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Thyroid hormones are of fundamental importance for brain development and essential

factors to warrant brain functions throughout life. Their actions are mediated by

binding to specific intracellular and membranous receptors regulating genomic and

non-genomic mechanisms in neurons and populations of glial cells, respectively. Among

others, mechanisms include the regulation of neuronal plasticity processes, stimulation

of angiogenesis and neurogenesis as well modulating the dynamics of cytoskeletal

elements and intracellular transport processes. These mechanisms overlap with those

that have been identified to enhance recovery of lost neurological functions during the

first weeks and months after ischemic stroke. Stimulation of thyroid hormone signaling in

the postischemic brain might be a promising therapeutic strategy to foster endogenous

mechanisms of repair. Several studies have pointed to a significant association between

thyroid hormones and outcome after stroke. With this review, we will provide an overview

on functions of thyroid hormones in the healthy brain and summarize their mechanisms

of action in the developing and adult brain. Also, we compile the major thyroid-modulated

molecular pathways in the pathophysiology of ischemic stroke that can enhance

recovery, highlighting thyroid hormones as a potential target for therapeutic intervention.

Keywords: brain, recovery, stroke, thyroid hormones, 3,5,3′,5′-tetraiodo-L-thyronine (T4), 3,5,3′-triiodo-L-

thyronine (T3)

INTRODUCTION

Thyroid hormones (TH), 3,5,3′,5′-tetraiodo-L-thyronine (T4) and 3,5,3′-triiodo-L-thyronine (T3),
are important for brain development in mammals, during embryonic and fetal stages, regulating
processes of neuronal proliferation, migration and differentiation, neurite outgrowth, synaptic
plasticity, dendritic branching, and myelination (1–5). Also, after birth, TH are crucial for normal
brain function throughout the entire life. Specifically for the central nervous system (CNS) the
active form T3 is a key regulator for normal metabolism in humans and rodents (1, 6, 7).

Availability of T3 to the developing and adult brain is tightly controlled by mechanisms
regulating TH secretion, free fraction unbound to thyroxine binding globulins (TBG),
transmembrane transporters and the activity of iodothyronine deiodinases (DIO). The pattern of
these regulatory processes may vary according to the developmental stage and in the adult brain. T3

plays an essential role for neurological functions, and minimal disturbances of these mechanisms
may have consequences for normal brain development and function (1, 8).
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Dependence of the CNS on T3 at all stages of development
prompted us to review the actions of TH and the relevance
of these mechanisms for processes of recovery after ischemic
stroke. We will begin to provide an overview on TH signaling
in the brain during development and throughout adult life.
Thereafter, we will focus on molecules involved in TH signaling
after stroke. TH actions at specific time points after the
insult, that are dependent of carrier proteins, transmembrane
transporters, DIO activity, thyroid hormone receptors (TR) and
co-factors, may provide information on underlying molecular
and cellular mechanisms that enhance functional recovery of
lost neurological functions. Moreover, we will discuss which
mechanisms of action of TH in the brain may contribute to
enhance functional outcome in stroke patients.

THYROID HORMONE TRANSPORT AND
AVAILABILITY TO THE HUMAN AND
RODENT BRAIN

In the adult, TH originate in the thyroid gland that secretes
∼93% as T4 and 7% as T3. Once secreted to plasma, TH binding
proteins play an important role to maintain TH homeostasis
and distribution into tissues, and <0.1% of TH circulate free in
the blood (9, 10). In humans, 65% of TH bind to TBG, 20% to
albumin and about 15% to transthyretin (TTR) (11, 12) while in
rodents TTR is the main protein carrier in the blood circulation
(13, 14). TH also bind to lipoproteins to a less extent (15, 16).

In contrary to processes during brain development, a different
fraction of T3 in the adult brain is provided from free T3 available
in the blood circulation and in the cerebrospinal fluid (CSF)
(17, 18). Most of TH provided to the brain crosses the blood
brain barrier (BBB) and around 20% the blood cerebrospinal
fluid barrier (BCSFB) (19, 20). This passage is mediated by
transmembrane transporter proteins with overlapping specificity
that were identified in endothelial cells of brain microvessels that
constitute the BBB and epithelial cells of the choroid plexus (CP)
of humans and rodents. These transporters are also important
for brain development, and includemonocarboxylate transporter
(MCT), organic anion transporting polypeptide (OATP), large
neutral aminoacid transporter (LAT) and sodium/taurocholate
co-transporting polypeptide (SLC10A1) families (17, 21–31).
Among those, MCT8 is of particular importance for T3 (21,
26, 29), and in mice deficient for this transporter, T3 uptake is
compromised (32). In humans,MCT10 also facilitates uptake and
efflux of TH, in particular for T3 (33). The gene that encodes
MCT8 (Slc16a2) is also present in membranes of neurons,
astrocytes, tanycytes and oligodendrocyte precursor cells and
OATP1C1 mRNA has been found in astrocytes (34), mediating
intracellular TH transport. In addition, it has been proposed that
either T4 or T3 or both are captured via gaps at the endfeet of
astrocytes covering brain microvessels (35, 36).

In contrast to the rodent, MCT8 deficiency in humans results
in low T3 levels in the brain and high levels in the serum
due to TH transport deficiency. Thus, the development of the
cerebral cortex is impaired accompanied with severe neurological
impairment (37–40). The lack of alternative TH transporters

such as OATP1C1 (28) and MCT10 (41) in the adult human
brain to compensate the transport of T3, may contribute to the
neurological deficits observed in humans with MCT8 mutations.
The activity of DIO2 and DIO3 in the brain is important
to balance neuronal intracellular T3 levels in the adult brain,
according to the developmental stage and brain region (42–
44). DIO enzymes catalyze and remove specific iodine atoms
from iodothyronine molecules. In rodents, ∼50% of T3 levels
localized in the brain relies on local deiodination of T4 in
astrocytes and tanycytes by DIO2 (45). T3 produced in glial
cells is able to promote T3 driven transcriptional activity in
neurons, demonstrated by in vitro experiments in co-cultures of
H4 human glioma cells expressing DIO2 and neuroblastoma cells
(46). Homeostasis of T3 in the CNS is also controlled by DIO3
activity in neurons, that converts T4 into 3,3

′,5′ reverse triiodo-L-
thyronine (rT3) and inactivates T3 into 3,3′-diiodo-L-thyronine
(T2) (43, 47, 48).

Other compensatory mechanisms to maintain sufficient T3

levels in the rodent brain include the reduction of DIO3 activity
and consequently T3 degradation, the increase of DIO2 activity
in astrocytes (17, 32, 49) and the increase of Dio2 expression in
interneurons in the cerebral cortex (50).

THYROID HORMONES IN BRAIN
DEVELOPMENT

It has been shown that mechanisms of brain development might
be re-activated in processes of brain reorganization following
stroke (51) involving cascades regulated by TH. Therefore,
knowledge of TH actions critical and specific for each step of
brain development is instrumental to understand their functions
following stroke. Epidemiological and clinical studies in humans
clearly show that several conditions that compromise maternal
TH availability to the fetus impair brain development and are
associated with neurological disorders and structural defects,
most of them irreversible. A detailed review about TH transport,
metabolism and function in the developing brain was recently
published (52).

Despite epidemiological and clinical studies have
demonstrated the demand of TH during brain development,
animal experimental models are of high relevance to identify
molecular mechanisms and detailed morphological changes
of their biological function during brain development (53).
Processes of neurogenesis, proliferation, migration, and
maturation show different temporal profiles between humans
and rodents, however, basic mechanisms and pathways that
regulate brain development are similar (54, 55) allowing the
extrapolation of TH deficiency mediated effects in rodents
to abnormal TH signaling in humans. Maternal TH are
crucial for early cortical neurogenesis, neuronal migration
and maturation, during the first trimester of gestation, when
fetal brain development occurs (1, 56–58). Both T4 and T3 are
detected in the human brain embryo even before fetal thyroid
gland maturation (59) that occurs at 11–12th week of gestation
and starts to secrete TH at week 16 (60).
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Also in the rat, the embryo is exposed to maternal TH
after embryonic day 11 (E11), before the start of thyroid gland
development at E17 (61–64). Experimental hypothyroxinemia
induced in rats during this period (before E18) causes abnormal
neurogenesis in the cortex and hippocampus, leading to
impairment of synaptic plasticity and cognitive deficits (65–
67), processes of high relevance in mechanisms of recovery
after stroke.

Most of TH dependent processes during brain development
are due to the interaction of T3 with nuclear receptors
and regulation of gene expression (68). Increasing levels
of protein and mRNA encoding TR alpha and beta (TRα

and TRβ) isoforms in the cerebrum and cerebellum start
from the 8th to 10th week and increase over gestational
time (69, 70) and in rodents there is expression of nuclear
TR protein before thyroid gland functioning (71) suggesting
transcriptional activity of TH. Several TH dependent genes
expressed in the fetal rat brain and neuronal cultures, such
as cytoskeletal proteins, are involved in mechanisms of
neuronal migration and maturation, branching in neurons and
astrocytes (1, 72–74). In both human and rodent species,
mutations at the TRα and TRβ result in several neurological
disorders (75–79).

The expression pattern of TR in the brain changes during CNS
development. TRα1 is the predominant isoform with mRNA and
protein expression in the entire brain, in rodents from E14 (80,
81) and in humans from 8th week of gestation (82, 83) onwards,
importantly the expression decreases during brain development
(84). TRβ1 is expressed at later stages of brain development
and in contrary to TRα, TRβ1 mRNA levels do not decrease
over gestational time (80, 84, 85). These studies indicate that
gene transcription mediated by nuclear TR has spatiotemporal
expression patterns and, therefore, TH actions are distinct in all
stages of brain development.

In an in vitro model of differentiating mouse embryonic
stem cell line (ES-E14TG2a) T3 treatment (1 nM) enhanced
the number of nestin-positive neuronal progenitors, accelerated
differentiation and increased survival of pyramidal neurons
(86). T3 mediated differentiation was associated with the
regulation of genes involved in corticogenesis namely nestin,
empty spiracles homeobox 1 (Emx1), T-box brain gene 1 (Tbr1),
Calmodulin kinase 4 (Camk4), and RC3/Neurogranin (Nrgn)
(86). Regulation of gene expression during differentiation seems
to be inversely correlated with levels of chicken ovalbumin
upstream-transcription factor 1 (COUP-TF1) (86), that is crucial
for adequate neuronal development (87).

MECHANISMS OF THYROID HORMONES
ACTIONS IN THE ADULT BRAIN

Cellular actions of TH in the adult brain can be mediated
by nuclear receptors and transcriptional activity, and also by
non-genomic actions (85, 88, 89). Here we will elaborate in
relevant TH actions described in the literature, and below
we will delineate TH actions that might be involved in
neurorepair processes.

Genomic Actions of TH
Actions of T3 in the brain are mainly dependent on transcription
mediated by T3 binding to the nuclear receptors and formation
of regulatory complexes (85, 88–91). In the presence of TH,
TR are regulated by corepressors (CoR) and coactivators (CoA),
proteins, that repress or activate transcription, respectively (36,
85, 88, 89, 92) (Figure 1).

In mammals, there are four isoforms of TR (TRα1, TRα2,
TRβ1, and TRβ2) encoded by genes alpha (Thra) and beta
(Thrb), which expression and distribution is different to
the developmental brain (93). These isoforms are differently
distributed in the tissues, regulate the transcription of different
genes and exert different biological actions (94).

TRα1 and TRβ1 are the predominant isoforms in the
CNS. TRα1 mRNA and protein accounts to 70–80% of TR
expression in the brain (36, 95, 96). Thus, genomic actions of
T3 in the brain are mainly, but not exclusively, dependent of
TRα1 signaling (97). The analysis of brains from TRα1—green
fluorescent protein (GFP) mice revealed that this receptor is
expressed in all NeuN positive neurons, especially in the nucleus
(83). TRα1 is expressed in both excitatory glutamatergic and
inhibitory GABAergic neurons in several brain regions including
the striatum, cerebral cortex, hippocampus and dentate gyrus,
hypothalamus and cerebellum (83, 98). This isoform of TR is also
found in tanycytes lining the third ventricle and oligodendrocytes
in the hypothalamus, but not in the striatum, somatosensory
cortex or hippocampus (83, 99). Its presence in astrocytes is
not completely clear (100), however may be dependent on the
activation status. Although lower concentration of the receptor
is found in cultured rat astrocytes (101), it is not expressed in
glial fibrillary acidic protein (GFAP) positive astrocytes in the
naïve rat and mouse brain (83, 99). TRα1 is absent in Purkinje
cells in the cerebellum (83). Levels of TRα2, a non T3 binding
isoform, is also detected in the adult brain in a similar pattern as
TRα1 (98).

TRβ1 is expressed in the neocortex, and mainly expressed
in the pyramidal cell layers of the hippocampus, granule cells
of dentate gyrus and paraventricular hypothalamic nucleus
(102). It is also expressed in myelin basic protein positive
oligodendrocytes (99). In contrary to TRα1, this isoform is
highly expressed in Purkinje neurons (94). The TRβ2 isoform
is restricted to the anterior pituitary gland and hypothalamus
(102–105). As for TRα isoforms, TRβ1 and TRβ2 were not
observed in positive GFAP positive astrocytes in the rat
brain (99).

Although TR are mainly localized in the cell nucleus and
nuclear membrane, TRα1 and TRβ1 isoforms have also been
found in the cytoplasm of neurons and astroglia, and this
shuttle may increase the rate of T3 nuclear import (106). It has
been suggested that T4 may also exert genomic actions in the
brain through binding to TRα1, that is more susceptible to T4

than TRβ1 (36), however we did not find experimental studies
supporting this hypothesis. So far, a total of 4,108 genes, of which
734 have been identified as being repeatedly regulated by T3 in
the rodents’ brain by microarray analysis (72). In this review,
we provide an overview on T3-modulated genes that might be
involved in brain repair mechanisms (Table 1). Hence, different
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FIGURE 1 | Genomic mechanisms of thyroid hormones action in the brain. Genomic actions of T3 are dependent on gene transcription mediated by its binding to

nuclear TRα and TRβ, and the formation of heterodimer complex with RXR (RXR-TR) that binds to a TRE, located at the regulatory region of T3 target genes. This

activity is regulated by an exchange of CoR for CoA. CoA, Co-activator; CoR, Co-repressor; RXR, Retinoid X receptor; TR, Thyroid hormone receptor; TRE, Thyroid

response element; T3, 3,5,3
′-triiodo-L-thyronine.

T3–dependent transcriptional activities have been observed in
different cell types and brain regions.

Non-genomic Actions of TH
TH non-genomic actions that do not require TH binding to
nuclear receptors are well-described in the literature (127–
130). Actions are immediate and include several interactions
of TH with extranuclear receptors, including TRα and TRβ,
located in the cytoplasm, cellular membrane, cytoskeleton and
mitochondria, modulating several intracellular pathways.

The following points summarize relevant non-genomic
actions of TH binding to membranous and cytoplasmic receptors
(i–iii), cytoplasmic TH binding proteins affecting ion pumps
activity (iv) and the action of TH on the cytoskeleton (v)
(Figure 2). (i) T3 complexed to TRβ1 in the cytoplasm interacts
with p85α subunit of phosphatidylinositol 3-kinase (PI3K),
resulting in phosphorylation and activation of protein kinase
(PK) B/Akt signal transduction pathway, rapamycin (mTOR)
and phosphorylation of p70S6K (131–136). (ii) T3 is able to
bind to integrin αvβ3 S1 domain in plasma membranes and
activates PI3K via Src kinase. T4 and T3 interact with integrin
αvβ3 S2 domain and activate mitogen-activated protein kinase
1/2 (MAPK 1/2) signaling cascade, through phospholipase C
(PLC) and PKC (127, 133, 137–140). Subsequently, it results
in an nuclear translocation of TRβ1 (141), estrogen receptor α

(142), signal transducing and activator of transcription (STAT)

1α, interferon gamma (IFN-γ) (143) and CoA protein Trip230
(144). In addition, hormone activated MAPK 1/2 phosphorylates
TRβ1 at Ser-142, leading to recruitment of CoA proteins (145).
(iii) T4 non-gnomically activates MAPK 1/2 in HeLa and CV-1
cultured cells (146, 147) and phosphorylation of p53 (148) and
STAT3 (147). (iv) T3 modulates Na+/H+ exchanger in myoblasts
(149); Na-K-ATPase activity in alveolar epithelial cells (150–
152), embryonal hepatocytes (153), and synaptosomes (154, 155)
through either the PI3K or MAPK pathways (152, 156); the Ca-
ATPase activity in erythrocytes (88), the sarcoplasmic reticulum
in the heart (157) and in cerebrocortical synaptosomes (158). (v)
T4 and rT3 stimulate polymerization of actin components of the
cytoskeleton neuronal and astrocyte cell cultures, through TH
binding to an extranuclear truncated form of TRα1 (TR1α1)
(159–162).

THYROID HORMONES IN THE AGING
BRAIN AND ISCHEMIC STROKE

The complex process of aging is associated with changes in
TH metabolism and action in all tissues. During aging, the
disruption of circadian rhythm leads to a reduction in thyroid
stimulating hormone (TSH) secretion (163–165) and circulating
TH levels, in particular T3, in humans (166, 167) and rodents
(168). Nevertheless, TH signaling is well-preserved in the
aging brain, as demonstrated in mouse models of aging (169).
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TABLE 1 | List of genes regulated by thyroid hormones involved in their transport into the brain, mechanisms of tissue repair, and neuronal plasticity following ischemic

stroke.

Genes

human/rodent

Gene name Function Tissue/cultured cells References

SLC16A2/Slc16a2 MCT8 TH transport Brain (107)

DIO2/Dio2 DIO2 TH deiodination

DIO3/Dio3 DIO3

Bcl2 Bcl2 Neuronal survival,

neurogenesis and

neurotrophic factors

Brain cortex (107–109)

Vegfa VEGFA

Sox2 SRY-box2

Ntf Neurotrophin

Nos2 NOS2

HIF2α HIF2α Neuroblastoma cell line (107)

VEGF VEGF

c-JUN c-Jun

ENO2 Enolase-2

Emx1 empty spiracles homeobox 1 mES cell line (86)

Tbr1 T-box brain gene 1

Bdnf Brain derived neurotrophic factor Hippocampal slices (110)

Slc12a5 KCC2

NRGN/Nrgn Neurogranin Synaptic plasticity Hippocampus and forebrain/mES cell line (86, 111–113)

CAMK4/Camk4 Calmodulin kinase 4 Brain/Neurons/mES cell line (86, 114–117)

Reln Reelin Brain (118–120)

Srg1 Synaptotagmin-related gene 1 Brain (121)

Nefh Neurofilament heavy polypeptide Neurons (122)

Nefm Neurofilament medium polypeptide (122)

GFAP GFAP Astrocytes (123)

Vim Vimentin Mesenchimal cells (122)

Nes Nestin Neurons (86, 122)

Vegf VEGF Angiogenesis Brain (124–126)

Angpt2 Angiopoietin-2

However, hypothyroidism and decreased TH availability to the
brain has been considered a risk factor for the development
of neurodegenerative diseases (170, 171) and acute ischemic
stroke (172, 173). In addition, recent epidemiological studies
have associated low levels of T3 with poor functional outcome
after acute ischemic stroke (174–179). Interestingly, lower total
T3 levels is not related with poor functional recovery after
ischemic stroke in patients below 65 years of age, suggesting that
the association between levels of T3 and stroke recovery may
be clinically important in older patients (180). Non-thyroidal
illness syndrome also impairs functional recovery after stroke
(181). Besides, stroke patients with thyroid dysfunction (lower
levels of TSH and higher levels of free T4) are associated with
poorer clinical outcome (182). Together, studies point toward
the need for a systemic assessment of thyroid dysfunction and
stroke outcome.

Some reports suggest neuroprotective effects of
hypothyroidism prior to brain ischemia in humans (183, 184),
as well as experimental studies in rodents (185, 186). In a
recent systematic review, stroke patients with subclinical

hypothyroidism (higher levels of TSH and normal levels of
free T4 within the reference range) were more prone to suffer
a non-fatal stroke and minor adverse events (182). However,
we lack mechanistic studies how systemic levels of TH exactly
influence processes in the postischemic brain. It is likely that
hypothyroid episodes prior to stroke only delayed neuronal
death, due to decreased metabolic demand of neurons, decreased
glutamate production and delayed oxidative stress (185, 187).
There is no evidence from experimental studies that show
beneficial effects in hypothyroid animals after stroke. A recent
animal study suggested that daily intravenous administrations of
rT3, an inactive form of T3, prevents ischemic-reperfusion injury
in rats subjected to transient MCAO, however authors did not
evaluate if rT3 induced an hypothyroid state (188). Similarly,
in rats subjected to permanent middle cerebral artery occlusion
(MCAO), TH serum levels are reduced 14 days after injury
correlated with increased neurological impairment (189).

On the other hand, hyperthyroidism has been associated with
an increased risk for ischemic stroke in humans (190–192).
However, the population-based study was performed in patients
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FIGURE 2 | Non-genomic mechanisms of thyroid hormones action in the brain. T3 can also modulate other genes not containing TRE, by non-genomic actions. (i) T3
complexed to TRβ1 in the cytoplasm interacts with p85α subunit of PI3K, resulting in phosphorylation and activation of PKB/Akt signal transduction pathway, mTOR

and phosphorylation of p70S6K (131–136). (ii) T3 is able to bind to integrin αvβ3 S1 domain in plasma membranes and activates PI3K via Src kinase. T4 and T3
interact with integrin αvβ3 S2 domain and activate MAPK 1/2 signaling cascade, PLC and PKC (127, 133, 137–140). Subsequently, it results in an nuclear

translocation of TRβ1 (141), estrogen receptor α (142), STAT1α, IFN-γ (143) and CoA protein Trip230 (144). In addition, hormone activated MAPK 1/2 phosphorylates

TRβ1 at Ser-142, leading to recruitment of CoA proteins (145). (iii) T4 non-gnomically activates MAPK 1/2 in HeLa and CV-1 cultured cells (146, 147) and

phosphorylation of p53 (148) and STAT3 (147). (iv) T3 modulates Na+/H+ exchanger in myoblasts (149); Na-K-ATPase activity in alveolar epithelial cells (150–152),

embryonal hepatocytes (153) and synaptosomes (154, 155) through either the PI3K or MAPK pathways (152, 156) the Ca-ATPase activity in erythrocytes (88), the

sarcoplasmic reticulum in the heart (157) and in cerebrocortical synaptosomes (158). (v) T4 and rT3 stimulate polymerization of actin components of the cytoskeleton

neuronal and astrocyte cell cultures, through TH binding to an extranuclear truncated form of TRα1 (TR1α1) (159–162). IFN-γ, interferon gamma; MAPK 1/2,

mitogen-activated protein kinase 1/2; PLC, phospholipase C; PI3K, phosphatidylinositol 3-kinase; PK - protein kinase; mTOR – rapamycin; STAT - signal transducing

and activator of transcription; TH, Thyroid hormones; TR, Thyroid hormone receptor; TRE, Thyroid response element; T4, 3,5,3
′,5′-tetraiodo-L-thyronine; T3,

3,5,3′-triiodo-L-thyronine.

aged 18–44 years. Hence, this study has not been adjusted for
other risk factors such as hypertension and atrial fibrillation that
may independently contribute for stroke. Larger infarct volumes
also have been found in hyperthyroid rats after transient MCAO
(193). Hence, hyperthyroid rats (oral administration of TH for
4 weeks) showed profound effects on the cardiovascular system
including hypertension and tachyarrhythmia and treatment
resulted in a catabolic metabolism (193).

Interestingly, increased mRNA expression of Dio2 has been
found in astrocytes during the first 72 h after transient MCAO
(194). Together with modulation of Thrb expression, that is
reduced in the infarct core and increased in the peri-infarct
area, it suggests a local action of T3 (189). Repeated daily
administrations of T4, before and on days one, two and three
after stroke, decrease neuronal damage in the cornu ammonis
CA1 pyramidal cells in the hippocampus (195). In an animal
model of MCAO, intraperitoneal injection of T4 (11 µg/kg, 1 h
after ischemia and 6 h after reperfusion) reduced cortical and
striatal infarct volume 24 h after stroke, with a reduction of GFAP,
Iba-1, PKC, and MAPK 1/2 expression (196). Treatment with
levothyroxine (25µg/kg intraperitoneal) 1 h after traumatic brain
injury stimulated mRNA expression of genes encoding MCT8,
DIO2, and DIO3; genes related with neuronal survival and

neurogenesis, namely Bcl2, vascular endothelial growth factor
A (Vegfa), Sox2, and neurotrophin (Ntf ) in the cortex, and of
inducible nitrite oxide synthase 2 (Nos2) (107).

Moreover, intraperitoneal administration of T3 at 12µg/kg 1 h
after traumatic brain injury reduced lesion size and inflammation
(197). T3 treatment 25 µg/kg 30min after transient MCAO also
reduced volume of stroke damage in mice through stimulation
of fatty acid oxidation by astrocytes (198). A combination
therapy of bone marrow stromal cells, daily injections of
T3 200 µg/kg and mild exercise was related to reduce
ischemic damage 7 days after transient MCAO in rats (199).
Likewise, intraperitoneal administration of thyroxine derivates,
3-iodothyronamine and thyronamine, 50 mg/kg 1 h after MCAO
in mice, also reduced infarct volume (200). Neuroprotective
action of 3-iodothyronamine administered 2 days before MCAO
was associated with hypothermia (200). Although molecular
mechanisms have not been evaluated, these studies suggest that
non-genomic actions of TH contribute to neuroprotection in the
acute phase following stroke. In addition, T3 treatment prior
to brain ischemia (25 µg/kg intravenous) has prevented edema
through suppression of aquaporin-4 (AQP4) water channel
expression and thereby reducing infarct volume and improving
neurological outcome after transient MCAO (109), effects that
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were enhanced when T3 was administrated in nanoparticles at
equivalent doses (108). Recently, it has been demonstrated that
T3 modulates AQP4 expression dependent on developmental
stage of the CNS. Treatment of mice with T3 at 1µg/g increased
AQP4 expression in astrocytes in the cerebral cortex until the
60th postnatal day. In contrast, whereas in glioblastoma cell lines
stimulation with T3 (50 nM) treatment was downregulating the
expression of AQP4 (201).

Few experimental studies have been performed to identify
the mechanisms of TH actions in neuroprotection. Treatment
of mouse hippocampal slices lesioned between CA3 and CA1
with T4 increases levels K-Cl cotransporter (KCC2) mRNA in a
brain derived neurotrophic factor (BDNF) dependent manner,
that promoted survival and regeneration of damaged neurons
in the CA1 region (110). Moreover, it has been demonstrated
that treatment with T3 has a protective effect against glutamate
toxicity in cultured astrocytes and neurons (202, 203). This action
has been linked to non-genomic actions of TH on Na+/H+

exchange activity and glutamate transport (204). Also, T3

treatment stimulated the expression ofHIF2α,VEGF, c-JUN, and
Enolase-2 (ENO2) in the neuroblastoma in an in vitro hypoxia
model (107). Although only a few scattered studies have been
performed, they indicate an involvement of T3 in pathways that
promote neuronal protection and recovery, through genomic or
non-genomic actions.

The expression of TR in the human brain after ischemic
stroke have not been studied. Also in experimental models, TR
expression has not been investigated, and we found only one
experimental study reporting TR expression after permanent
MCAO (189). Interestingly, TRα1 expression is increased in
microglial cells in the infarct core and in neurons in the
peri-infarct area. Astrocytes mildly express nuclear TRα1 and
expression of TRβ1 is strongly expressed in the astrocytic scar.
If TRα1 and TRβ1 play a crucial role for recovery after brain
stroke, in humans and rodents, it remains to be investigated.
In fact, TRα1 have been demonstrated to play a crucial role
for cardiomyocyte survival after myocardial infarction (205)
Therefore, the idea that TRα1 could be a target to promote stroke
recovery definitively needs to be further investigated.

MECHANISMS OF THYROID HORMONES
THAT MAY ENHANCE MECHANISMS OF
RECOVERY AFTER STROKE

Beyond the acute phase after stroke, the brain shows the capacity
of spontaneous recovery of lost neurological functions albeit
to a limited extent. This process remains slow, however, the
intrinsic mechanisms are present and patients may benefit from
enhancing those. TH regulate several pathways that are involved
in neurorepair, namely regulation of processes of neuronal
plasticity, neurogenesis, angiogenesis, and glutamate toxicity.
Adjuvant therapies that modulate those processes may improve
recovery of function after stroke, in particular when applied in
combination with physiotherapy in stroke patients or an enriched
environment in rodent models of stroke (206, 207).

Neuronal Plasticity
Neuronal reorganization occurs during the recovery phase of
stroke and is initiated by cellular responses to degeneration.
Cell death in the infarct core results in synaptic degeneration,
instigating regenerative responses among surviving neurons,
as the formation of new synaptic connections (208).
Neuronal plasticity includes all mechanisms involved in
modulation of dendritic and axonal arborization, dendritic
spine density and neuronal density that will determine
the formation of new synaptic connections and neuronal
networks (209, 210).

Neuroplasticity occurs spontaneously during stroke recovery
and TH have been identified as a modulator of several genes
that may stimulate endogenous neuroplasticity and therefore
contributing to facilitate recovery (Table 1).

In rodents, T3 regulates neuron specific RC3/Neurogranin
gene (Nrgn), that encodes a calmodulin binding protein (112)
which binds to calmodulin in the absence of calcium distribution
in spines and enhances synaptic plasticity (211). Nrgn is
highly expressed in dendritic spines in the hippocampus and
forebrain and deficiency of Nrgn in mice has been reported to
induce deficits in spatial learning and anxiety-like tendencies
(113). In the human, the homolog gene NRGN is also
a direct TH target, during development and in the adult
brain (111). TH also regulates Reelin (Reln) expression during
brain development (118). Administration of T3 increases Reln
expression in the hippocampus of adult rats (212). Reelin
is involved in the migration of multipolar neurons in the
developing neocortex (120) and in the adult brain interacts with
apoliprotein E receptors and regulates synaptic plasticity and
neurogenesis (119).

During brain development, T3 regulates genes related with
the calcium/Calmodulin-activated kinase 4—cAMP responsive
element-binding protein 1 (CaMK4/Creb1) signaling pathway,
as demonstrated in cultured fetal neurons (213), a mouse
embryonic stem cell line (86) and in vivo studies (114–117). The
CaMK4/Creb1 pathway regulates calcium influx and dendritic
growth during development (214), inhibits apoptosis through
phosphorylation of Creb and increases anti-apoptotic gene
expression. Synaptotagmin-related gene 1 (Srg1) is also a TH
responsive gene during brain development, that has a putative
role as a mediator of synaptic structure and activity (121).

Reorganization of spine cytoskeleton, principally
microtubules and actin filaments, can be dynamically modulated
and consequently change the pattern of synaptic activity
(215). Several studies have shown that TH modulate tubulins
(216, 217), microtubule associated proteins (218) and Tau
protein (219) in the cytoskeleton during brain development
and in the adult brain. TH has also been demonstrated to
modulate transcription of genes of intermediate filaments,
namely neurofilaments (Nefh and Nefm), GFAP in mature
astrocytes, vimentin in mesenchymal cells and nestin
(116, 122). Experiments in cerebral cortex slices suggest
that TH activates phosphorylation of cytoskeletal proteins
mediated by GABAergic signaling dependent on PKA and
PKCaMII activity (220). Studies conducted in cultured
glial cells also suggests that TH reorganize the cytoskeleton

Frontiers in Neurology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 1103

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Talhada et al. Thyroid Hormones in the Postischemic Brain

through GFAP phosphorylation mediated by RhoA signaling
pathway (221).

Actions of TH in the cytoskeleton are particularly important
during brain development, to guarantee proper cell migration
and to foster neurite outgrowth (160). T3 also regulates
transcription of genes involved in cytoskeleton formation
in neurons and astrocytes, during fetal and postnatal brain
development (74). Hypothyroidism leads to impaired actin
cytoskeleton formation in neurons and astrocytes, affecting
neuronal migration and neurite outgrowth. Both rT3 or
T4 administration can restore polymerization of intracellular
filaments F-actin (222, 223) and laminin (223, 224), but
this effect was not observed by T3 administration. Also
in neuronal and astrocyte cultures, T4 and rT3 stimulate
polymerization of the actin cytoskeleton, as already mentioned
above (Figure 2) (159, 160, 162). As during brain development,
basic transcription element-binding protein is upregulated
by TH and this protein may play a role in neuronal
outgrowth, modulating changes in the cytoskeleton, and cell
differentiation (225, 226).

Studies also demonstrate that TH signaling is critical to proper
functioning of short term (227) and long term synaptic plasticity
(228). Induced hypothyroidism has been related with disruption
in synaptic plasticity (229, 230) and long term potentiation in
the CA1 neonatal (231, 232) and adult (233) rat hippocampus.
Hyperthyroidism has been also related to detrimental effects in
dendritic spines. Intraperitoneal injection of T3 750µg/kg during
5 consecutive days in adult rats significantly decreased dendritic
spine density in CA1 pyramidal cells in the hippocampus (234)
and thyroxine induced hyperthyroidism impairs special learning
and synaptic plasticity in rats (235).

On the cellular level, TH genomic or non-genomic actions
may modulate the activity of ion pumps that are important
for normal excitable cell function. Particularly in brain tissues
affected by ischemia, directly or indirectly, adapted function of
ion pumps is required to avoid intracellular overload of H+

and Ca2+, preventing cell acidosis and excitotoxicity. T3 has
been shown to decrease the activity of Na, K-ATPase (154, 155)
and to stimulate the Na+/H+ exchanger (149) and Ca2+/Mg2+

ATPase pump activity (158) in cerebrocortical synaptosomes. T3

increases the transcription of SR Ca2+-ATPase gene (ATP2A2)
in the sarcoplasmic reticulum (157). In addition, T3 has been
demonstrated to be benefical in in vitro and in vivo experimental
myocardial ischemia preventing excessive intracellular Ca2+

accumulation (236, 237).
Also, T3 contributes to glutamate uptake by astrocytes,

protecting neurons from intracellular calcium toxicity and death
(203). Neuroprotective effect was attributed to an increased
expression of mRNA and protein levels of GLT-1 and GLAST in
the astrocytes. It also has been demonstrated that T3 decreases
N-methyl-d-aspartate (NMDA)-evoked currents and prevent
glutamate-induced neuronal death in hippocampal neurons
(202). Together, these actions might be beneficial to prevent cell
dysfunction or death of principal neurons during the acute phase
after ischemic stroke. Conversely, these mechanisms might be
involved to reduce the activity of inhibitory neurons in critical
periods of plasticity during the first weeks after stroke. Hence,

these actions most likely will dependent on receptor expression
profiles in different neuron populations.

The balance between excitation and inhibition is of particular
importance for neuronal plasticity processes potentially relevant
for recovery. During development, TH increases the level of
γ-aminobutyric acid (GABA) in the brain, while the opposite
effect is observed in the adult brain. In the developing
brain, hypothyroidism impairs the generation of interneurons
including reduced proliferation and delayed differentiation of
precursor cells in the cerebellum and their migration to the
cerebellar cortex (238). These effects could be antagonized by
administration of T3 binding to the TRα1. Likewise, deletion of
TRα1 reduced cerebellar GAT-1 expression and Pax-2 precursor
cell proliferation (238). TH also affect the release and uptake
of GABA from the neuron into the synapse. T3 stimulates
depolarization and release of GABA in synaptosomes from rat
cerebral cortex (239). In the adult brain, hypothyroidism is
reported to increase glutamic acid decarboxylase (GAD) activity
and GABA reuptake, from cerebral cortex homogenates (240,
241) while hyperthyroidism has no effect on GABA uptake
(241). In addition, T3 administration inhibits GABA-induced
Cl− currents, which may affect GABAA receptors in the cerebral
cortex, by non-genomic mechanisms (242).

Adult Neurogenesis
TH signaling is crucial for proper neurogenesis during brain
development (1). Several studies have demonstrated that
neurogenic events in the adult brain are dependent on TH
actions (243–250) and have been reviewed in detail (251, 252).
Particularly T3 is involved in mechanisms of proliferation,
survival, differentiation and maturation of neuronal precursors
in the adult brain (246, 251). With potential contribution of TH
NSPCs from the SVZ may proliferate, migrate and differentiate
into neurons, astrocytes or oligodendrocytes in the damaged
region and thereby contribute to brain plasticity after ischemic
stroke or other brain injury (253, 254). Stem cell therapy and
neurogenesis have been explored as a potential therapeutic
strategy for neuronal repair after ischemic stroke (255).

Angiogenesis
Therapeutic angiogenesis has been used to enhance brain repair
promoting the formation of new blood vessels and restoration
of blood flow in the damaged area (256–258). Angiogenic
effects of TH have been demonstrated in infarcted tissue of the
myocardium (259). Moreover, an increased number of new blood
vessels has been found in the brain of hypothyroid rats after
administration of 3,5-diiothyroprionic acid (a thyroid hormone
analog) or T4 (260). The proangiogenic effects of TH are
apparently mediated by non-genomic actions, through binding
to integrin αvβ3 resulting in activation of MAPK 1/2 and STAT3.
TH binding to αvβ3 directs transcription of genes that promote
angiogenesis, namely fibroblast factors, VEGF and angiopoietin-
2 (124–126, 137, 147, 261, 262). To our knowledge, so far no
experimental studies have been performed to investigate pro-
angiogenic effects of TH after stroke.
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TRANSLATION TO CLINICAL STUDIES

Current epidemiological studies in humans and experimental
evidence from rodents strongly suggest that TH signaling plays a
crucial for stroke recovery. In particular T3, the active form in the
brain, exerts genomic and non-genomic actions that may foster
functional outcome after stroke.

Although several epidemiological studies have associated
low levels of TH with poor outcome, no clinical trials have
been performed to evaluate the recovery promoting effects of
TH in stroke patients. At the current stage the first step of
translational studies will be to understand exact mechanisms
underlying beneficial action of TH after stroke in animal models,
in particular T3. Based on knowledge about mechanisms of
action, exact treatment regimens with specific targets can be
developed and tested during critical windows of stroke recovery.
In this context, the development of cell-specific approaches to
target TH signaling in the postischemic brain may result in
specific treatments in experimental stroke models, that later,
might be translated into clinical studies.

CONCLUSIONS

Several mechanisms in the brain are tightly regulated by TH and
T3 availability to the brain is dependent on factors including
(i) maternal TH release before fetus thyroid gland development;
(ii) TSH levels and TH release by thyroid gland; (iii) passage
of TH through placenta in the fetus; (iv) control of free
fraction of TH determined by TH binding proteins; (v) TH
transmembrane transport into the cytoplasm; (vi) local activity
of iodothyronine deiodinases; (vii) expression and distribution

of TR; (viii) and translational activity and non-genomic actions
of TH in the brain. Disruption in these mechanisms compromise
TH availability and actions in the brain and may result in
impairments of neurological functions. There is clinical and
preclinical evidence that TH are involved in mechanisms of
neuronal plasticity and function of glial cells after ischemic
stroke. Further understanding and targeting those might be
exploited in future therapies to enhance functional recovery in
stroke patients.
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