain the self-connection of the nodes (the 

node connects to the node itself) to obtain the graph G̃
l
(Xl,I). Secondly, 

perform a graph convolution operation on the graph G̃
l
(Xl, I) to obtain 

the feature maps Xl+1 and then update the feature maps to complete the 
feature fusion and dimensionality reduction operation. Finally, by 
restoring the original graph-structure of Gl(Xl, Al), we can get a new 
graph Gl+1(Xl+1,Al) while maintaining the structure unchanged. The 
proposed NSC ensures that each node only aggregates information with 
itself. By controlling the number of filters in the GCN layer, the 
dimensionality reduction and dimensionality increase operations of the 
feature dimension are completed. In our proposed model, we set each 
NSC to produce 4K feature maps. The convolution result of NSC is: 

Z(l+1) = D̂
− 1

2ID̂
− 1

2X(l)W(l) (12)  

3.4.2. NSCGCN 
NSCGCN Block regards the NSC as the bottleneck layer controlling 

the number of feature-map channels. As shown in Fig. 7(a), the NSCGCN 
block was built based on the densely connected NSC and GCN. Each NSC 
layer takes all output feature maps of preceding GCN layers as inputs. 
Furthermore, an NSC layer is added before each GCN layer. The number 
of the feature-map channels is: 

Fig. 5. Neighbourhood structure.  

Table 5 
Pseudocode of neighbourhood feature reconstruc-
tion algorithm. 
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Cn = c0 + nK (13)  

where c0 is the number of original feature-map channels, K is the growth 
rate that determines the number of output feature-map channels, and n 
is the number of GCN layers in the NSCGCN Block. 

As shown in Fig. 7 (b), our proposed deep NSCGCN model contains 
three NSCGCN blocks, and there is an NSC layer between every two 

Fig. 6. The transformation of the adjacency matrix and feature in NSC.  

Fig. 7. The structure of NSCGCN.  

Table 6 
NSCGCN structure.  

Layer Method 

Convolution 1 GCN 
NSCGCN Block 1 

[
NSC
GCN

]

× n 

NSC Layer 1 NSC 

NSCGCN Block 2 
[

NSC
GCN

]

× n 

NSC Layer 2 NSC 
NSCGCN Block 3 

[
NSC
GCN

]

× n 

Convolution 2 GCN 
Global Pooling GAvgPooling  

Fig. 8. Comparison of memory usage when K = 24 and batch size = 32.  
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NSCGCN Blocks. The GraphAvgPooling layer is applied to classification. 
In our experiments, the NSC layer has been set to halve the number of 
feature maps. 

As shown in Table 6, the number of layers L of the NSCGCN is: 

L= 6 ∗ n + 5 (14)  

where n represents the number of GCN layers in the NSCGCN Block. 
The memory usage of DenseGCN and NSCGCN is shown in Fig. 8. It 

can be seen that the memory usage of DenseGCN is out of memory when 
K = 24 and L = 293. The main reason is that the growth rate of the 
feature dimension of the input graph is related to the dimension of the 
output graph in the DenseGCN. By adding the proposed NSC, the growth 

rate of memory usage slows down, and the memory consumption is 
much lower than that of DenseGCN with the same number of layers. 

3.5. Evaluation index 

The evaluation indexes such as Sen., F1-score, Pre., AUC, and Acc. 
are used to measure the performance of the models. The following 
evaluation index measures the overall performance of the classifier: 

accuracy=
TH + TC + TO

TN + FHC + FHO + FCH + TC + FCO + FOH + FOC + TO
(15)   

As shown in Table 7, TH, TC, and TO represent the correct predicted 
results for HC, COVID-19, and OPN samples, and FHC, FHO, FCH, FCO, 
FOH, and FOC represent the mispredicted results for HC, COVID-19, and 
OPN samples respective. 

AUC is defined as the area under the receiver operating characteristic 

(ROC) curve and the coordinate axis. ROC is drawn by True Positive Rate 
(TPR) and False Positive Rate (FPR), where TPR represents the proba-
bility that a positive example can be paired, and FPR represents the 
probability that a negative example can be classified as a positive 
example. In our proposed method, the final data obtained through the 
model is the probability (score) when the samples may be in three cat-
egories, respectively. When the "Score" value is set as the threshold. 
Once the probability of the sample is greater than or equal to this 
threshold, it is considered that the sample is a certain category. Each 
time a different threshold is selected, a set of FPR and TPR can be added 
as a point to the ROC curve. We calculate the evaluation value for each 
category and take the average value as the performance index of the 
model. 

4. Experiments results and discussions 

In this section, the experimental environment and settings were 
described in detail. First, the ablation experiments on the CT dataset to 
find the best value of layers L and the best value of convolution kernels K 
were shown in section 4.2. Then, the ablation experiments on the CXR 
dataset to find the best feature reconstruction algorithm, the best feature 
extractor, the best value of layers L, and the best value of convolution 
kernels K were shown in section 4.3. The comparisons of SOTA deep 
CNN, GCN and COVID-19 diagnosis methods were shown to verify the 
performance of our proposed COVID-19 diagnosis method. 

4.1. Experimental setting 

Our experiments have been carried out on a server with 64 GB RAM, 
CPU Intel Xeon Silver 4214, and GPU Tesla M40 24 GB. All algorithms 
have been programmed based on Python 3.8.8 and PyTorch 1.9.0. 

For the CT dataset, we first use the graph sparse pruning algorithm 

precision=
(

TH
TH + FHC + FHO

+
TC

FCH + TC + FCO
+

TO
FOH + FOC + TO

)/

3

= (presisionH + presisionC + presisionO) / 3

(16)  

sensitivity=
(

TH
TH + FCH + FOH

+
TC

FHC + TC + FOC
+

TO
FOH + FOC + TO

)/

3

= (sensitivityH + sensitivityC + sensitivityO) / 3

(17)  

F1=
(

2 ∗ precisionH ∗ sensitivityH

precisionH + sensitivityH
+

2 ∗ precisionC ∗ sensitivityC

precisionC + sensitivityC
+

2 ∗ precisionO ∗ sensitivityO

precisionO + sensitivityO

)

= (F1H +F1C +F1O) / 3

(18)   

TPR=

(
TH

TH + FCH + FOH
+

TC
FHC + TC + FOC

+
TO

FHO + FCO + TO

)/

3

= (TPRH + TPRC +TPRO) / 3

(19)  

FPR=

(
FHC + FHO

FHC + TC + FOC + FHO + FCO + TO

+
FCH + FCO

TH + FCH + FOH + FHO + FCO + TO
+

FOH + FOC
TH + FCH + FOH + FHC + TC + FOC

)/

3

= (FPRH +FPRC +FPRO) / 3

(20)   
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[42] to convert images into graph-structure data and then use the GCN 
model for classification. The optimization algorithm used is Adam. 
Furthermore, the regularization L2 (weight decay) is used to overcome 
the model over-fitting issue, and the weight is set to 5E-4. The initial 
learning rate is 0.001, the batch size is 16, the training epochs are 50, the 
learning rate adjustment function is the cosine annealing function, and 
the loss function is the cross-entropy loss function. After calculating the 
loss between the predicted values and ground truth, the parameters of 
the model are optimized by the optimization algorithm according to the 
loss. At the same time, the cost matrix is used to pay attention to more 
information about false positives and omissions to overcome the data 
imbalance problem. 

To verify the advanced performance of our proposed deep model, we 
compare our proposed NSCGCN model with several shallow GCN 
models on the CT dataset, such as GraphSAGE [43], GCN [15], GIN [44], 
Graclus [45], SAGPool [46], GlobalAttentionNet [47]. The dataset used 
is divided uniformly. Furthermore, all GCNs are constructed based on 
two convolution layers, and the number of convolution kernels is 24. 
The hyperparameter setting is the same as that of the original article. 
The learning rate adjustment function is also a cosine annealing func-
tion, and the training period is also set to 50. 

For the CXR dataset, the optimization algorithm is Sharpness-Aware 
Minimization (SAM) [48] based on stochastic gradient descent (SGD). 
The cross-entropy loss function is used for gradient updating. Similarly, 
we use the regularization L2 (weight decay) to overcome the model 
over-fitting issue. As shown in Table 8, we use the grid search technique 
to select the best hyperparameters and choose an optimal learning rate 
of 0.01 and weight decay of 5E-4 by achieving the highest prediction 
accuracy of 98.34%. Moreover, it can be seen that both higher and lower 
learning rates decrease performance. Furthermore, the trained model 
with dynamic learning rate adjustment can effectively handle local 
minima and overfitting issues. The learning rate tuning function is the 
cosine annealing function. The parameters optimization process on the 
CXR dataset is the same as on the CT dataset. Moreover, the momentum 
is 0.9, the training epochs are 200, and the batch size is 32. 

To verify the advanced performance of our proposed COVID-19 
diagnosis method, we trained such SOTA GCN as GraphSAGE [43], 
GCN [15], GIN [44], Graclus [45], SAGPool [46], EdgePool [49], 
GlobalAttentionNet [47], Set2SetNet [50], SortPool [5] and JK [25]. 
Under the same CXR dataset, all GCN were built with three layers and 32 
convolution kernels. In addition, to prove the performance of our pro-
posed COVID-19 diagnosis method, we selected sixteen SOTA deep CNN 
and eight SOTA COVID-19 diagnosis methods for comparison. The 
hyperparameter settings are the same as the source articles’ hyper-
parameter settings. The learning rate tuning function is the cosine 
annealing function, and the training period is set to 200. 

4.2. Exploration of best L and K on the CT dataset 

The layer number L and convolution kernel number K of NSCGCN are 
the key hyperparameter parameters that determine the performance of 
our proposed model. Therefore, in this section, hyperparametric opti-
mization is carried out through ablation experiments to obtain the 
optimal L and K values. 

As shown in Table 9, the value of convolution kernel number K will 
significantly affect the classification performance of NSCGCN. When the 
number of convolution kernels K increases from 3 to 6, the performance 
is improved by 1.7%. When the number of convolution kernels K is 
increased from 12 to 24, the Pre. value of the NSCGCN is slowly 
improved by 0.2%. Furthermore, when K = 24, the performance of the 
NSCGCN is the best and then set K = 24. It can be concluded that when K 
increases, the performance of NSCGCN shows an upward trend. 

As shown in Table 10, the value of layer L significantly affects the 
classification performance of NSCGCN. Our proposed model perfor-
mance rises with L increases. This is because the nonlinear trans-
formation of our proposed model will become more complex as L 
increases, which brings more implicit information and improves the 
model’s performance. Moreover, the layer number L has a more signif-
icant impact on the model’s performance than the kernel number K. 

4.3. Comparison of shallow GCN models on the CT dataset 

This section compares our proposed deep GCN model NSCGCN with 
other shallow GCN models. As shown in Table 11, NSCGCN provides the 
best accuracy and robustness. Compared with the shallow GCN model, 
the Sen. of the deep GCN model NSCGCN is improved by at least 8%. It 

Table 9 
Performance of NSCGCN with different K when L = 77(Unit:%).  

K Sen. F1 Pre. Acc. AUC 

3 84.27 84.02 86.56 84.27 95.82 
6 85.93 85.75 87.86 85.93 96.73 
12 86.30 86.12 88.33 86.30 97.01 
24 86.83 86.68 88.58 86.83 97.04  

Table 10 
Performance of NSCGCN with different L when K = 24(Unit:%).  

L Sen. F1 Pre. Acc. AUC 

23 84.47 84.22 86.80 84.47 95.95 
41 86.20 86.02 88.11 86.20 96.51 
77 86.83 86.68 88.58 86.83 97.04 
149 87.50 87.37 89.10 87.50 97.09 

The above experimental results show that when L = 149, K = 24, our proposed 
NSCGCN model performs the best, and its corresponding optimal performance is 
as: Sen. = 87.50%, F1 = 87.37%, Pre. = 89.10%, Acc. = 87.50%, AUC = 97.08%. 
In the subsequent section, K = 24 and L = 149 were set on the CT dataset. 

Table 11 
Comparison with shallow GCN models (Unit:%).  

model Sen. F1 Pre. Acc. AUC 

GraphSAGE [43] 63.83 58.90 76.59 63.83 91.46 
GCN [15] 77.57 76.67 82.59 77.57 93.00 
GIN [44] 77.73 76.88 82.53 77.73 94.37 
Graclus [45] 78.97 78.32 82.87 78.97 93.30 
SAGPool [46] 79.43 78.83 83.23 79.43 93.54 
GlobalAttentionNet [47] 78.47 77.89 81.77 78.47 92.71 
NSCGCN (Ours) 87.50 87.37 89.10 87.50 97.09  

Table 7 
Definition of TH, TC, to, FHC, FHO, FCH, FCO, FOH and FOC.  

Name Definition 

TH HC samples were predicted as HC by the model 
TC COVID-19 samples were predicted as COVID-19 by the model 
TO OPN samples were predicted as OPN by the model 
FHC HC samples were predicted as COVID-19 by the model 
FHO HC samples were predicted as OPN by the model 
FCH COVID-19 samples were predicted as HC by the model 
FCO COVID-19 samples were predicted as OPN by the model 

FOH OPN samples were predicted as HC by the model 
FOC OPN samples were predicted as COVID-19 by the model  

Table 8 
Performance of NSCGCN acc on hyper-parameters (Unit:%).  

Learning rate Weight decay 

0.1 0.05 0.01 0.005 0.001 

Acc. 

0.005 92.01 95.46 96.40 96.26 95.75 
0.001 97.77 97.62 97.37 97.04 96.76 
0.0005 97.84 97.04 98.34 97.41 96.77 
0.0001 96.47 96.11 96.62 97.70 96.69 
0.000005 96.47 95.97 96.62 97.62 96.69  
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demonstrates the effectiveness of our work on deepening GCN and 
demonstrates that deep GCNs are a viable research direction. And it can 
be concluded that NSC can effectively deepen GCN and reduce over- 
fitting and over-smoothing problems. 

4.4. Ablation experiments on the CXR dataset 

We attempt to find the best settings of our proposed model through 
the ablation experiments, such as the different feature reconstruction 
algorithms, feature extractors, and different values of L and K. 

4.4.1. Exploration of best feature reconstruction model 
The feature reconstruction algorithm can reconstruct the feature 

maps extracted by the pre-training model, but its actual effect depends 

mostly on the neighbourhood structure. Our proposed NSCGCN model 
was compared and tested under three different neighbourhood structure 
settings for optimum results. The other hyperparameters of our proposed 
NSCGCN model are set to L = 77 and K = 12. 

The performance of Sen. and AUC are shown in Fig. 9. DenseNet201- 
C-4 represents our proposed NSCGCN model that employed 
DenseNet201-C as the feature extractor with the 4-neighbourhood 
structure. It can be seen that the performance of DenseNet201-C-4 is 
better than others, which means that the 4-neighbourhood structure fits 
better in our proposed NSCGCN model compared to other neighbour-
hood structures. The performance of DenseNet201-C-D is the lowest 
among the three models. The main reason is that the feature recon-
struction algorithm based on the D-neighbourhood structure will 
convert the feature maps into two independent subgraphs. During graph 
convolution, the feature information between those two subgraphs will 
not interact with each other, which reduces the NSCGCN performance. 
Therefore, the 4-neighbourhood structure is set as the neighbourhood 
structure in the feature reconstruction algorithm for subsequent 
experiments. 

4.4.2. Exploration of best feature extractor 
To reduce the model training cost and maximize the use of existing 

research results, we use a pre-trained deep CNN model based on transfer 
learning. In addition, to gain the best feature extractor, our proposed 
NSCGCN model is compared and tested under different top-layers 
removal schemes of different models proposed in Section 3.2. Other 
parameters of NSCGCN were L = 77, K = 12, and the feature recon-
struction algorithms with a 4-neighbourhood structure. 

The results are shown in Table 12. By comparing the experimental 
results of different top-layers removal schemes based on the same pre- 
training model, it can be found that the more layers are removed in 
the pre-training model, the higher the Sen. of our proposed NSCGCN 
model. As in the DenseNet201 model, the Sen. value of scheme C of 
96.25% is 1.3% higher than the Sen. value of scheme A of 94.87%. In the 
ResNet101 model, the Sen. value of scheme B of 95.66% is 1% higher 
than the Sen. value of scheme A of 94.58%. In the Vgg16 model, the Sen. 
value of scheme B of 95.42% is 0.5% higher than the Sen. value of 
scheme A of 94.91%. In the GoogLeNet model, the Sen. value of scheme 
B of 95.02% is 1.5% higher than the Sen. value of scheme A of 93.44%. 

The experimental results suggest that our proposed NSCGCN model 
delivers excellent performance in different removal schemes. Our pro-
posed NSCGCN model performed best using the DenseNet201-C model 
among all these feature extraction extractors. Compared with other 
models, the DenseNet201 has the largest number of convolutional layers 
and the maximum depth. It means that DenseNet201 has the power to 
extract more pixel-level features than other deep CNN models and 
discard the redundant and useless features in the original image. 

Fig. 9. Performance of DenseNet201-C on different neighbourhood structures when L = 77 and K = 12.  

Table 12 
Performance of NSCGCN on different feature extractors (Unit: %).  

Model Sen. F1 Pre. Acc. AUC 

DenseNet201- 
A 

94.87 ±
0.61 

94.87 ±
0.61 

94.99 ±
0.62 

94.87 ±
0.61 

98.79 ±
0.11 

DenseNet201-B 95.69 ±
0.73 

95.69 ±
0.73 

95.88 ±
0.68 

95.69 ±
0.73 

99.12 ±
0.18 

DenseNet201- 
C 

96.25 ± 
0.79 

96.25 ± 
0.79 

96.42 ± 
0.71 

96.25 ± 
0.79 

99.20 ± 
0.28 

DenseNet121- 
A 

95.55 ±
0.56 

95.54 ±
0.56 

95.65 ±
0.56 

95.55 ±
0.56 

99.16 ±
0.18 

DenseNet121-B 95.48 ±
0.57 

95.47 ±
0.57 

95.62 ±
0.55 

95.48 ±
0.57 

99.13 ±
0.20 

DenseNet121-C 95.88 ±
0.54 

95.87 ±
0.54 

96.03 ±
0.46 

95.88 ±
0.54 

99.17 ±
0.20 

ResNet101-A 94.58 ±
0.32 

94.58 ±
0.32 

94.69 ±
0.32 

94.58 ±
0.32 

98.83 ±
0.17 

ResNet101-B 95.66 ±
0.52 

95.66 ±
0.53 

95.78 ±
0.50 

95.66 ±
0.52 

99.15 ±
0.28 

ResNet50-A 95.04 ±
0.42 

95.04 ±
0.42 

95.18 ±
0.42 

95.04 ±
0.42 

98.85 ±
0.11 

ResNet50-B 95.50 ±
0.27 

95.50 ±
0.28 

95.63 ±
0.24 

95.50 ±
0.27 

99.16 ±
0.06 

ResNet18-A 94.94 ±
0.32 

94.93 ±
0.32 

95.06 ±
0.28 

94.94 ±
0.32 

98.85 ±
0.17 

ResNet18-B 95.71 ±
0.79 

95.70 ±
0.79 

95.88 ±
0.71 

95.71 ±
0.79 

99.15 ±
0.27 

Vgg16-A 94.91 ±
0.32 

94.90 ±
0.32 

94.99 ±
0.29 

94.91 ±
0.32 

98.78 ±
0.23 

Vgg16-B 95.42 ±
0.58 

95.41 ±
0.58 

95.53 ±
0.55 

95.42 ±
0.58 

99.06 ±
0.24 

Google-A 93.44 ±
0.65 

93.44 ±
0.65 

93.49 ±
0.65 

93.44 ±
0.65 

98.50 ±
0.26 

Google-B 95.07 ±
0.67 

95.07 ±
0.68 

95.16 ±
0.67 

95.07 ±
0.67 

98.87 ±
0.35 

*model-X means remove X from the model. 
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Therefore, we choose DenseNet201-C as the feature extractor of the 
NSCGCN. 

4.4.3. Exploration of best L and K 
The number of convolution kernels K and network layers L of our 

proposed NSCGCN are key hyperparameters that determine the model’s 
performance. 

First, to determine the optimal convolution kernel number K, that is, 
the optimal width of the NSCGCN, we conduct a comparative 

experiment of NSCGCN under different K values. The number of layers L 
of our proposed NSCGCN model is set to 12, and K is selected from 3, 6, 
12, 24, and 48. 

The experimental results are shown in Fig. 10. Our proposed model 
performance has improved with the kernel increase, especially when K 
= 24 and the main performance indexes reach a peak. Significantly, the 
value of AUC is slightly less than 99.25 as K = 6. The slight difference is 
only 0.03%, which may be raised mainly by stochastic errors in the data 
processing system. It can be concluded that different from the 

Fig. 10. Performance of NSCGCN when L = 77 and K = 3,6,12,24,48  

Fig. 11. Performance of NSCGCN when K = 24 and L = 23,41,77,149,293.  

Table 13 
Confusion matrix of NSCGCN.  

True predict on dataset1 predict on dataset2 predict on dataset3 predict on dataset4 predict on dataset5 

HC COV OPN HC COV OPN HC COV OPN HC COV OPN HC COV OPN 

HC 456 3 3 452 2 8 449 6 8 459 2 2 452 3 8 
COV 3 457 2 0 460 2 0 462 1 8 454 1 4 454 4 
OPN 38 1 423 36 0 426 48 2 413 41 6 416 3 0 460  

Table 14 
Five confusion matrix metrics of NSCGCN (Unit: %).  

Performance dataset1 dataset2 dataset3 dataset4 dataset5 avg std 

Sen. 96.39 96.54 95.32 95.68 98.34 96.45 1.05 
F1 96.39 96.53 95.30 95.68 98.34 96.45 1.05 
Pre. 96.57 96.63 95.50 95.97 98.35 96.61 0.97 
Acc. 96.39 96.54 95.32 95.68 98.34 96.45 1.05 
AUC 99.10 99.14 99.10 98.93 99.83 99.22 0.31  
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Fig. 12. ROC analyses of NSCGCN.  

Fig. 13. Error loss vs epochs of NSCGCN.  
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performance change trend in the binary classification task when the K 
value increases, our proposed model performance does not increase all 
the time but shows a trend of first increasing and then decreasing. The 
reason is that when the value of K increases, more parameters need to be 
learned. Especially when dense connections are used, the number of 
parameters to be learned increases quadratically compared to the in-
crease in the value of K. And more learnable parameters mean that more 
data is needed to train our proposed model, so the number of labelled 
samples limits it. Generally, when K = 24, our proposed model perfor-
mance is the best. 

We conduct comparative experiments of NSCGCN under different L 
to determine the optimal network layer. The number of convolution 
kernels K is set to 24 and the number of graph convolution layers n in 
each NSCGCN Block is selected from 3, 6, 12, 24, and 48. Thus, the 
number of convolution layers L is 23, 41, 77, 149, and 293. 

The experimental results are shown in Fig. 11. The AUC of our pro-
posed NSCGCN increases with increasing L, and the model with K = 24 
and L = 77 perform the best. As L increases, the nonlinear trans-
formation of the model becomes more complex, which is in favour of 
getting more implicit information. However, the existing amount of 
dataset cannot support a training model with a depth of more than 77 
layers. These results suggest that our proposed NSCGCN model performs 
best when L is 77 and K is fixed at 24. 

4.4.4. Model performance analysis on the CXR dataset 
To analyze the performance of our proposed model and better 

demonstrate the role of the model in classification. We use confusion 
matrix and visualization techniques to analyze the best model of 
NSCGCN. 

The confusion matrix of the NSCGCN with K = 24 and L = 77 is 
shown in Table 13. Here, COV represents COVID-19. Table 14 shows the 
five confusion matrix metrics of NSCGCN(L = 77, K = 24) according to 
the confusion matrix. Since the number of samples of each type is the 
same, the two indicators, sensitivity and accuracy, have the same values. 
The experimental results show that the Acc of the dataset5 is the highest. 
Since the CXR images of OPN are similar to the CXR images of HC, our 
proposed model will recognize OPN as HC on dataset1, dataset2, data-
set3 and dataset4. Additionally, our proposed model has a very high 
detection rate of COVID-19; the average detection rate for COVID-19 is 
98.88%. 

Moreover, instead of the prediction rates, we also draw the AUC as 
given in Fig. 12. ROC curve is the primary measuring tool for analyzing 
the stability and consistency of the model. The results show that our 
proposed NSCGCN has excellent performance. In addition, the error- 
loss-vs-epochs figures of NSCGCN for multiclass classification are 
depicted in Fig. 13. The error loss can be significantly reduced by 
increasing the number of training epochs. For example, in Fig. 13 (a), 
NSCGCN reported the maximum test error loss of 0.6 in the first epoch 
that is continuously reduced to 0.14 by increasing the number of 
training epochs to 150. 

Table 15 
The HeatMap, HeatMap++, Grad-CAM, Grad-CAM++, LIME and SHAP of NSCGCN.  

Sample original HeatMap Grad-CAM HeatMap ++ Grad-CAM ++ LIME SHAP 

COV 1 

COV 2 

OPN 1 

OPN 2 

Table 16 
Performance of SOTA GCN models with the DenseNet201-C (Unit: %).  

Model Sen. F1 Pre. Acc. AUC 

GraphSAGE [43] 94.51 ±
1.33 

94.51 ±
1.32 

94.67 ±
1.26 

94.51 ±
1.33 

98.42 ±
0.67 

GraphSAGEWithJK 
[25] 

94.98 ±
1.13 

94.98 ±
1.14 

95.09 ±
1.10 

94.98 ±
1.13 

98.68 ±
0.58 

GCN [15] 95.00 ±
1.02 

94.99 ±
1.02 

95.10 ±
0.98 

95.00 ±
1.02 

98.69 ±
0.48 

GCNWithJK [25] 95.04 ±
0.66 

95.04 ±
0.66 

95.18 ±
0.63 

95.04 ±
0.66 

98.91 ±
0.40 

GIN0 [44] 94.84 ±
0.71 

94.84 ±
0.70 

94.92 ±
0.69 

94.84 ±
0.71 

99.10 ±
0.22 

GIN0WithJK [25] 95.32 ±
0.38 

95.31 ±
0.38 

95.37 ±
0.40 

95.32 ±
0.38 

99.13 ±
0.26 

GIN [44] 94.84 ±
0.71 

94.84 ±
0.70 

94.95 ±
0.71 

94.84 ±
0.71 

99.07 ±
0.22 

GINWithJK [25] 95.43 ±
0.38 

95.43 ±
0.38 

95.51 ±
0.38 

95.43 ±
0.38 

99.19 ±
0.23 

Graclus [45] 94.63 ±
1.02 

94.62 ±
1.02 

94.74 ±
1.05 

94.63 ±
1.02 

98.83 ±
0.50 

SAGPool [46] 95.17 ±
1.23 

95.17 ±
1.23 

95.31 ±
1.17 

95.17 ±
1.23 

98.66 ±
0.74 

EdgePool [49] 94.93 ±
0.61 

94.92 ±
0.61 

95.03 ±
0.57 

94.93 ±
0.61 

98.76 ±
0.47 

GlobalAttentionNet 
[47] 

94.14 ±
0.95 

94.13 ±
0.96 

94.27 ±
0.96 

94.14 ±
0.95 

98.52 ±
0.57 

Set2SetNet [50] 94.11 ±
1.08 

94.10 ±
1.08 

94.16 ±
1.07 

94.11 ±
1.08 

98.24 ±
0.57 

SortPool [5] 94.25 ±
0.38 

94.25 ±
0.38 

94.39 ±
0.23 

94.25 ±
0.38 

98.69 ±
0.40 

NSCGCN (Ours) 96.45  
± 1.05 

96.45  
± 1.05 

96.61  
± 0.97 

96.45  
± 1.05 

99.22  
± 0.31  
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The Grad-CAM [51], Grad-CAM++ [52], LIME [53], and SHAP [54] 
of the NSCGCN with K = 24 and L = 77 are shown in Table 15. For the 
COVID-19 samples COV 1 and COV 2, infection in both lungs was 
detected, and the HeatMaps almost completely covered both lung areas. 
Comparing the Grad-CAM and Grad-CAM++ of COV 1, it can be found 
that the HeatMaps of Grad-CAM++ cover more comprehensively. 
However, due to the presence of orientation markers in some of the 
images in the dataset, the HeatMaps covers the upper left regions of the 
image. For the OPN samples OPN 1 and OPN 2, the infection of the right 
lung close to the heart area was detected, and the HeatMaps also 
concentrated on the infected area. Comparing Grad-CAM and 
Grad-CAM++, it can be found that Grad-CAM++ covers more areas but 
also more invalid areas. Comparing the Grad-CAM and Grad-CAM++ of 
COV and OPN, the area covered by the HeatMaps is different. Similarly, 
the LIME analysis of NSCGCN is shown in Table 15. For the COVID-19 
samples, the LIME shows that the model paid more attention to local 
information. For the OPN samples, the LIME shows that the model paid 
more attention to global information. Furthermore, in the SHAP analysis 
of NSCGCN, the red pixels represent positive SHAP values that increase 

the class probability, while blue pixels represent negative SHAP values 
that decrease class probability. 

4.5. Comparison of SOTA GCN models on the CXR dataset 

In this section, we compare our proposed NSCGCN model with other 
SOTA GCN models on the DenseNet201-C. As shown in Table 16, the 
results show that our proposed NSCGCN model is the best method 
compared with the SOTA GCN models. The proposed NSCGCN model is 
best because our proposed NSCGCN is a deep model, which can effec-
tively improve the reusability of features and the accuracy of the final 
prediction results. Our proposed model comprises GCN and NSC without 
involving more advanced graph convolution layers like SAGPool. Our 
NSCGCN significantly improves Acc. and Pre. by 1.45% and 1.5%, 
compared to the GCNs. Furthermore, the dense ship connection in our 
proposed model works better than the JK module, which is used in some 
SOTA GCN models [22]. All these results demonstrate the effectiveness 
of NSC in deep GCN. 

4.6. Comparison of SOTA deep CNN models on the CXR dataset 

In this section, to verify the effectiveness of our proposed model, we 
train SOTA deep CNN models, such as GoogleNet [26], ResNet18 [28], 
ResNet101 [28], DenseNet201 [29], and Vgg16 [27] on the same 
dataset, and only train the top-layers removed of them in Section 3.2. 
under the same condition. To make these deep CNN suit the three 
classification requirements, we build the new SoftMax and 
three-classification layers o replace the original classification layers. 

The performance of different deep CNN is shown in Table 17; the best 
performance of SOTA deep CNN is ResNet50(B) as Sen. = 94.78%, F1 =
94.78%, Pre. = 94.93%, Acc. = 94.78%, AUC = 98.67%. It is mainly due 
to the limited size of the dataset that DenseNet201 is not sufficiently 
learned. However, the architectural superiority of pre-trained Dense-
Net201 helps NSCGCN extract enough representative features, and the 
modelling ability of GCN helps NSCGCN extract underlying relation-
ships between features. They complete each other; hence the perfor-
mance of NSCGCN is better than the SOTA deep CNN. 

4.7. Comparison of SOTA COVID-19 diagnosis methods on the CXR 
dataset 

Now some works have been done to study the high-precision pneu-
monia diagnosis system. To provide a fair comparison, we compare our 
proposed COVID-19 diagnosis method with the other methods validated 

Table 17 
Performance of SOTA deep CNN and different transferred deep CNN models 
(Unit: %).  

Model Sen. F1 Pre. Acc. AUC 

DenseNet201 
[29] 

93.75 ±
0.39 

93.75 ±
0.39 

93.89 ±
0.42 

93.75 ±
0.39 

98.40 ±
0.21 

DenseNet201 
(A) 

91.99 ±
0.25 

91.97 ±
0.25 

92.07 ±
0.33 

91.99 ±
0.25 

98.13 ±
0.29 

DenseNet201 
(B) 

94.03 ±
0.14 

94.03 ±
0.13 

94.11 ±
0.18 

94.03 ±
0.14 

98.86 ±
0.17 

DenseNet201 
(C) 

94.19 ±
1.01 

94.18 ±
1.03 

94.26 ±
1.06 

94.19 ±
1.01 

98.97 ±
0.25 

DenseNet121 
[29] 

93.44 ±
0.55 

93.44 ±
0.55 

93.48 ±
0.55 

93.44 ±
0.55 

98.49 ±
0.32 

DenseNet121 
(A) 

91.79 ±
0.68 

91.78 ±
0.68 

91.84 ±
0.63 

91.79 ±
0.68 

98.15 ±
0.28 

DenseNet121 
(B) 

94.29 ±
0.38 

94.30 ±
0.38 

94.36 ±
0.38 

94.29 ±
0.38 

98.82 ±
0.43 

DenseNet121 
(C) 

94.08 ±
0.64 

94.08 ±
0.64 

94.20 ±
0.54 

94.08 ±
0.64 

98.76 ±
0.22 

ResNet101 [28] 92.51 ±
1.06 

92.50 ±
1.06 

92.60 ±
1.10 

92.51 ±
1.06 

98.11 ±
0.54 

ResNet101(A) 92.84 ±
0.64 

92.84 ±
0.67 

92.99 ±
0.63 

92.84 ±
0.64 

98.24 ±
0.21 

ResNet101(B) 94.25 ±
0.77 

94.26 ±
0.78 

94.52 ±
0.67 

94.25 ±
0.77 

98.40 ±
0.56 

ResNet50 [28] 92.36 ±
0.54 

92.35 ±
0.54 

92.40 ±
0.55 

92.36 ±
0.54 

98.06 ±
0.18 

ResNet50(A) 92.88 ±
0.73 

92.87 ±
0.74 

92.99 ±
0.76 

92.88 ±
0.73 

98.40 ±
0.26 

ResNet50(B) 94.78 ±
0.34 

94.78 ±
0.34 

94.93 ±
0.32 

94.78 ±
0.34 

98.67 ±
0.38 

ResNet18 [28] 92.84 ±
0.58 

92.83 ±
0.58 

92.89 ±
0.56 

92.84 ±
0.58 

98.12 ±
0.35 

ResNet18(A) 90.10 ±
1.13 

90.13 ±
1.10 

90.39 ±
1.05 

90.10 ±
1.13 

97.64 ±
0.54 

ResNet18(B) 94.12 ±
1.37 

94.12 ±
1.38 

94.16 ±
1.42 

94.12 ±
1.37 

98.44 ±
0.59 

Vgg16 [27] 93.87 ±
0.88 

93.87 ±
0.88 

93.95 ±
0.87 

93.87 ±
0.88 

97.85 ±
0.86 

Vgg16(A) 94.39 ±
0.56 

94.38 ±
0.56 

94.50 ±
0.53 

94.39 ±
0.56 

98.90 ±
0.28 

Vgg16(B) 94.75 ±
0.43 

94.75 ±
0.43 

94.84 ±
0.41 

94.75 ±
0.43 

98.64 ±
0.48 

GoogLeNet 
[26] 

94.71 ±
0.63 

94.70 ±
0.63 

94.81 ±
0.60 

94.71 ±
0.63 

98.67 ±
0.51 

GoogLeNet(A) 91.38 ±
0.81 

91.42 ±
0.79 

91.65 ±
0.82 

91.38 ±
0.81 

97.92 ±
0.41 

GoogLeNet(B) 94.32 ±
0.64 

94.32 ±
0.63 

94.49 ±
0.58 

94.32 ±
0.64 

99.00 ±
0.38 

NSCGCN 
(Ours) 

96.45 ± 
1.05 

96.45 ± 
1.05 

96.61 ± 
0.97 

96.45 ± 
1.05 

99.22 ± 
0.31 

*model(X) means only train X in the model. 

Table 18 
Performance of SOTA COVID-19 diagnosis methods (Unit: %).  

Method Sen. F1 Pre. Acc. AUC 

Ozturk et al. 
(DarkCovidNet) [55] 

95.06 
± 0.54 

95.06 
± 0.54 

95.17 
± 0.50 

95.06 
± 0.54 

98.51 
± 0.43 

Afshar et al. (COVID- 
CAPS) [56] 

92.04 
± 0.75 

92.03 
± 0.78 

92.17 
± 0.83 

92.04 
± 0.75 

97.62 
± 0.46 

Elbishlawi et al. 
(CORONANET) [57] 

95.30 
± 0.49 

95.30 
± 0.48 

95.45 
± 0.45 

95.30 
± 0.49 

98.93 
± 0.35 

Wang et al. 
(COVIDNET) [58] 

94.64 
± 0.36 

94.64 
± 0.36 

94.75 
± 0.33 

94.64 
± 0.36 

98.59 
± 0.44 

Arias-Londono et al. 
(COVIDNET-DE) [59] 

94.98 
± 0.54 

94.99 
± 0.54 

95.16 
± 0.46 

94.98 
± 0.54 

98.65 
± 0.46 

Arias-Londono et al. 
(COVIDNET-Grad- 
CAM) [59] 

94.83 
± 0.40 

94.83 
± 0.40 

94.98 
± 0.34 

94.83 
± 0.40 

98.59 
± 0.46 

Redie et al. (Modified 
DarkCovidNet) [60] 

94.38 
± 0.70 

94.38 
± 0.70 

94.43 
± 0.70 

94.38 
± 0.70 

98.61 
± 0.36 

Bhowal et al. (Choquet 
Integral-Based 
Ensemble) [61] 

94.67 
± 0.84 

94.64 
± 0.85 

95.13 
± 0.65 

94.67 
± 0.85 

97.78 
± 0.87 

Ours (NSCGCN) 96.45  
± 1.05 

96.45  
± 1.05 

96.61  
± 0.97 

96.45  
± 1.05 

99.22  
± 0.31  
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on the same dataset. For OPN, COVID-19, and HC three-classification 
tasks, the performance of SOTA methods is shown in Table 18. The 
performance of CORONANET is the best in the SOTA networks as Sen. =
95.30%, F1 = 95.30%, Pre. = 95.45%, Acc. = 95.30%, AUC = 98.93%. It 
is higher than the ResNet50(B) but lower than some GCN models. 

And then, it can be seen that NSCGCN is superior to all the latest 
methods. Furthermore, our proposed method achieves the highest 
sensitivity, which means that our proposed method can show a more 
robust ability of pneumonia image discrimination while ensuring high 
accuracy. 

5. Conclusion and future directions 

In this paper, we propose a novel feature fusion algorithm NSC and 
construct a novel deep GCN NSCGCN to complete pneumonia diagnosis. 
Experiments show that our COVID-19 diagnosis method is better than 
fourteen SOTA GCN, sixteen SOTA deep CNN, and eight SOTA COVID- 
19 diagnosis models. The reason why our NSCGCN has the best per-
formance is (i) because NSCGCN is a deep GCN model. It is more 
expressive and can be used to represent more complex situations. (ii) 
The proposed NSC includes graphics transformation and feature fusion 
process. It helps significantly increase the nonlinear characteristics of 
the model. (iii) Transferred networks help reduce training time and 
improve training efficiency. 

This research has two shortcomings: (i) We did not achieve the best 
structure for feature reconstruction. We turn feature reconstruction into 
an adaptive process in the future. (ii) The model still has an over-fitting 
phenomenon. We will try to collect more data and further improve the 
diagnostic performance of COVID-19. 

The future work directions are: (i) Combine different feature struc-
tures to create an integrated width GCN. (ii) Fuse multimodal data in-
formation to improve diagnosis accuracy. (iii) Expand the dataset and 
test our model on different sources of COVID-19. 
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