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Transfer RNAs (tRNAs) are key molecules participating in protein synthesis. To augment
their functionality they undergo extensive post-transcriptional modifications and, as
such, are subject to regulation at multiple levels including transcription, transcript
processing, localization and ribonucleoside base modification. Post-transcriptional
enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions
and influences specific anticodon–codon interactions and regulates translation, its
efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable
and results in a rich structural diversity of tRNA of which over 100 modified nucleosides
have been characterized. Most often these hypermodified nucleosides are found in
the wobble position of tRNAs, where they play a direct role in codon recognition as
well as in maintaining translational efficiency and fidelity, etc. Several recent studies
have pointed to a link between defects in tRNA modifications and human diseases
including neurological disorders. Therefore, defects in tRNA modifications in humans
need intensive characterization at the enzymatic and mechanistic level in order to
pave the way to understand how lack of such modifications are associated with
neurological disorders with the ultimate goal of gaining insights into therapeutic
interventions.
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Chemical modifications of RNA is a ubiquitous phenomenon in all kingdoms of life
(Grosjean, 2009) and more than 100 chemically distinct modifications in cellular RNA have
been identified to date. Initially, studies on such modifications were restricted to the ones that were
the most abundant such as: peudouridine (ψ), N1-methyladenosine (m1A) and 2′-O-methylation
(2′OMe) in ribosomal RNA (rRNA) and transfer RNA (tRNA), and 2′OMe, N6-methyladenosine
(m6A) in messenger RNA (mRNA) and viral RNA (Desrosiers et al., 1974; Perry and Kelley,
1974; Dubin and Taylor, 1975). With technological advances in high throughput sequencing and
mass spectrometry, additional less prevalent modifications on less abundant RNA species are
being discovered (Nachtergaele and He, 2017; Song and Yi, 2017) and their biological significance
uncovered.
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tRNA MODIFICATIONS

tRNA molecules translate the genetic code by recognizing
cognate mRNA codons during the process of translation
and protein synthesis. This ribosome-mediated interaction
of the mRNA codons with the anticodon of the tRNA
results in the discrimination of cognate vs. near-cognate
and non-cognate codons (Ogle et al., 2001; Yusupov et al.,
2001). The tRNAs undergo extensive post-transcriptional
modifications during the process of maturation. In eukaryotes,
around 100 different chemical modifications have been
described occurring at different positions on the tRNA
(Jackman and Alfonzo, 2013; tRNA modification database1

and MODOMICS2). Among all the modified nucleosides
observed in tRNA, eight are present at the same position
and the same subpopulation of tRNA isoacceptors in all
domains of life, suggesting that tRNA modifications have
highly conserved origins and functions (Björk, 1986; Björk
et al., 2001). The largest diversity of the post-transcriptional
nucleoside modifications occurs at the wobble position 34 in the
anticodon or immediately 3′ adjacent to the anticodon triplet
at position 37 (Rozenski et al., 1999; Dunin-Horkawicz et al.,
2006).

ELUSIVE BIOLOGICAL FUNCTIONS
OF tRNA MODIFICATIONS

A major limitation in the study of the biological significance
and function of tRNA base modifications has been the lack
of a phenotype associated with such modifications under
defined settings. However, with technological advances, several
modification defects and their phenotypes have now been
described which provides insights into their biological roles
(Hopper and Phizicky, 2003). In general, the modifications of
bases at the wobble position in the anticodon or immediately
adjacent to the anticodon triplet often impact the decoding
abilities of tRNA’s by restriction and/or improvement of the
codon-anticodon interactions, which may affect maintenance
of the reading frame (Agris, 1991; Lim, 1994; Björk, 1995;
Yokoyama and Nishimura, 1995; Johansson et al., 2008). Some
modified bases present in the anticodon loop may be required
for aminoacylation (Giege et al., 1998), while other modifications
outside the anticodon loop, e.g., m1A58 of tRNAi

Met, may be
important for the structure or stability of the tRNA (Anderson
et al., 1998; Calvo et al., 1999; Kadaba et al., 2004). Some of
these tRNA base modifications may also regulate the speed
and fidelity of translation (Hori, 2014; Manickam et al.,
2016). There is also evidence that the loss of certain single
modifications can be compensated by the presence of others,
which suggests the existence of some redundancy in the system
(Alexandrov et al., 2006). This indicates that modifications
in tRNA affect translational function in very subtle ways
and their main goal is to maintain tRNA functionality in
the cell.

1http://mods.rna.albany.edu/mods/
2http://modomics.genesilico.pl/

The cell utilizes the tRNA nucleoside modifications which
are located in or near the anticodon loop to alter the repertoire
of proteins that are preferentially synthesized. The affinity of
codon-anticodon interaction can also regulate the biased subsets
of mRNA, and so by adjusting the frequency of modifications in
tRNA, the cells are capable of rapidly reacting to environmental
challenges and thus focus their synthesis capacity on the proteins
needed the most during these stress situations. For example, in
Escherichia coli, stress resistance was significantly altered when
heat shock genes were targeted by closely associated mutations
(Krisko et al., 2014).

A feature of wobble modifications is their frequent tRNA
specificity. It has been shown in yeast (Saccharomyces cerevisiae)
that tRNA methyltransferase 4 (Trm4), which is multi-site
specific, catalyzes 5-methylcytosine (m5C) formation in over
34 species of tRNA and this occurs at position 48 (between
variable arm and T stem loop) most frequently (Czerwoniec
et al., 2009). However, the only tRNA with m5C at the
wobble position is tRNALeu(CAA) and this uniqueness has a
role in the regulation of translation in response to oxidative
stress in cells (Chan et al., 2012; Gu et al., 2014). This
has given rise to the concept of tRNA modification tunable
transcripts (MoTTs; Endres et al., 2015). This concept is
defined as tRNA modifications that lead to: (a) transcripts that
use specific degenerate codons and codon biases to encode
critical stress response proteins; and (b) transcripts whose
translation is influenced by changes in wobble base tRNA
modification.

DEFECTS IN tRNA MODIFICATIONS
ASSOCIATED WITH NEUROLOGICAL
DISORDERS

Although the role of tRNA in the process of translation
has been known since the late 1950s it is only in 1990, a
mutation in tRNA was linked to a human disease (Kobayashi
et al., 1990). The range of disorders now associated with
defects in tRNA modifications range from metabolic (Type II
Diabetes), respiratory defects and myopathies, mitochondrial
disorders such as mitochondrial myopathy, encephalopathy,
lactic acidosis and stroke-like episodes (MELAS) and myoclonus
epilepsy associated with ragged-red fibers (MERRF), to X-linked
intellectual disability and familial dysautonomia (Duechler et al.,
2016).

In S. cerevisiae, many of the tRNA modifications and the
enzymes involved have been well characterized (Phizicky and
Hopper, 2010). However, the homologs for many of these
enzymes and their biological significance in humans have only
recently started to emerge (Towns and Begley, 2012). This has
led to a new appreciation of the link between tRNA modifications
and human diseases (Torres et al., 2014; Hou et al., 2015).

The human brain is particularly sensitive to defects in
tRNA modifications and several neurological disorders
can be attributed to mutations in genes that affect the
post-transcriptional modifications that occur in certain residues
of the tRNA (Figure 1A; Table 1).
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FIGURE 1 | (A) Schematic representation of the secondary structure of transfer RNA (tRNA) with post-transcriptionally modified residues in light orange and red
(numbered). The residues marked in red are of relevance to human neurological disorders. The abbreviations for the modifications are as follows: m2

2G: N2,
N2-dimethyl guanosine; m5C: 5-methylcytosine; I34: inosine at position 34; Q34: queuosine at position 34, mcm5U: 5-methoxycarbonylmethyluridine; mcm5s2U:
5-methoxycarbonylmethyl-2-thiouridine; ψ: pseudouridine; t6A37: N6-threonyl-carbamoyl-adenosine at position 37. (B) Queuosine modification of tRNA. The
G34U35N36 anticodon sequence of tRNA isoacceptors for amino acids tyrosine, asparagine, aspartic acid and histidine will base pair with a N1A2C/U3 codon of
mRNA. G = guanine, U = uridine, A = adenine, N = any base. (C) Single step of Q modification of tRNAs in eukaryotes showing replacement of G34 by Q in the
anticodon triplet by the enzyme heterodimeric TGT enzyme complex. Free Queuosine, Queuosine-5′-P, Queuosine-3′-P are obtained from degradation of Q-tRNA.
Salvage of Q is accomplished by protein DUF2419.

COGNITIVE DISORDERS AND
INTELLECTUAL DISABILITY

Dimethylation of guanosines (m2
2G) occurs at position

26 of tRNAs and this is catalyzed by the human tRNA
methyltransferase 1 (Liu and Straby, 2000; Figure 1A).
Inactivation of this gene by a homozygous frameshift mutation is
a biomarker for recessive cognitive disorders (Najmabadi et al.,
2011). In human tRNAs so far characterized, pseudouridine is
located at 13 different positions and different pseudouridylases
(Pus) catalyze the modification at each of the site(s). It was
recently reported that a nonsense mutation in PUS3 gene
known for its role in isomerizing uracil to pseudouridine via
Pus3 at position 39 in human tRNA was significantly reduced
in patients with intellectual disability (Shaheen et al., 2016,
Table 1).

Positions 32 and 34 on tRNALeu, tRNATrp and tRNAPhe

are methylated (Figure 1A) by the gene encoding a
methyltransferase—the FtsJ methyltransferase homolog 1
(FTSJ1), homologous to the yeast methyltransferase 7
(TRM7). Non-syndromic X linked mental retardation and
intellectual disability are associated with mutations in this gene

(Gong et al., 2008; Guy et al., 2015). At position 34 of tRNALeu
and also at positions 48–50 on several tRNAs, m5C formation
occurs (Brzezicha et al., 2006; Hussain et al., 2013; Khoddami and
Cairns, 2013; Figure 1A). In higher eukaryotes, the only known
m5C RNA methyltransferases are NSun2 and Dnmt2 and both
enzymes are confirmed to target tRNA (Brzezicha et al., 2006).
Deficiency in Nsun2 has been linked to intellectual disability
(Abbasi-Moheb et al., 2012; Ghadami et al., 2015; Table 1).
Interestingly, deletion of the ortholog of Nsun2 in fly results in
severe short-term memory deficits (Abbasi-Moheb et al., 2012).
Dubowitz-like syndrome associated with intellectual disability
is also linked to mutations in Nsun2 (Martinez et al., 2012).
Adenosine deaminase catalyze the conversion of adenosine-to-
inosine at position 34 (I34) of tRNAs (Figure 1), and is encoded
by heterodimeric adenosine deaminase (hetADAT). A single
missense mutation in ADAT3 encoding for one of the subunits
of hetADAT is present in families with individuals affected with
intellectual disability (Alazami et al., 2013). 7-methylguanosine
(m7G) modification of tRNA occuring in eukaryotes and
bacteria, is nearly always found at position 46 (Figure 1), and
is a modification that confers a positive charge to the base. The
human WD repeat domain 4 (WDR4) is the closest homolog to
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TABLE 1 | Transfer RNA (tRNA) modifications, genes affected and their associated neurological disorders.

tRNA modification and residues affected Gene(s) affected Neurological disorders References

m2
2G, several tRNA’s, 26 TRMT1 Cognitive dysfunction

/Intellectual disability
Najmabadi et al. (2011)

2′-O-methylribose Cm, Gm, ncm5Um
(tRNA)Leu, Trp, Phe, 32 and 34

FTSJ1 X-linked mental retardation Gong et al. (2008),
Guy et al. (2015)

m5C, tRNALeu,
34 Several tRNA’s 48, 49, 50

NSUN2 Autosomal-recessive intellectual disability Abbasi-Moheb et al. (2012),
Ghadami et al. (2015)

Dubowitz-like syndrome Martinez et al. (2012)

U39 to ψ, tRNAPhe, 39 PUS3 Cognitive dysfunction
/Intellectual disability

Shaheen et al. (2016)

A to I editing
(tRNA)Ala, Pro, Thr, Val, Ser, Arg, Leu, Ile, 34

ADAT3 Intellectual disability Alazami et al. (2013)

mcm5s2U, ncm5U, and derivatives, 34 IKBKAP, ELP2,
ELP3, ELP4

Intellectual disability Najmabadi et al. (2011),
Cohen et al. (2015)

Familial dysautonomia Karlsborn et al. (2014)
Amyotrophic lateral sclerosis Simpson et al. (2009)
Rolandic epilepsy Reinthaler et al. (2014)

G to Q, (tRNA)Tyr, Asn, Asp, His, 34 TGT Encephalomyelitis Varghese et al. (2017)

m7G, several tRNA’s, 46 WDR4 Downs syndrome Michaud et al. (2000)

the yeast TRM82 protein complex responsible for formation of
m7G. WDR4 has been identified in a search for candidate genes
of Down’s syndrome phenotypes (Michaud et al., 2000), but a
direct association has not yet been demonstrated.

NEURODEVELOPMENTAL DISABILITIES

Elongator is a highly conserved multi-subunit protein complex
(ELP 1–6) that is essential to transcription elongation, histone
acetylation as well as tRNA modification. The association
between elongator complex and translational fidelity via
regulation of tRNA modifications has gathered accumulating
evidence in the last decade (Kojic and Wainwright, 2016).
In eukaryotes, uridine at position 34 are modified to
5-carbamoyl-methyl-uridine (ncm5U), 5-methoxy-carbonyl-
methyl-uridine (mcm5U), or 5-methoxy-carbonyl-methyl-2-
thio-uridine (mcm52U) in the anticodons of tRNALys , tRNAGlu

and tRNAGln. These modifications require the elongator
complex (Esberg et al., 2006; Johansson et al., 2008; Bauer and
Hermand, 2012). The Elongator mediated transfer of methyl-
group to tRNA U34 involves a SAM-mediated mechanism
coupled with an electron transfer from Kti11/Kti13, a cofactor
complex (Boal et al., 2011; Kolaj-Robin et al., 2015). Recently,
Glatt et al. (2016) showed the structural basis for such a
modification of tRNA by ELP3. Moreover, it has been shown
that a missense variant of the gene encoding for ELP2 is linked to
neurodevelopmental disabilities (Najmabadi et al., 2011; Cohen
et al., 2015).

ROLANDIC EPILEPSY

Rare and deleterious variants of ELP4 have been associated with
atypical rolandic epilepsy (RE; Reinthaler et al., 2014, Table 1).
ELP4 has a putative role in neuronal migration and variants in
the gene confer susceptibility to parts of the RE disease spectrum.

MOTOR NEURON DISEASES

Allelic variants of ELP3 were associated with amyotrophic
lateral sclerosis (ALS; a spontaneous, progressive motor neuron
disease), in three human populations (Simpson et al., 2009), and,
in the same study, two different loss of function mutations in
ELP3 and genes important for neuronal communication and
survival were identified in a mutagenesis screen in Drosophila.
Moreover, dose-dependent motor axonal abnormalities were
observed in zebrafish embryos when ELP3 protein levels were
knocked down using antisense morpholinos. (Simpson et al.,
2009). Mutations in ELPC1 and ELPC3 in Caenorhabditis
elegans are associated with neurological and developmental
dysfunctions (Chen et al., 2009). These studies implicate the
importance of the elongator complex which are essential for
tRNA modifications.

Interestingly, phenotypes associated with defective Elongator
are due to lack of formation of mcm5s2U at position 34 of
tRNAs (Phizicky and Hopper, 2010; Figure 1A). Mutation
in the inhibitor of kappa light polypeptide gene enhancer
in B-cells, kinase complex-associated protein (IKBKAP) gene
leads to reduced levels of the modified nucleoside mcm5s2U in
tRNA and is associated with familial dysautonomia, a recessive
neurodegenerative genetic disease (Karlsborn et al., 2014). Since
Elongator influences acetylation of α-tubulin in neurons, there
is a strong possibility that it may also play a significant role in
neurological disorders such as Huntington’s disease, Alzheimer’s
disease, Parkinson’s disease and ALS (Nguyen et al., 2010).

NEURODEGENERATION

The N6-threonyl-carbamoyl-adenosine (t6A) modification, is
a complex modification of adenosine located at position 37
(t6A37) next to the anticodon stem loop of many tRNA’s
that decode the ANN codons (Figure 1A). A recent report
on a biosynthetic defect of the t6A molecule as a result of
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a mutation to kinase-associated endopeptidase (KAE1) gene
of the highly conserved Kinase, Endopeptidase and Other
Proteins of small Size (KEOPS) complex manifested in a
neurodegenerative phenotype in two patients (Edvardson et al.,
2017). This adds to the growing list of defects in cytoplasmic
tRNA modification enzymes associated with neurological
disorders.

SIGNIFICANCE OF QUEUOSINE
MODIFICATION OF tRNA AND ITS ROLE IN
MULTIPLE SCLEROSIS AND OTHER
NEUROLOGICAL DISORDERS

Queuosine (Q) is among the most elaborate of the known tRNA
modifications occurring in the wobble base (position 34) of
tRNAs with G34U35N36 anticodons (tRNAGUN; where N = any
base) that incorporate tyrosine, asparagine, aspartic acid or
histidine amino acids (Katze et al., 1982; Nishimura, 1983;
El Yacoubi et al., 2012; Figure 1B). This modification is
widely distributed in most prokaryotic and eukaryotic phyla
with the exception of yeast and mycoplasma (Katze et al.,
1982). Structurally, Q comprises a 7-deazaguanosine core
(Iwata-Reuyl, 2003). Q base is known to exist in four forms
in biological systems: free nucleoside, free nucleotide and
nucleoside incorporated into tRNA and free queuine base.
tRNA-guanine transglycosylase (TGTase; EC 2.4.2.29) which
was renamed later as tRNA-guanine ribosyltransferase (TGRase)
by the Enzyme Commission, is the enzyme that catalyzes
the formation of this modified tRNA (Farkas et al., 1984).
Even though the Q modification is widely distributed in
Bacteria and Eukarya, it is synthesized de novo by most
bacteria, whereas all eukaryotes solely rely on salvage from
environment to incorporate this complex modification. In
eukaryotes, queuosine production is from the fully formed
queuine base obtained from diet or microflora in intestinal,
circulatory or membrane transport systems and incorporated
post-transcriptionally by the eukaryotic analog of the prokaryotic
TGTase. The completely modified base queuine is utilized
by eukaryotic TGTase as a substrate and is irreversibly
incorporated by a base-exchange reaction at position 34
of specific tRNAs (Kersten and Kersten, 1990; Figure 1C).
Eukaryotic TGTase was shown to be a heterodimeric complex
of 100–104 kDa protein, comprising a putative 60–66 kDa
(QTRTD1) regulatory subunit and a 34–45 kDa (QTRT1)
catalytic subunit (Morris et al., 1995; Slany and Müller, 1995;
Deshpande et al., 1996). The former is probably involved
in tRNA binding (Chen et al., 2010). The identification
of DUF2419 as a potential member of the Q salvage
protein family involved in Q-recycling was recently reported
from phylogenetic analysis of plant, animal and fungal
micronutrient Q salvage systems (Zallot et al., 2014). Queuosine
modification system in mammalian cells is dependent on:
(a) the uptake of queuine base into the cells by a queuine-
specific membrane transport system (Elliott and Crane, 1990;
Morris et al., 1996, 1999); (b) enzymatic incorporation of
queuine into the first position of the anticodon loop of

tRNA by TGTase (Morris et al., 1995, 1996, 1999; Slany and
Müller, 1995); and (c) salvage of queuine by DUF2419 from
queuosine 5′ monophosphate, free queuosine or queuosine-3′

monophosphate, resulting from tRNA degradation (Gündüz
and Katze, 1982, 1984; Morris et al., 1999; Zallot et al.,
2014).

The physiological significance of Q-tRNA and role of queuine
has not been comprehensively established in eukaryotes. The
absence of Q leads to no obvious developmental phenotypes
in C. elegans (Gaur et al., 2007), in contrast, Q-deficient
Drosophila are more sensitive to cadmium stresses (Siard
et al., 1991). In mammals, the absence of both Q and
tyrosine cause severe symptoms leading to death (Marks and
Farkas, 1997). This suggests that queuine, the Q precursor
is an essential micronutrient and also plays an important
role in biosynthesis of Q to form Q-tRNA (Nishimura,
1983; Kersten, 1988). Queuine has been shown to promote
the activity of antioxidant enzymes and thus may have a
role in improving the antioxidant defense system (Pathak
et al., 2008). Queuine has been shown to induce cell
differentiation in cancerous cells (Chen and Wu, 1994). Lack
of Q in first position of anticodons in tRNAs of Q-family is
reported in various tumor cells (Dirheimer et al., 1995). The
histopathological grade of malignancy is strongly correlated
to amount of Q-deficient tRNA, and increased deficiency is
observed in metastatic ovarian malignant tumors compared
with primary malignancies (Baranowski et al., 1994). In
short, Q modification of tRNA has been shown to play a
divergent role in cellular machinery (Vinayak and Pathak,
2010).

Autoimmune diseases, including multiple sclerosis, are
characterized by the rapid expansion of T cells directed to
self-antigens. The potential medicinal relevance of targeting
the hypomodification of Q-tRNA was recently demonstrated in
the treatment of a chronic multiple sclerosis model—murine
experimental autoimmune encephalomyelitis (Varghese et al.,
2017). The administration of a de novo designed eukaryotic
TGT substrate (NPPDAG) led to an unprecedented complete
reversal of clinical symptoms and a dramatic reduction of
markers associated with immune hyperactivation and neuronal
damage. Thus, TGT is essential for the therapeutic effect, since
animals deficient in TGT activity were refractory to therapy.
The data suggests that exploitation of the eukaryotic TGT
enzyme is a promising approach for the treatment of multiple
sclerosis.

It has also been shown that deficiency in queuine in
human HepG2 cells and mice made deficient in Q-tRNA,
by disrupting the tRNA TGTase, have impaired ability to
produce tyrosine from phenylalanine. This is because of a
decrease in supply of the cofactor BH4 by increased oxidation
of tetrahydrobiopterin leading to elevation of dihydrobiopterin
(BH2) by an as yet undetermined mechanism (Rakovich
et al., 2011). This has significant implications for dopamine
(DA) biosynthesis which depends on a robust supply of BH4
(Nagatsu and Ichinose, 1996). It is thus interesting to speculate
if such a deficiency of Q-tRNA could mimic Parkinsonian
disorders.
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All these defects in tRNA modifications and the consequent
neurological disorders strongly indicate a functional association
between aberrant tRNA modification and development of
neurological disease. This raises a question of how many more
defective proteins lead to lack of tRNA modifications and could
these also lead to human pathologies, particularly neurological
and/or neurodegenerative disorders?

CONCLUSIONS

Complex clinical pathologies arise as a result of mutations
in tRNA genes and tRNA processing enzymes. Central to
these tRNA modifications is the precise biological roles
played by such changes or lack thereof. Once these roles
are defined, strategies eventually will emerge to develop
therapeutics directed towards correcting hypomodified tRNA or
modulation of the expression of tRNA modification enzymes.
In this context, recent advances in the field of tRNA biology,
detection methods of modified tRNA, advances in genomics
and proteomics together with studies on animal models are
promising for a better understanding of the complex mechanisms

in tRNA modifications leading to neuronal disorders and/or
neuroprotection. Such advances will stimulate research in novel
tRNA modification based therapeutics.
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